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Abstract. In this paper, we introduce the paranormed sequence space L(t) which is the generalization of
the space Lq of all absolutely q−summable double sequences. We examine some topological properties of
the space L(t) and determine its alpha-, beta- and gamma-duals. Finally, we characterize some classes of
four-dimensional matrix transformations from the space L(t) into some spaces of double sequences.

1. Introduction and Notations

We denote the set of all complex valued double sequences by Ω, i.e.,

Ω :=
{
x = (xkl) : xkl ∈ C for all k, l ∈N

}
,

which forms a vector space with coordinatewise addition and scalar multiplication; where C denotes the
complex field andN = {0, 1, 2, . . .}. Any vector subspace of Ω is called as a double sequence space. ByMu, we
denote the space of all bounded double sequences, that is,

Mu :=
{
x = (xkl) ∈ Ω : ‖x‖∞ = sup

k,l∈N
|xkl| < ∞

}
.

A double sequence x = (xkl) ∈ Ω is called convergent to L in the Pringsheim’s sense (shortly, p−convergent to
L) if for every ε > 0 there exists an N = N(ε) ∈N such that |xkl − L| < ε for all k, l > N. It is well-known that
a p−convergent double sequence need not be bounded. If additionally x ∈ Mu, then x is called boundedly
convergent to L in the Pringsheim’s sense (shortly, bp−convergent to L). The spaces of all p− and bp−convergent
double sequences are denoted by Cp and Cbp, respectively. A double sequence x = (xkl) ∈ Cp is said to be
regularly convergent to L (shortly, r−convergent to L) if the limits

xk := lim
l→∞

xkl (k ∈N) and xl := lim
k→∞

xkl (l ∈N)

exist. Note that, in this case limk→∞ xk = liml→∞ xl = L, where L is the p−limit of x. As seen, in addition to the
p−convergence, the r−convergence requires the convergence of rows and columns of a double sequence,
and so it is bounded. By Cr, we denote the space of all r−convergent double sequences.
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Also the spaces of all null double sequences contained in Cp, Cbp and Cr are denoted by Cp0, Cbp0 and
Cr0, respectively. Referring to Móricz [14], the sets Mu, Cbp, Cr, Cbp0 and Cr0 are Banach spaces with the
norm ‖ · ‖∞.

Throughout the text, ϑ denotes any of the symbols p, bp or r, and any summation without limits runs
from 0 to∞, for example

∑
k,l means

∑
∞

k,l=0. The sum of a double series
∑

k,l xkl with respect to ϑ−convergence
rule is defined by ϑ −

∑
k,l xkl = ϑ − lim

m,n→∞

∑m,n
k,l=0 xkl. If there is no confusion, we shall use

∑
k,l xkl instead of

ϑ −
∑

k,l xkl.
The spaceLq of all absolutely q−summable double sequences is introduced by Başar and Sever [5], that

is,

Lq :=
{

x = (xkl) ∈ Ω :
∑

k,l

|xkl|
q < ∞

}
; (0 < q < ∞).

By taking q = 1, we obtain the space Lu of all absolutely summable double sequences.
For more information on double sequence spaces and related topics one can also see [6–8, 10, 13, 15–

18, 20–23].
The elementary double seqeunces ekl =

(
ekl

i j

)
, e, ek and el are defined, as follows;

ekl
i j :=

{
1 , (i, j) = (k, l),
0 , (i, j) , (k, l),

e :=
∑

k,l ekl; the double sequence that all terms are one,

ek :=
∑

l ekl; the double sequence that all terms of k-th row are one and other terms are zero,

el :=
∑

k ekl; the double sequence that all terms of l-th column are one and other terms are zero.

We denote the set of all finitely non-zero double sequences by Φ, i.e.,

Φ :=
{
x = (xkl) ∈ Ω : ∃ N ∈N 3 ∀ (k, l) ∈N2

\[0,N]2, xkl = 0
}

:= span
{
ekl : k, l ∈N

}
.

Let X be a real or complex linear space and 1 be a function from X to the set R of real numbers. Then,
the pair (X, 1) or shortly X is called a paranormed space and 1 is a paranorm for X, if the following axioms
are satisfied for all elements x, y ∈ X:

(i) 1(x) ≥ 0,

(ii) 1(x) = 0 if x = θ, where θ is the zero vector in X,

(iii) 1(x) = 1(−x),

(iv) 1(x + y) ≤ 1(x) + 1(y),

(v) Scalar multiplication is continuous, i.e., |αi − α| → 0 and 1(xi
− x) → 0 imply 1(αixi

− αx) → 0 for all
α’s in R and all x’s in X.

Throughout the text, t = (tkl) denotes any double sequence of strictly positive real numbers. We define
the double sequence space L(t), as follows:

L(t) :=
{

x = (xkl) ∈ Ω :
∑

k,l

|xkl|
tkl < ∞

}
.

Clearly, L(e) = Lu and L(qe) = Lq; where 0 < q < ∞ .
Let H = supk,l∈N tkl < ∞ and M = max{1,H}. Now, one can easily check by similar approach used for

single sequences that the set L(t) is complete paranormed space with the paranorm

1(x) =

(∑
k,l

|xkl|
tkl

)1/M

.
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2. Dual Spaces ofL(t)

In the present section, we determine the dual spaces of the space L(t). It is important to notice that
although the alpha- and gamma-duals of a double sequence space are unique, its beta-dual may be more
than one with respect to ϑ−convergence rule. In the rest of the study, ζ denotes any of the symbols α, β(ϑ)

or γ and also λnζ means that
{
λ(n−1)ζ

}ζ
for a double sequence space λ and n ∈N1, the set of positive integers.

The α-dual λα, the β(ϑ)-dual λβ(ϑ) and γ-dual λγ of a double sequence space λ are defined by

λα :=
{

a = (akl) ∈ Ω :
∑

k,l

|aklxkl| < ∞ for all x = (xkl) ∈ λ
}
,

λβ(ϑ) :=
{

a = (akl) ∈ Ω : ϑ −
∑

k,l

aklxkl exists for all x = (xkl) ∈ λ
}
,

λγ :=
{

a = (akl) ∈ Ω : sup
m,n∈N

∣∣∣∣∣∣ m,n∑
k,l=0

aklxkl

∣∣∣∣∣∣ < ∞ for all x = (xkl) ∈ λ
}
.

Definition 2.1. ([21, p. 225]) A double sequence spaceλ containing Φ is said to be monotone if xu = (xklukl) ∈ λ
for every x = (xkl) ∈ λ and u = (ukl) ∈ {0, 1}N×N, where {0, 1}N×N denotes the set of all sequences consisting
of 0’s and 1’s. If λ is monotone, then λα = λβ(p) = λβ(bp) = λβ(r)

⊂ λγ.

Definition 2.2. ([5, p. 154]) A double sequence space λ is called solid if{
u = (ukl) ∈ Ω : ∃ x = (xkl) ∈ λ 3 |ukl| ≤ |xkl| for all k, l ∈N

}
⊂ λ.

If λ is solid, then it is monotone and λα = λβ(p) = λβ(bp) = λβ(r) = λγ.

Now, one can easily observe that the set L(t) is solid. Therefore, to obtain ζ−dual of L(t), it is sufficient
to calculate its α−, β(ϑ)− or γ−dual.

Definition 2.3. ([9, p. 342]) A sequence space λ is called ζ−space if λ = λ2ζ. Further, an α−space is also
called Köthe space or perfect sequence space.

Since there are various convergence rules for double sequences (see [10] for other types of convergence),
we give a new definition for β−space.

Definition 2.4. Let λ be a double sequence space and the symbols ν, ϑ denote any kind of convergence

rule. Then, we call that λ is a β(ν, ϑ)−space if λ =
{
λβ(ν)

}β(ϑ)
for fixed ν, ϑ’s and is a β−space if λ =

{
λβ(ν)

}β(ϑ)

for all ν, ϑ’s. In this study, we only use this definition for ν, ϑ ∈ {p, bp, r}.

Theorem 2.5. Let 0 < tkl ≤ 1. Then, the ζ−dual of the space L(t) is the setMu(t), where

Mu(t) :=
{

x = (xkl) ∈ Ω : sup
k,l∈N
|xkl|

tkl < ∞

}
.

Proof. Let 0 < tkl ≤ 1.
Mu(t) ⊂ {L(t)}α: Take a = (akl) ∈ Mu(t) and x = (xkl) ∈ L(t). Then,∑

k,l

|aklxkl|
tkl ≤ sup

k,l∈N
|akl|

tkl

∑
k,l

|xkl|
tkl < ∞,

i.e., ax ∈ L(t). Therefore, for a given ε > 0, there exists a positive integer n0 = n0(ε) such that
∞,n0∑

k,l=n0+1,0

|aklxkl|
tkl +

n0,∞∑
k,l=0,n0+1

|aklxkl|
tkl +

∞∑
k,l=n0+1

|aklxkl|
tkl < ε.
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Then, for every k > n0 or l > n0 or both we have |aklxkl|
tkl < ε < 1 and so |aklxkl| < 1. Thus, we obtain

|aklxkl| ≤ |aklxkl|
tkl < ε for such k and l’s. This implies that ax ∈ Lu, i.e., a ∈ {L(t)}α.

{L(t)}α ⊂ Mu(t): Suppose that a = (akl) ∈ {L(t)}α \Mu(t). Then, for every x = (xkl) ∈ L(t) we have∑
k,l

|aklxkl| < ∞ but sup
k,l∈N
|akl|

tkl = ∞.

In this case, there exist index sequences (ki) and (li) of natural numbers, at least one of them is strictly
increasing, such that

|aki,li |
tki ,li ≥ (i + 1)2

for all i ∈N. We define x = (xkl) ∈ L(t) by

xkl :=
{

(i + 1)−2/tkl , k = ki and l = li,
0 , k , ki or l , li

for all k, l ∈Nwhich gives∑
k,l

|aklxkl| =
∑

i

|aki,li |(i + 1)−2/tki ,li ≥

∑
i

1 = ∞,

i.e., a < {L(t)}α, a contradiction. Hence, a must be inMu(t).

It is known thatMζ
u = Lu and Lζu =Mu. Now, we have the following corollary:

Corollary 2.6. Let 0 < q ≤ 1. Then, the following statement holds for all k ∈N1:

L
nζ
q :=

{
Mu , n = 2k − 1,
Lu , n = 2k.

Let t = (tkl) and s = (skl) are connected with the relation

1
tkl

+
1
skl

= 1 for tkl, skl > 1.

In this case,

skl

tkl
= skl − 1,

tkl

skl
= tkl − 1, skltkl = skl + tkl

and the inequality

|xklykl| ≤ |xkl|
tkl + |ykl|

skl

is satisfied for any x = (xkl) and y = (ykl) in Ω.
Unless stated otherwise, we take tkl, skl > 1 for all k, l ∈N in the rest of the section.
Now, we define the following solid set with an integer N > 1:

M
(t)
0 (s) :=

∞⋃
N=2

{
a = (akl) ∈ Ω :

∑
k,l

|akl|
skl N−skl/tkl < ∞

}
.

Theorem 2.7. The inclusion L(s) ⊂ M(t)
0 (s) holds.

Proof. The proof is easy. So, we omit the detail.

Theorem 2.8. L(s) =M(t)
0 (s) if and only if s ∈ Mu.
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Proof. Let s = (skl) ∈ Mu. Then, we have 0 < infk,l∈NN−skl/tkl ≤ supk,l∈NN−skl/tkl ≤ 1 for some integer N > 1.
Now, it is easy to see that L(s) =M(t)

0 (s).
Conversely, suppose that L(s) = M(t)

0 (s) but s = (skl) < Mu. Then, there exist index sequences (ki) and
(li) of natural numbers, at least one of them is strictly increasing such that ski,li ≥ i + 1 for all i ∈ N. Define
x = (xkl) < L(s) by

xkl :=
{

1 , k = ki and l = li,
0 , k , ki or l , li

for all k, l ∈Nwhich gives the fact∑
k,l

|xkl|
skl N−skl/tkl =

∑
i

N−(ski ,li−1)
≤

∑
i

N−i < ∞

for some integer N > 1, i.e., x ∈ M(t)
0 (s). This contradicts the hypothesis. Hence, s ∈ Mu.

Theorem 2.9. The ζ−dual of the space L(t) is the setM(t)
0 (s).

Proof. M(t)
0 (s) ⊂ {L(t)}α: Let a ∈ M(t)

0 (s) and x ∈ L(t). Then, we get∑
k,l

|aklxkl| =
∑

k,l

|aklN−1/tkl xklN1/tkl |

≤

∑
k,l

|akl|
skl N−skl/tkl + N

∑
k,l

|xkl|
tkl < ∞

for some integer N > 1, i.e., a ∈ {L(t)}α.
{L(t)}α ⊂ M(t)

0 (s): Suppose that a ∈ {L(t)}α \M(t)
0 (s). Then, for every x ∈ L(t) and all integers N > 1 we

have ∑
k,l

|aklxkl| < ∞ but
∑

k,l

|akl|
skl N−skl/tkl = ∞.

Then, there are following three possibilities:
(i) For fixed l0 ∈N there exists strictly increasing sequence (ki) of natural numbers such that

ki+1∑
k=ki+1

|ak,l0 |
sk,l0 (i + 2)−sk,l0 /tk,l0 > 1 or

(ii) For fixed k0 ∈N there exists strictly increasing sequence (li) of natural numbers such that

li+1∑
l=li+1

|ak0,l|
sk0 ,l (i + 2)−sk0 ,l/tk0 ,l > 1 or

(iii) There exist strictly increasing sequences (ki) and (li) of natural numbers such that

Mi =

ki+1,li+1∑
k,l=ki+1,li+1

|akl|
skl (i + 2)−skl/tkl > 1.

We continue to the proof of the theorem with Case (iii). One can obtain the similar result for the other cases.
Now, we define x = (xkl) by

xkl :=
{
|akl|

skl−1(i + 2)−skl M−1
i , ki < k ≤ ki+1 and li < l ≤ li+1,

0 , otherwise
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for all k, l ∈N. Then, one can see that

∑
k,l

|aklxkl| =
∑

i

M−1
i

ki+1,li+1∑
k,l=ki+1,li+1

|akl|
skl (i + 2)−skl

=
∑

i

M−1
i (i + 2)−1

ki+1,li+1∑
k,l=ki+1,li+1

|akl|
skl (i + 2)−skl/tkl

=
∑

i

(i + 2)−1 = ∞,

i.e., a < {L(t)}α. But, by the inequalities

|akl|
(skl−1)tkl (i + 2)−skltkl M−tkl

i ≤ |akl|
(skl−1)tkl (i + 2)−skltkl M−1

i

= |akl|
skl (i + 2)−skl−tkl+2(i + 2)−2M−1

i

≤ |akl|
skl (i + 2)−skl/tkl (i + 2)−2M−1

i

we conclude that∑
k,l

|xkl|
tkl ≤

∑
i

(i + 2)−2 < ∞,

i.e., x ∈ L(t), a contradiction. Hence, a ∈ M(t)
0 (s).

Theorem 2.10. Let t ∈ Mu. Then, the ζ−dual of the spaceM(t)
0 (s) is the set L(t).

Proof. L(t) ⊂
{
M

(t)
0 (s)

}α
: This is similar to the proof of the inclusionM(t)

0 (s) ⊂ {L(t)}α in Theorem 2.9.{
M

(t)
0 (s)

}α
⊂ L(t): Suppose that a ∈

{
M

(t)
0 (s)

}α
\ L(t). Then, we have

∑
k,l |akl|

tkl = ∞. As in the proof of
Theorem 2.9, there are three cases. We give the proof only for one case.

There exist strictly increasing sequences (ki) and (li) of natural numbers such that

Mi =

ki+1,li+1∑
k,l=ki+1,li+1

|akl|
tkl > 2i.

We define x = (xkl) by

xkl :=
{
|akl|

tkl−1M−1
i , ki < k ≤ ki+1 and li < l ≤ li+1,

0 , otherwise

for all k, l ∈Nwhich gives

∑
k,l

|aklxkl| =
∑

i

M−1
i

ki+1,li+1∑
k,l=ki+1,li+1

|akl|
tkl =

∑
i

1 = ∞,
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i.e., a <
{
M

(t)
0 (s)

}α
. Take infk,l∈N skl = h. Then, for some integer N > 1, we get that

∑
k,l

|xkl|
skl N−skl/tkl =

∑
i

ki+1,li+1∑
k,l=ki+1,li+1

|akl|
(tkl−1)skl M−skl

i N−skl/tkl

≤

∑
i

ki+1,li+1∑
k,l=ki+1,li+1

|akl|
tkl M−skl

i

=
∑

i

M−1
i

ki+1,li+1∑
k,l=ki+1,li+1

|akl|
tkl M−skl+1

i

≤

∑
i

M−1
i

ki+1,li+1∑
k,l=ki+1,li+1

|akl|
tkl 2i(−skl+1)

≤

∑
i

2i(−h+1) < ∞,

i.e., x ∈ M(t)
0 (s). This contradicts the hypothesis. Hence, a ∈ L(t).

Corollary 2.11. Let t, s ∈ Mu. Then, the following statement holds for all k ∈N1:

{L(t)}nζ :=
{
L(s) , n = 2k − 1,
L(t) , n = 2k.

Now, we can give the following corollary:

Corollary 2.12. The following statement holds for all k ∈N1:

L
nζ
q :=

{
Ls , n = 2k − 1,
Lq , n = 2k.

Also, one can easily derive the following two corollaries:

Corollary 2.13. Let 0 < tkl < 1. Then, the set L(t) is not a ζ−space.

Corollary 2.14. Let 1 ≤ tkl ≤ supk,l∈N tkl < ∞. Then, the set L(t) is a ζ−space.

3. Matrix Transformations

Let λ and µ be two double sequence spaces, and A = (amnkl)m,n,k,l∈N be any four-dimensional complex
infinite matrix. Then, we say that A defines a matrix transformation from λ into µ and we write A : λ→ µ, if
for every sequence x = (xkl) ∈ λ the A-transform Ax = {(Ax)mn}m,n∈N of x exists and belongs to µ; where

(Ax)mn = ϑ −
∑

k,l

amnnkxkl for each m,n ∈N. (1)

We define the ϑ-summability domain λ(ϑ)
A of A in a space λ of double sequences by

λ(ϑ)
A :=

x = (xkl) ∈ Ω : Ax =

ϑ −∑
k,l

amnklxkl


m,n∈N

exists and is in λ

 .
We say with the notation of (1) that A maps the space λ into the space µ if λ ⊂ µ(ϑ)

A and we denote the set of all
four-dimensional matrices, transforming the space λ into the space µ, by (λ : µ). Thus, A = (amnkl) ∈ (λ : µ)
if and only if the double series on the right side of (1) converges in the sense of ϑ for each m,n ∈ N, i.e,
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Amn ∈ λβ(ϑ) for each m,n ∈ N and every x ∈ λ, and we have Ax ∈ µ for all x ∈ λ; where Amn = (amnkl)k,l∈N
for each m,n ∈ N. Here, we note concerning with four-dimensional matrix transformations that ϑ must
be fixed, otherwise the results may be incorrect. In this paper, we do not fix ϑ since the β(ϑ)−duals of
corresponding spaces are identical.

For all m,n, k, l ∈ N, we say that A = (amnkl) is a triangular matrix if amnkl = 0 for k > m or l > n or both,
[1]. Following Adams [1], we also say that a triangular matrix A = (amnkl) is called a triangle if amnmn , 0 for
all m,n ∈N. Referring to Cooke [11, Remark (a), p. 22], one can conclude that every triangle matrix has an
unique inverse which is also a triangle.

Theorem 3.1. Let t = (tkl) be any double sequence of strictly positive real numbers. Then, the necessary and sufficient
conditions for A ∈ (X : Y) can be read from the following table:

X ↓ Y→ Mu Cϑ Cϑ0

L(t) (0 < tkl ≤ 1) 1. 2. 3.
L(t) (1 < tkl < ∞) 4. 5. 6.

where

1.

sup
m,n,k,l∈N

|amnkl| < ∞. (2)

2. (2) and

∃ akl ∈ C 3 ϑ − lim
m,n→∞

amnkl = akl for each k, l ∈N. (3)

3. (2) and

Akl = (amnkl)m,n∈N ∈ Cϑ0 for each k, l ∈N. (4)

4.

D = sup
m,n∈N

∑
k,l

|amnkl|
skl N−skl/tkl < ∞ for some integer N > 1. (5)

5. (3) and (5).

6. (4) and (5).

Proof. We only give the proof of the class (L(t) : Cϑ) for all tkl > 1 for all k, l ∈N.
Necessity. The necessity of (5) is immediate from β(ϑ)−dual of L(t). Besides, since the set

{
ekl; k, l ∈N

}
⊂ L(t), Aekl = Akl = (amnkl)m,n∈N ∈ Cϑ for each k, l ∈ N by the hypothesis. Hence, the condition (3) is also
necessary.

Sufficiency. Let the conditions (3) and (5) hold, and take x ∈ L(t). Then, there exists a positive constant
K such that

∑
k,l |xkl|

tkl ≤ K. So, we get that∑
k,l

|amnklxkl| ≤
∑

k,l

|amnkl|
skl N−skl/tkl + N

∑
k,l

|xkl|
tkl

≤ D + NK < ∞
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for some integer N > 1 and all m,n ∈ N. Thus, we see that the series
∑

k,l amnklxkl converges absolutely, and
similary

∑
k,l aklxkl, too. Since x ∈ L(t), we can write that

∞,n0∑
k,l=n0+1,0

|xkl|
tkl ,

n0,∞∑
k,l=0,n0+1

|xkl|
tkl and

∞∑
k,l=n0+1

|xkl|
tkl (6)

are less than ε/12(D + NK) < 1 for some n0 ∈N. Also, one can write by the condition (3) that

n0∑
k,l=0

|amnkl − akl||xkl| <
ε
2

(7)

for all sufficiently large m,n’s. Thus, we obtain by (6) and (7) that

∣∣∣∣∣∣∑
k,l

amnklxkl −
∑

k,l

aklxkl

∣∣∣∣∣∣ ≤ n0∑
k,l=0

|amnkl − akl||xkl| +

∞,n0∑
k,l=n0+1,0

|amnkl − akl||xkl|

+

n0,∞∑
k,l=0,n0+1

|amnkl − akl||xkl| +

∞∑
k,l=n0+1

|amnkl − akl||xkl|

≤
ε
2

+
ε
6

+
ε
6

+
ε
6

= ε

for all sufficiently large m,n’s. This implies that Ax ∈ Cϑ for ϑ ∈ {p, bp}. To obtain Ax ∈ Cr, we also have
to show that the rows and columns of Ax converges. Since Akl = (amnkl)m,n∈N ∈ Cr from (3), there exist
some scalars an

kl and am
kl such that limm→∞ amnkl = an

kl (n ∈ N) and limn→∞ amnkl = am
kl (m ∈ N). Note that,

limn→∞ an
kl = limm→∞ am

kl = akl. Now, replacing akl with am
kl and an

kl in the inequalities, above, we derive the
desired result. This completes the proof.

Now, we can give the following corollary:

Corollary 3.2. The necessary and sufficient conditions for A ∈ (X : Y) can be read from the following table:

X ↓ Y→ Mu Cϑ Cϑ0

Lq (0 < q ≤ 1) 1. 2. 3.
Lq (1 < q < ∞) 7. 8. 9.

where

7.

sup
m,n∈N

∑
k,l

|amnkl|
s < ∞. (8)

8. (3) and (8).

9. (4) and (8).
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Conclusion

In this paper, we have worked on some algebraic and topological properties of the paranormed space
L(t). This space were also studied by Gökhan and Çolak in [12]. However, there are some missing points
in [12]. For instance, in the proof of Part (i) of Theorem 8 in [12], they wrote for a double sequence (pmn) of
strictly positive real numbers that if infm,n∈N1 pmn = 0 then there are two cases:

(a) There exist strictly increasing sequence (m(i)) of positive integers and n(1) < n(2) < · · · < n(k0) for
some fixed k0 ∈ N1 such that pm(i),n( j) < 1/i for all positive integers i and for 1 ≤ j ≤ k0 (or there exist
strictly increasing sequence (n( j)) of positive integers and m(1) < m(2) < · · · < m(k0) for some fixed
k0 ∈N1 such that pm(i),n( j) < 1/ j for all positive integers j and for 1 ≤ i ≤ k0) or

(b) There exist strictly increasing sequences (m(i)) and (n( j)) of positive integers such that pm(i),n( j) < (i+ j)−1

for all positive integers i, j.

Nevertheless, these cases do not include all possibilities whenever infm,n∈N1 pmn = 0. One can easily observe
this by means of the sequence p = (pmn) defined by

pmn :=
{

1/m , m = n,
1 , m , n

for all m,n ∈ N1. Clearly, infm,n∈N1 pmn = 0 and Part (a) is invalid. To obtain pm(i),n( j) < (i + j)−1, we must
take m(i) = n( j) for all i, j ∈ N1. This implies that m(i) = n( j) = k for all i, j ∈ N1 and a fixed integer
k ∈ N1. Therefore, they are not increasing sequences. Also, even if they are strictly increasing sequences,
we get for infinitely many m(i) and n( j)’s that pm(i),n( j) = 1. Thus, Part (b) is invalid too. In this study, we
obviate missing points and also characterize some classes of matrix transformations from the space L(t) to
the spacesMu, Cϑ and Cϑ0 for all t’s. So, the present study may consider as a complement of Gökhan and
Çolak [12].

Let `p denotes the space of all absolutely p−summable single sequences, and `(p) be paranormed
counterpart of `p, where 0 < p < ∞. Altay and Başar [3] and Başar and Altay [4] investigated the
space bvp as the domains of two-dimensional backward difference matrix ∆ in the space `p. Also, in
[2], they studied the domain of Riesz mean Rq in the paranormed space `(p). Here, we note that as a
continuation of the present paper, to obtain more general spaces of double sequences with some algebraic
and topological properties, one can investigate the domain of certain four dimensional triangles, for example
four dimensional backward difference matrix ∆ or Riezs mean Rqs with respect to the sequences q = (qk)
and s = (sl) of non-negative numbers which are not all zero, in the space L(t).

As a natural continuation of Altay and Başar [2], Yeşilkayagil and Başar [19] have recently investigated
the domain Rqt(Ls) of four dimensional Riesz mean Rqt in the space Ls of absolutely s-summable dou-
ble sequences. Of course, following the present paper one can extend the normed space Rqt(Ls) to the
paranormed case.
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[6] M. Başarır, On the strong almost convergence of double sequences, Period. Math. Hung. 30 1995 177–181.
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