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Abstract. Exact solution of inverse one phase Stefan problem is represented in the form of linear combina-
tion of integral error functions. Heat flux function is reconstructed and coefficients of solution function are
found exactly. Test problem was considered for engineering purposes and it was shown that by collocation
method the error for three points does not exceed 0.01%. Error estimate was calculated by maximum
principle.

1. Introduction

In previous studies it was shown that Stefan type problems nicely fit and satisfy experimental data [4, 8]
and can serve as mathematical model for arcing processes in electric contacts and diverse electric contact
phenomena [3]. Worth to note that for some cases electric contact processes, for instance arcing [2, 9],
is so rapid that experimental investigation of phenomenon is almost impossible therefore mathematical
modeling plays vital role for understanding and analyzing electric contact phenomena.

This study is a sequel of series of studies [6, 7], whose ultimate purpose is to determine and investigate
components of arc occurring during opening electrical contacts and it is an attempt to model arcing process
on the base of inverse one phase Stefan problem.

A long bibliography of studies on free-moving boundary problems [10] and literature therein is devoted
to qualitative and quantitative investigations of the Stefan type problems as well as their applications and
this type of problems are recognized as most complicated problems in the theory of parabolic equations. For
equations responsible for governing electric contact phenomena including nonlinear cases classical theory
of heat potentials enables one to construct analytical solutions only for some cases and reduction to integral
equations leads to singularity of integrals at initial time when domain degenerates therefore the method of
successive approximations is inapplicable [1, 5]. Thus finding exact solution for such problems seems to
be valuable as from theoretical point of view as well as for investigation and analyzing afore mentioned
electric contact phenomena.
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2. One Phase Inverse Stefan Problem

Under the assumption that liquid zone is well mixed and power balance is given as in Stefan’s condition
i.e. energy is consumed only for melting moving boundary the model of heat transfer in electric contact is
based on the following one phase inverse Stefan problem.

Let us consider a heat equation

∂U
∂t

= a2 ∂
2U
∂x2 , 0 < x < α(t), t > 0, (1)

subjected to following conditions:

−λ
∂U
∂x

∣∣∣∣∣
x=0

= P(t), t > 0, (2)

U(α(t), t) = Um, t > 0, (3)

U(0, 0) = 0, (4)

−λ1
∂U
∂x

∣∣∣∣∣
x=α(t)

= Lγ
dα(t)

dt
, t > 0, (5)

where P(t) is a heat flux which has to be found along with temperature function U(x, t). Um is a melting
temperature and α(t) is a known moving boundary.

3. Method of Solution

Solution is represented in the form of integral error functions

U(x, t) =

∞∑
n=0

(2a
√

t)n
[
Aniner f c(

x

2a
√

t
) + Bniner f c(−

x

2a
√

t
)
]
, (6)

where An,Bn and P(t) has to be determined.
Let us suggest that known moving boundary can be expressed in Maclaurin’s series

α (t) =

∞∑
n=0

α(n) (0)
n!

· t
n
2 (7)

and heat flux P(t) can be expressed in the following form

P(t) = p0 + p1t + p2t2 + p3t3 + ... + pntn, (8)

where p0, p1, p2, p3...pn has to be determined.
Making substitution

√
t = τ, we rewrite the conditions (2), (3), (5) in terms of τ and then, we compare

the equal powers in the left and right hand sides of equations using differentiation and putting τ = 0.
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From (3), we get

∞∑
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when n = 0
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For k = 0, 1, 2, ...., we utilize Leibniz rule for k-th derivative of product and Faa Di Bruno’s formula for k-th
derivative of composite function, thus
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where Bk−n,m is Bell’s polynomial
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Ultimately, we get

 ∞∑
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Multiplying both sides of (5) by 2aτ, we get
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For n = 0 and k = 0

−λ
[
−A0i−1er f c

(
α1

2a

)
+ B0i−1er f c

(
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Thus, An, Bn can be determined from the system of equations (11), (13).
From (2)

−λ
∞∑

n=0

(2aτ)n−1 [Bn − An] in−1er f c (0) = P(τ),

we get coefficients of heat flux P(t)

pn−1 = λ (2a)n−1 [An − Bn] in−1er f c (0) ,n = 1, 2, 3, ... (15)

Remark 3.1. Convergence of series (6) can be proved by the help of the same idea represented by second
author in [8].

4. Test Problem

In this section, we show that it is possible to reach 0.01% error using only three points t0 = 0, t1 = 0.5
and t2 = 1 by collocation method which seems to be very practical for engineers.

Solution is found both exactly and approximately.
For the problem α(t) = α

√
t (moving boundary), solution should be sought by formula (6).

Coefficients An,Bn can be determined from (11), (13) and Pn from (15) or straightforwardly by satisfying
conditions and equating like terms as following:
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By straightforward substitution α(t) = α
√

t conditions (3), (5) are reduced to the following system from
which we determine An,Bn coefficients (n = 1, 2, 3 . . . )
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Thus it’s easy to see that An = Bn = 0,n = 1, 2, 3, · · · .
Let um = 0, λ = 1, a = 1, L = α = γ = 1. Then using Mathcad 15 for collocation method we get following

approximate values for A0 = 0.579, A1 = 0, A2 = 0, B0 = −0.183, B1 = 0, B2 = 0. Exact values can be
computed from (16), (17) and (18).

In Figure 1, the graphs of both reconstructed exact (P(t)) and approximate (P (t)) flux functions are
illustrated.

Figure 1: Graphs of both reconstructed exact and approximate flux functions

Computation of relative error of flux function is illustrated in Figures 2 and 3.

Figure 2: Computation of relative error of flux function

In Figure 3, we can observe that relative error doesn’t exceed 0.01 for three points t0 = 0, t1 = 0.5 and
t2 = 1.

Figure 3: Scaled graph of relative error



M. Sarsengeldin et al. / Filomat 32:3 (2018), 985–990 990

5. Conclusion

Thus, coefficients An,Bn of the series (6) and function P(t) can be determined from (11),(13) and (15)
respectively. It was shown in the test problem that by maximum principle error estimate doesn’t exceed
0.01%. Calculations were performed on Mathcad 15 for three points by collocation method. In test problem,
we found exact solution by proposed method, however, it could be found by classical heat potential of single
layer.

References

[1] A. Friedman, Free boundary problems for parabolic equations I. Melting of solids, J. Math. Mech. 8 (1959) 499–517
[2] R. Holm, Electric Contacts, (4-th edition), Springer Verlag, 1981.
[3] S.N. Kharin, H. Nouri, T. Davies, The mathematical models of welding dynamics in closed and switching electrical contacts,

Proc. 49th IEEE Holm Conf. Electrical Contacts, Washington, USA, (2003) 107–123.
[4] S.N. Kharin, M. Sarsengeldin, Influence of contact materials on phenomena in a short electrical arc, Key Engineering Materials,

Trans Tech Publications 510-511 (2012) 321–329.
[5] L.I. Rubinstein, The Stefan Problem, Transl. Math. Monogr. 27, AMS, Providence, RI, 1971.
[6] M.M. Sarsengeldin, A.S.Erdogan, T. Nauryz, H. Nouri, Exact solution of inverse spherical two phase Stefan problem,

arXiv:1703.04946.
[7] M.M. Sarsengeldin, S. Guvercin, S. Kassabek, Solution of one phase inverse Stefan problem by Hartree functions method, J.

Physics: Conference series (2014) 193–199.
[8] M.M. Sarsengeldin, S.N. Kharin, Method of the integral error functions for the solution of the one- and two-phase Stefan problems

and its application, Filomat 31 (2017) 1017–1029.
[9] P.G. Slade, Electrical Contacts:Principles and Applications, CRC Press, 1999.

[10] D.A. Tarzia, A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems,
MAT-Ser. A 2 (2000) 1–297.


