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Abstract. In this paper, we study spectral properties of the Laplace operator with generalised Samarskii-
Ionkin boundary conditions in a disk. The eigenfunctions and eigenvalues of these problems are constructed
in the explicit form. Moreover, we prove the completeness of these eigenfunctions.

1. Introduction

The Dirichlet, Neumann and periodic boundary value problems are one of the most important problems
in the theory of harmonic functions. A new class of the boundary value problems for the Poisson equation
in a unit disk Ω = {z = (x, y) = x + iy ∈ C : |z| < 1}was introduced in [4, 7] (k = 1, 2):

The problem Pk. Find a solution of the Poisson equation

−∆u = f (z), z ∈ Ω (1)

satisfying the following periodic boundary conditions

u(1, ϕ) − (−1)ku(1, ϕ + π) = τ(ϕ), 0 ≤ ϕ ≤ π, (2)

∂u
∂r

(1, ϕ) + (−1)k ∂u
∂r

(1, ϕ + π) = ν(ϕ), 0 ≤ ϕ ≤ π, (3)

where f (z) ∈ Cα(Ω), τ(ϕ) ∈ C1+α[0, π], and ν(ϕ) ∈ [0, π], 0 < α < 1.
These problems are analogous to the classical periodic boundary value problems. In [7], the authors

showed the possibility of using the method of separation of variables for the Pk problems. Furthermore,
in this case, they showed the self-adjointness of these problems and constructed their all eigenvalues and
eigenfunctions.

Then, in [4], the authors considered the Pk problems in the multidimensional case and proved the well-
posedness of this problem. The existence and uniqueness of the solution of the problem P1 were shown.
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They also proved that the solution of the problem P2 is not unique up to a constant term and exists if the
necessary condition of the well-posedness is held. Using the extreme principle and Green’s function, they
investigated the uniqueness and existence of the solution of the Pk problems.

In [3], an analog of the Samarskii-Ionkin type boundary value problem for the Poisson equation in a
disk was considered. The authors proved the well-posedness of this problem and constructed its Green’s
function in the explicit form. Then, in [8], the spectral properties of this problem were studied. They
constructed the eigenfunctions of this problem and proved its completeness.

In [5, 6], there were investigated problems generalising the periodic Pk problems.
The Samarskii-Ionkin type non-local problems for other partial differential equations were also investi-

gated (see e.g. [1, 2]).
In this paper, we are interested in spectral properties of the generalised Samarskii-Ionkin type boundary

value problems.

2. Statement of the Problem

Let Ω = {z = (x, y) = x + iy ∈ C : |z| < 1} be a unit disk, r = |z|, ϕ = arctan(y/x), Ω+ = Ω ∩ {y > 0}, and
Ω− = Ω ∩ {y < 0}. We consider the spectral problem corresponding to the Laplace operator

−∆u(z) = λu(z), |z| < 1 (4)

with the nonlocal boundary conditions

u(1, ϕ) − αu(1, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π, α ∈ R, (5)

and

∂u
∂r

(1, ϕ) −
∂u
∂r

(1, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π (6)

or

∂u
∂r

(1, ϕ) +
∂u
∂r

(1, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π. (7)

The antiperiodic boundary value problem (4)-(6) for α = −1 and the periodic boundary value problem
(4)-(5), (7) for α = 1 are investigated in [4, 7]. When α = 0, these problems are considered in [3, 8].

3. Main Results

Let us denote by L1 the closure in L2(Ω) of the operator defined by the differential expression L1u = −∆u(z)
on the linear manifold of functions u(z) ∈ C2+γ(Ω), 0 < γ < 1, satisfying the boundary conditions

u(1, ϕ) − αu(1, 2π − ϕ) = 0,
∂u
∂r

(1, ϕ) −
∂u
∂r

(1, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π.

Similarly, by L2 we denote the closure in L2(Ω) of the operator defined by the differential expression
L2u = −∆u(z) on the linear manifold of functions u(z) ∈ C2+γ(Ω), 0 < γ < 1, satisfying the boundary
conditions

u(1, ϕ) − αu(1, 2π − ϕ) = 0,
∂u
∂r

(1, ϕ) +
∂u
∂r

(1, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π.

Theorem 3.1. Let α , 1. The system of the eigenfunctions of the operator L1 is complete in L2(Ω) and has the
following form:

u1
k(z) = Jk(r

√
λD) cos kϕ, 0 ≤ ϕ ≤ 2π, k = 0, 1, 2, ..., (8)
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u2
m(z) = Jm(r

√
λN) sin mϕ +

a0

2
J0(r

√
λN) +

∞∑
n=1, n,m

an Jn(r
√
λN) cos nϕ, 0 ≤ ϕ ≤ 2π,m = 1, 2, ..., (9)

with

an =
(1 + α)Jm(

√
λN)

π(1 − α)Jn(
√
λN)

(
(−1)m−n

− 1
m − n

+
(−1)m+n

− 1
m + n

)
,n , m, n = 0, 1, ....

Here, Ji(x), i = 0, 1, ... are Bessel functions, λD and λN are eigenvalues of the Dirichlet and Neumann problems for
the Laplace equation in Ω, respectively.

Proof. We introduce auxiliary functions

c(r, ϕ) =
1
2

(u(r, ϕ) + u(r, 2π − ϕ)), s(r, ϕ) =
1
2

(u(r, ϕ) − u(r, 2π − ϕ)). (10)

It is obvious that u(z) = c(z) + s(z). By a direct calculation, we find spectral problems for the functions c(z)
and s(z): for the function s(z), we obtain Neumann problem

−∆s(z) = λs(z), z ∈ Ω;
∂s
∂r

(1, ϕ) = 0, 0 ≤ ϕ ≤ 2π, (11)

and for the function c(z), we have Dirichlet problem

−∆c(z) = λc(z), z ∈ Ω; c(1, ϕ) =

{
−

1+α
1−α s(1, ϕ), 0 ≤ ϕ ≤ π;

1+α
1−α s(1, ϕ), π ≤ ϕ ≤ 2π.

(12)

Let us consider two cases:
1) In the case λ , λN, one obtains s(r, ϕ) = 0, and the Dirichlet problem (12) has the form

−∆c(z) = λc(z), z ∈ Ω; c(1, ϕ) = 0, 0 ≤ ϕ ≤ 2π. (13)

Since c(r, ϕ) = c(r, 2π − ϕ), one of the series of the eigenfunctions of the L1 problem has the following form:

uk(z) = Jk(r
√
λD) cos kϕ, k = 0, 1, .... (14)

2) In the case λ = λN, by using the property s(r, ϕ) = −s(r, 2π − ϕ), we obtain

sm(z) = Jm(r
√
λN) sin mϕ,m = 1, 2, .... (15)

Then, we rewrite the Dirichlet problem (12) as

−∆c(z) = λNc(z), z ∈ Ω, (16)

c(1, ϕ) =

{
−

1+α
1−α Jm(

√
λN) sin mϕ, 0 ≤ ϕ ≤ π;

1+α
1−α Jm(

√
λN) sin mϕ, π ≤ ϕ ≤ 2π.

(17)

Since c(r, ϕ) = c(r, 2π − ϕ), we seek c(r, ϕ) in the form

c(r, ϕ) =
a0

2
J0(r

√
λN) +

∞∑
n=1

an Jn(r
√
λN) cos nϕ. (18)

From the boundary condition (17) we obtain

an Jn(
√
λN) = −

1 + α
π(1 − α)

∫ π

0
Jm(

√
λN) sin mϕ cos nϕdϕ +

1 + α
π(1 − α)

∫ 2π

π
Jm(

√
λN) sin mϕ cos nϕdϕ

= −
2(1 + α)
π(1 − α)

∫ π

0
Jm(

√
λN) sin mϕ cos nϕdϕ, n = 0, 1, ....
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It follows that

an =
(1 + α)Jm(

√
λN)

π(1 − α)Jn(
√
λN)

(
(−1)m−n

− 1
m − n

+
(−1)m+n

− 1
m + n

)
, n = 0, 1, ...,

for n , m and an = 0 for n = m.
Thus, we obtain the eigenfunctions of the L1 problem as follows

u1
k(z) = Jk(r

√
λD) cos kϕ, 0 ≤ ϕ ≤ 2π, k = 0, 1, 2, ..., (19)

u2
m(z) = Jm(r

√
λN) sin mϕ +

a0

2
J0(r

√
λN) +

∞∑
n=1, n,m

an Jn(r
√
λN) cos nϕ, 0 ≤ ϕ ≤ 2π,m = 1, 2, .... (20)

By asymptotic forms of the Bessel function and using Leibniz criterion, one shows the convergence of
the series in (20).

Now, we prove that the eigenfunctions (19) and (20) are complete in L2(Ω). We have∫
Ω

u1
k(z) f (z)dz =

∫ 1

0

∫ π

0
rJk(r

√
λD)( f (r, ϕ) + f (r, 2π − ϕ)) cos kϕdrdϕ = 0.

Since
{
rJk(r
√
λD) cos kϕ

}k=∞

k=0
is complete in L2(Ω+), one has

f (r, ϕ) + f (r, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π. (21)

Taking into account (21), we get∫
Ω

u2
m(z) f (z)dz =

∫
Ω

(
Jm(r

√
λN) sin mϕ

)
f (z)dz

+

∫
Ω

a0

2
J0(r

√
λN) +

∞∑
n=1, n,m

an Jn(r
√
λN) cos nϕ

 f (z)dz

=

∫ 1

0

∫ π

0
rJm(r

√
λD) sin mϕ( f (r, ϕ) − f (r, 2π − ϕ))drdϕ = 0.

Since
{
rJm(r

√
λD) sin mϕ

}m=∞

m=1
is complete in L2(Ω+), we obtain

f (r, ϕ) − f (r, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π. (22)

The formulas (21) and (22) imply f (r, ϕ) = 0 for 0 ≤ ϕ ≤ 2π, which provides the completeness of the
eigenfunctions (19) and (20) in L2(Ω).

Theorem 3.2. Let α , −1. The system of the eigenfunctions of the operator L2 is complete in L2(Ω) and has the
following form:

u1
k(z) = Jk(r

√
λD) sin kϕ, 0 ≤ ϕ ≤ 2π, k = 1, 2, ..., (23)

u2
m(z) = Jm(r

√
λN) cos mϕ +

∞∑
n=1, n,m

bn Jn(r
√
λN) sin nϕ, 0 ≤ ϕ ≤ 2π,m = 0, 1, ..., (24)

with

bn =
(1 − α)Jm(

√
λN)

π(1 + α)Jn(
√
λN)

( (−1)n−m
− 1

n −m
+

(−1)n+m
− 1

n + m

)
,n , m.

Here, Ji(x), i = 0, 1, ... are Bessel functions, λD and λN are eigenvalues of the Dirichlet and Neumann problems for
the Laplace equation in Ω, respectively.
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Proof. By a direct calculation, we find spectral problems for the functions c(z) and s(z): for the function c(z),
we obtain Neumann problem

−∆c(z) = λc(z), z ∈ Ω;
∂c
∂r

(1, ϕ) = 0, 0 ≤ ϕ ≤ 2π, (25)

and for the function s(z), we have Dirichlet problem

−∆s(z) = λs(z), z ∈ Ω; s(1, ϕ) =

{
−

1−α
1+αc(1, ϕ), 0 ≤ ϕ ≤ π;

1−α
1+αc(1, ϕ), π ≤ ϕ ≤ 2π.

(26)

Let us consider again two cases:
1) In the case λ , λN, we have c(r, ϕ) = 0, and the Dirichlet problem (26) has the form

−∆s(z) = λs(z), z ∈ Ω; s(1, ϕ) = 0, 0 ≤ ϕ ≤ 2π. (27)

Since s(r, ϕ) = −s(r, 2π−ϕ), one of the series of the eigenfunctions of the L2 problem has the following form:

u1
k(z) = Jk(r

√
λD) sin kϕ, k = 1, 2, .... (28)

2) In the case λ = λN, using the property c(z) = c(r, 2π − ϕ), we obtain

cm(z) = Jm(r
√
λN) cos mϕ,m = 0, 1, 2, .... (29)

Then, we rewrite the Dirichlet problem (26) as

−∆s(z) = λNs(z), z ∈ Ω, (30)

s(1, ϕ) =

{
−

1−α
1+α Jm(

√
λN) cos mϕ, 0 ≤ ϕ ≤ π;

1−α
1+α Jm(

√
λN) cos mϕ, π ≤ ϕ ≤ 2π.

(31)

Since s(r, ϕ) = −s(r, 2π − ϕ), we seek s(r, ϕ) in the form

s(r, ϕ) =

∞∑
n=1

bn Jn(r
√
λN) sin nϕ. (32)

From the boundary condition (31), one calculates

bn Jn(
√
λN) = −

(1 − α)
π(1 + α)

∫ π

0
Jm(

√
λN) cos mϕ sin nϕdϕ +

(1 − α)
(1 + α)π

∫ 2π

π
Jm(

√
λN) cos mϕ sin nϕdϕ

= −
2(1 − α)
(1 + α)π

∫ π

0
Jm(

√
λN) cos mϕ sin nϕdϕ, n = 1, 2, ....

This yields that

bn =
(1 − α)Jm(

√
λN)

π(1 + α)Jn(
√
λN)

( (−1)n−m
− 1

n −m
+

(−1)n+m
− 1

n + m

)
for n , m and bn = 0 for n = m.

Thus, we obtain the eigenfunctions of the L2 problem

u1
k(z) = Jk(r

√
λD) sin kϕ, 0 ≤ ϕ ≤ 2π, k = 1, 2, ..., (33)

u2
m(z) = Jm(r

√
λN) cos mϕ +

∞∑
n=1, n,m

bn Jn(r
√
λN) sin nϕ, 0 ≤ ϕ ≤ 2π,m = 0, 1, .... (34)



N. Yessirkegenov / Filomat 32:3 (2018), 1019–1024 1024

As in the proof of Theorem 3.1, it is easy to show that the series in (34) converges.
Now, we show that the eigenfunctions (33) and (34) are complete in L2(Ω). We have∫

Ω

u1
k(z) f (z)dz =

∫ 1

0

∫ π

0
rJk(r

√
λD) sin kϕ( f (r, ϕ) − f (r, 2π − ϕ))drdϕ = 0.

Since
{
rJk(r
√
λD) sin kϕ

}k=∞

k=1
is complete in L2(Ω+), we obtain

f (r, ϕ) − f (r, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π. (35)

Using (35) and a direct calculation, we get∫
Ω

u2
m(z) f (z)dz =

∫
Ω

(
Jm(r

√
λN

)
cos mϕ) f (z)dz +

∫
Ω

 ∞∑
n=1, n,m

bn Jn(r
√
λN) sin nϕ

 f (z)dz

=

∫ 1

0

∫ π

0
rJm(r

√
λD) cos mϕ( f (r, ϕ) + f (r, 2π − ϕ))drdϕ = 0.

Since
{
rJm(r

√
λD) cos mϕ

}m=∞

m=0
is complete in L2(Ω+), one has

f (r, ϕ) + f (r, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π. (36)

From (35) and (36), we obtain f (r, ϕ) = 0, 0 ≤ ϕ ≤ 2π, which implies that the eigenfunctions (33) and (34)
are complete in L2(Ω).
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