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Abstract. It is a well known fact that for a Hausdorff topological group X, the limits of convergent
sequences in X define a function denoted by lim from the set of all convergent sequences in X to X. This
notion has been modified by Connor and Grosse-Erdmann for real functions by replacing lim with an
arbitrary linear functional G defined on a linear subspace of the vector space of all real sequences. Recently
some authors have extended the concept to the topological group setting and introduced the concepts of
G-continuity, G-compactness and G-connectedness. In this paper we present some results about G-hulls,
G-connectedness and G-fundamental systems of G-open neighbourhoods for a wide class of topological
algebraic structures called groups with operations, which include topological groups, topological rings
without identity, R-modules, Lie algebras, Jordan algebras, and many others.

1. Introduction

Connor and Grosse-Erdmann in [19] investigated the impact of changing the definition of the conver-
gence of sequences on the structure of sequential continuity of real functions. Çakallı extended this concept
to topological group setting in [16] introducing the concept of G-compactness and he obtained further
results on G-continuity and G-compactness in [12]. One is often relieved to find that the standard closed set
definition of connectedness for metric spaces can be replaced by a sequential definition of connectedness
and that many of the properties of connectedness of sets can be easily derived using sequential arguments.
Connectedness is much more useful, for example for the covering spaces of topological groups. For the non-
connected case, see, for example [8]. The notion of G-connectedness for topological groups was introduced
in [11] and some further properties of this continuity were developed in [10].

In [37] Orzech introduced a certain algebraic category C called category of groups with operations
including groups, rings without identity, R-modules, Lie algebras, Jordan algebras, and many others. The
internal category and crossed module in C was studied in [38] and the studies have resumed by the works
of Datuashvili [21–24]. Recently some works for topological groups with operations and their internal
categories have been carried out in [1, 2, 32, 33, 35, 36].

In this paper some results about G-continuity, G-connectedness and G-fundamental system of G-open
neighbourhoods for a wide class of topological algebraic structures called topological groups with opera-
tions, which include topological groups, topological rings without identity, R-modules, Lie algebras, Jordan
algebras, and many others are presented.
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We acknowledge that an extended abstract including the statements without proofs of some results of
this paper appears in [31] as AIP Conference Proceedings.

2. Preliminaries

Following the idea given in a 1946 American Mathematical Monthly problem [9], a number of authors
Posner [39], Iwinski [27], Srinivasan [41], Antoni [3], Antoni and Salat [4], Spigel and Krupnik [42] have
studied A-continuity defined by a regular summability matrix A. Some authors Öztürk [43], Savaş and
Das [44], Savaş [45], Borsik and Salat [7] have studied A-continuity for methods of almost convergence
and for related methods. See also [5] for an introduction to summability matrices and [18] for summability
in topological groups. Di Maio and Kočinac [30] defined statistical convergence in topological spaces,
introduced statistically sequential spaces and statistically Frchet spaces, and considered their applications
in selection principles theory, function spaces and hyperspaces.

Throughout the paper, X denotes a Hausdorff topological group with operations as defined in Definition
3.1, the boldface letters x, y, z, ... represent the sequences of terms in X; and s(X) and c(X) respectively
denote the set of all sequences in X and the set of all convergent sequences in X.

By a G-method of sequential convergence for X, we mean a morphism defined on a subgroup with
operations cG(X) of s(X) into X. A sequence x = (xn) is said to be G-convergent to ` if x ∈ cG(X) and G(x) = `.
In particular, lim denotes the limit function limx = limnxn on c(X). A method G is called regular if every
convergent sequence x = (xn) is G-convergent with G(x) = limx. A map f : X → X is called G- continuous if
G( f (x)) = f (G(x)) for x ∈ cG(X) [12].

We define the operations on methods of sequential convergence G1 and G2 as (G1?G2)(x) = G1(x)?G2(x)
where cG1?G2 (X) = cG1 (X) ∩ cG2 (X) for ? ∈ Ω2.

The notion of regularity introduced above coincides with the classical notion of regularity for summa-
bility matrices. See [5] for an introduction to regular summability matrices and see [47] for a general view
of sequences of reals or complex.

Let A ⊆ X and ` ∈ X. Then ` is said in the G-hull of A if there is a sequence x = (xn) of points in A such

that G(x) = ` and the G-hull of A is denoted by A
G

in [19]. Following the notations in [29], we denote G-hull
of a set A by [A]G and say that A is G-closed if [A]G ⊆ A. If G is a regular method, then A ⊆ [A]G, and hence
A is G-closed if and only if [A]G = A. Even for regular methods [[A]G]G = [A]G is not always true and the
union of any two G-closed subsets of X need not also be a G-closed subset of X [12, Counterexample 1]. If
B ⊆ A ⊆ X and a ∈ A, then we say a is in the G-hull of B in A if there is a sequence x = (xn) of points in B
such that G(x) = a. A subset F of A is called G-closed in A if there exists a G-closed subset K of X such that
F = K ∩ A. We say that a subset U of A is G-open in A if A\U is G-closed in A. Here note that a subset U
of A is G-open in A if and only if there exists a G-open subset V of X such that U = A ∩ V. The union of
any G-open subsets of X is G-open. A subset V is a G-neighborhood of a if there exists a U-open subset of X
with a ∈ U such that U ⊆ V. The union of G-open subsets of A is called G-interior of A and denoted by A◦G

is also G-open.
Çakallı [16] has introduced the concept of G-compactness and has proved that the G-continuous

image of any G-compact subset of X is also G-compact [16, Theorem 7]. He investigated G-continuity, and
obtained further results in [12] (see also [17], [20], [14] and [15] for some other types of continuities which
can not be given by any sequential method).

We recall that as it is stated in [29, Remark 2.2] since the definition of G-method already involves
sequences the term ‘sequentially’ in G-sequentially closed sets seems redundant, so they choose the ter-
minology of G-closed sets. By the same idea we use the similar terminology G-open sets, G-continuity,
G-connectedness, G-compactness and etc.

3. G-Hulls in Topological Groups with Operations

The idea of the definition of category of groups with operations comes from Higgins [26] and Orzech
[37]; and the definition below is from Porter [38] and Datuashvili [25, p.21], which is adapted from Orzech
[37].
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Definition 3.1. Let C be a category of groups with a set of operations Ω and with a set E of identities such
that E includes the group laws, and the following conditions hold: If Ωi is the set of i-ary operations in Ω,
then

(a) Ω = Ω0 ∪Ω1 ∪Ω2;
(b) The group operations written additively 0,− and + are the elements of Ω0, Ω1 and Ω2 respectively.

Let Ω′2 = Ω2\{+}, Ω′1 = Ω1\{−} and assume that if ? ∈ Ω′2, then ?◦ defined by x ?◦ y = y ? x is also in Ω′2.
Also assume that Ω0 = {0};

(c) For each ? ∈ Ω′2, E includes the identity x ? (y + z) = x ? y + x ? z;
(d) For each ω ∈ Ω′1 and ? ∈ Ω′2, E includes the identities ω(x + y) = ω(x) +ω(y) and ω(x)? y = ω(x? y).
Then the category C satisfying the conditions (a)-(d) is called a category of groups with operations.

From now on C will be a category of groups with operations.
A morphism between any two objects of C is a group homomorphism, which preserves the operations

of Ω′1 and Ω′2.

Remark 3.2. The set Ω0 contains exactly one element, the group identity; hence for instance the category
of associative rings with unit is not a category of groups with operations.

Example 3.3. The categories of groups, rings generally without identity, R-modules, associative, associative
commutative, Lie, Leibniz, alternative algebras are examples of categories of groups with operations.

The subobject in the category C can be defined as follows.

Definition 3.4. Let X be a group with operations, i.e., an object of C. A subset A ⊆ X is called a subgroup
with operations subject to the the following conditions:

1. a ? b ∈ A for a, b ∈ A and ? ∈ Ω2;
2. ω(a) ∈ A for a ∈ A and ω ∈ Ω1.

The normal subobject in the category C is defined as follows.

Definition 3.5. ([37, Definition 1.7]) Let X be an object in C and A a subgroup with operations of X. A is
called a normal subgroup with operations or ideal if

1. (A,+) is a normal subgroup of (X,+);
2. x ? a ∈ A for x ∈ X, a ∈ A and ? ∈ Ω′2.

The category of topological groups with operations is defined in [1, pp. 228] (see also [35, Definition
3.4]) as follows:

Definition 3.6. A category TopC of topological groups with a set Ω of continuous operations and with a
set E of identities such that E includes the group laws such that the conditions (a)-(d) of Definition 3.1 are
satisfied, is called a category of topological groups with operations.

A morphism between any two objects of TopC is a continuous group homomorphism, which preserves
the operations in Ω′1 and Ω′2.

The categories of topological groups, topological rings and topological R-modules are examples of
categories of topological groups with operations.

In the rest of the paper TopC will denote the category of topological groups with operations and X will
denote and object of TopC and call a topological group with operations; and G will be a regular method
unless otherwise is stated.

Theorem 3.7. For any a ∈ X and ? ∈ Ω2, the function fa : X→ X, x 7→ a ? x is G-continuous.
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Proof. Let x be a G-convergent sequence with G(x) = u ∈ X and let a be the constant sequence (a, a, . . . ).
Since the constant sequence a = (a, a, . . . , ) converges to a and G is regular, we have that G(a) = a. Since the
sequence a ? x = (an ? xn) converges to a ? u, the regularity of G implies that G(a ? x) = a ? u. Therefore

G( fa(x)) = G(a ? x) = a ? u = fa(u) = fa(G(x))

and hence fa is G-continuous.

The following lemma which is adopted from [11, Lemma 6] is very useful in the proofs of Theorems
3.10 and 3.11.

Lemma 3.8. For subsets A,B ⊆ X the following are satisfied for ? ∈ Ω2:

1. If A ⊂ B then [A]G ⊂ [B]G.
2. [A]G ? [B]G ⊂ [A ? B]G.

Proof. 1. The proof follows from the related definitions.
2. Let u ∈ [A]G and v ∈ [B]G. Let x and y be the sequences respectively in A and B with G(x) = u ∈ A

and G(y) = v ∈ B. Hence x ? y is a sequence in A ? B and since G preserves the operations we have that
G(x ? y) = u ? v. Hence u ? v ∈ [A ? B]G.

The following theorem in topological group case was given in [11, Theorem 5].

Theorem 3.9. Let A be a subgroup with operations of X. If A is G-open, then it is G-closed.

Theorem 3.10. The G-hull [A]G ⊆ X of any subgroup with operations A of X is still a subgroup with operations.

Proof. Let A be a subgroup with operations of X. Hence A ? A ⊆ A for ? ∈ Ω2 and by Lemma 3.8,
[A]G ? [A]G ⊆ [A ? A]G ⊆ [A]G. Therefore [A]G ? [A]G ⊆ [A]G. Moreover if u ∈ [A]G, there exists a sequence
x of points in A such that G(x) = u. Since G(ω(x)) = ωG(x) = ω(x), we have that ω(x) ∈ [A]G. Consequently
[A]G becomes a subgroup with operations of X.

Theorem 3.11. The G-hull [A]G ⊆ X of any normal subgroup with operations A of X is still a normal subgroup with
operations.

Proof. If A is a normal subgroup with operations we have that x + A − x ⊆ A, for each x ∈ X. Hence by
Lemma 3.8 we have that,

[{x}]G + [A]G − [{x}]G ⊆ [{x} + A − {x}]G ⊆ [A]G. (1)

Since G is regular, {x} ⊆ [{x}]G and hence

{x} + [A]G − {x} ⊆ [{x}]G + [A]G − [{x}]G. (2)

Therefore by (1) and (2) we have {x} + [A]G − {x} ⊆ [A]G. Hence ([A]G,+) is a normal subgroup.
Moreover if x ∈ X and u ∈ [A]G, there exists a sequence a = (an) of points in A with G(a) = u. Since A

is a subgroup with operations for ? ∈ Ω2
′, x ? a = (x ? an) is a sequence of the points in A, where x is the

constant sequence (x, x, . . . ). Since G is regular, it follows that G(x) = x and hence

G(x ? a) = G(x) ? G(a) = x ? u ∈ [A]G.



O. Mucuk, H. Çakallı / Filomat 32:3 (2018), 1079–1089 1083

Recall that in [19], a method is called subsequential if, whenever x is G-convergent with G(x) = u, then
there is a subsequence y of x with limy = u. We say a method G preserves the G-convergence of subsequences
if, whenever a sequence x is G-convergent with G(x) = u, then any subsequence of x is G-convergent to the
same point u.

Let G be a method on X and A ⊆ X. In [29, Definition 3.3] the G-kernel of A denoted by kerG(A) or (A)G
is defined as the set of `’s such that there is no any sequence x in s(X \ A) ∩ cG(X) with G(x) = `, and it was

proved in [29, Theorem 3.5] that (A)G = X \ [X \A]G and A◦G = X \ [X \ A]
G

. It is easy to see that A◦G
⊆ (A)G

and by [29, Corollary 3.6] A is G-open in X if and only if A ⊆ (A)G.
Then we can give the following theorem.

Theorem 3.12. Let G be a regular method preserving the G-convergence of subsequences; and A a subset of X. Then
the following are equivalent:

1. a ∈ (A)G.
2. Any sequence x = (xn) which is G-convergent to a is almost in A.

Proof. (1) ⇒ (2): Let a ∈ (A)G and x a sequence of the points in X such that G(x) = a. Then the sequence
x = (xn) is almost in A. Otherwise x has a subsequence y = (xn1 , xn2 , . . . ) of the points in X\A and since G
preserves the G-convergence of subsequences G(y) = a. Hence a ∈ [X\A]G which is a contradiction with
a ∈ (A)G since (A)G = X \ [X \ A].

(2)⇒ (1): If the point a < (A)G, then a ∈ [X\A]G, thus there exists a sequence x in X\A such that G(x) = a,
which is a contradiction with the condition (2).

Theorem 3.13. Let G be a method preserving the G-convergence of subsequences and A a subset of X. Then the
following are equivalent.

1. A is G-open, i.e., X \ A is G-closed.
2. If a ∈ A, then any sequence x = (xn) of the points in X such that G-convergent with G(x) = a is almost in A.

Proof. (1) ⇒ (2): Let X \ A be a G-closed subset of X and x = (xn) a sequence of the points in X which
G-converges with G(x) = a ∈ A. Then the sequence x is almost in A, i.,e., there is an n0 ∈N such that xn ∈ A
for n ≥ n0. Otherwise x has a subsequence y = (xn1 , xn2 , . . . ) of the points in X\A and since G preserves the
G-convergence of subsequences G(y) = a. Since X\A is G-closed a becomes in X\A which is a contradiction.

(2)⇒ (1): Assuming (2) if x is a sequence of the points in X\A with G(x) = u, then u ∈ X\A. Otherwise
if u ∈ A, then by (2) the sequence x becomes almost in A which is a contradiction.

Remark 3.14. If G is a method defined on X, then we can also obtain a similar method on X×X defined by
G(x,y) = (G(x),G(y)) when x and y are G-convergent sequences in X. Then we have the following theorem.

Proposition 3.15. Let A and B be subsets of X. Then we have the following.

1. [A × B]G = [A]G × [B]G.
2. If A and B are G-closed, then A × B is G-closed.

Proof. 1. If (u, v) ∈ [A × B]G, then there is a sequence (x,y) = (xn, yn) of the points in A × B such that
G(x,y) = (u, v). Hence G(x) = u and G(y) = v and therefore u ∈ [A]G and v ∈ [B]G. This implies that
[A × B]G ⊆ [A]G × [B]G. On the other hand, if (a, b) ∈ [A]G × [B]G, then there are sequences (x) = (xn) and
(y) = (yn) of the points in A and B respectively such that G(x) = a and G(y) = b. Hence G(x,y) = (a, b) and
(a, b) ∈ [A × B]G. As a result we obtain that [A × B]G = [A]G × [B]G.

2. This is a result of (1).

For the proof of the following theorem we use Theorem 3.12.
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Theorem 3.16. Let G be a regular method preserving the G-convergence of subsequences; and A and B subsets of X.
Then we have the following.

1. (A × B)G = (A)G × (B)G.
2. If A and B are G-open, then A × B is G-open.

Proof. 1. Let (a, b) ∈ (A × B)G. If x = (xn) and y = (yn) are the sequences of the points in X such that G(x) = a
and G(y) = b, then G(x,y) = (a, b) and since (a, b) ∈ (A × B)G, by Theorem 3.12 the sequence (x,y) stays
almost in A × B. Hence the sequences a and b are respectively almost in A and B. Hence by Theorem 3.12
(a, b) ∈ (A)G × (B)G.

On the other hand, if (a, b) ∈ (A)G × (B)G and (x,y) = (xn, yn) is a sequence of the points in X × X such
that G(x,y) = (a, b), then G(x) = a and G(y) = b. Hence the sequences x and y are respectively almost in A
and B since a ∈ (A)G and b ∈ (B)G. Therefore the sequence (x,y) = (xn, yn) is almost in A×B and by Theorem
3.12 (a, b) ∈ (A × B)G.

2. If A and B are G-open, then by [29, Theorem 3.5] and [29, Corollaries 3.6 and 3.7] we have A ⊆ (A)G
and B ⊆ (B)G. Hence A × B ⊆ (A)G × (B)G = (A × B)G which means that A × B is G-open.

Theorem 3.17. If f : X→ X is G-continuous and A is a G-closed subgroup with operations of X, then the graph set
GA = {(a, f (a)) | a ∈ A} is a G-closed subgroup with operations of X × X.

Proof. Let x = (a, b) = (an, bn) be a sequence of the points in GA with G(x) = (G(a),G(b)) = (u, v). Then
G(a) = u and G(b) = v. Since f (a) = b, by G-continuity of f we have

f (u) = f (G(a)) = G( f (a)) = G(b) = v

On the other hand since G(a) = u and A is G-closed we have u ∈ A and (u, v) ∈ GA. This proves that GA is
G-closed.

If (a, f (a)), (b, f (b)) ∈ GA, then for ? ∈ Ω2 we have

(a, f (a)) ? (b, f (b)) = (a ? b, f (a) ? f (b)) = (a ? b, f (a) ? f (b)) = (a ? b, f (a ? b))

and since A is a subgroup with operations a ? b ∈ A and hence (a ? b, f (a ? b)) ∈ GA. Further for a ∈ A and
ω ∈ Ω1 we have

ω(a, f (a)) = (ω(a), ω( f (a))) = (ω(a), f (ω(a)) ∈ A.

Hence GA is a G-closed subgroup with operations of X × X as required.

As a result of Theorem 3.17 we state the following corollary.

Corollary 3.18. If f : X → X is G-continuous, then the graph set GX = {(x, f (x)) | x ∈ X} is a G-closed subgroup
with operations of X × X.

Theorem 3.19. π1 : X × X → X, (x, y) 7→ x and π2 : X × X → X, (x, y) 7→ y projection maps are G-continuous
morphisms of topological groups with operations.

Proof. If (x,y) = (xn, yn) is a sequence of the points of X × X such that G(x,y) = (G(x),G(y)) = (u, v), then

G(π1(x,y)) = G(x) = u = π1(u, v)

and hence π1 becomes G-continuous.
Similarly one can prove that π2 is G-continuous.

Theorem 3.20. Let G be a method preserving the G-convergence of subsequences. Then π1 : X ×X→ X, (x, y) 7→ x
and π2 : X × X→ X, (x, y) 7→ y projection maps are G-open morphisms of topological groups with operations.
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Proof. Let A ⊆ X×X be a G-open subset. To prove that π1(A) is G-open we use Theorem 3.13. Let a ∈ π1(A)
and a = (an) a sequence of the points in X such that G(a) = a. Choose a point b ∈ X with (a, b) ∈ A. Then
we have G(a,b) = (a, b) ∈ A, where b is the constant sequence b = (b, b, . . . ). Since A is G-open by Theorem
3.13, the sequence (a,b) is almost in A and hence the sequence a = (an) is almost in π1(A).

Similarly one can prove that π2 is also G-open.

Theorem 3.21. A map f : X→ X×X is G-continuous if and only if the compositions π1 f and π2 f for the projection
maps π1 and π2 are G-continuous.

Proof. Since the projection maps π1 and π2 are G-continuous, the compositions π1 f and π2 f are G-
continuous.

On the other hand, if the compositions π1 f and π2 f are G-continuous and x is a sequence of points of X
with G(x) = u, then we have that

G(π1 f (x)) = (π1 f )(u) = π1( f (u))

G(π2 f (x)) = (π2 f )(u) = π2( f (u))

and hence

G( f (x)) = G(π1 f (x), π2 f (x)) = (G(π1 f (x)),G(π2 f (x))) = (π1( f (u)), π2( f (u))) = f (u).

Hence f is G-continuous.

Theorem 3.22. Let f , 1 : X→ X be morphism of groups with operations. Then we have the following:

1. ( f , 1) : X→ X × X, x 7→ ( f (x), 1(x)) is G-continuous if and only if f and 1 are G-continuous.
2. ( f × 1) : X × X→ X × X, (x, y) 7→ ( f (x), 1(y)) is G-continuous if and only if f and 1 are G-continuous.

Proof. 1. If f and 1 are G-continuous, and x = (xn) is a sequence of point of X with G(x) = u, then by the
G-continuity of f and 1, we have G( f (x)) = f (u) and G(1(x)) = 1(u). That concludes

G(( f , 1)(x)) = G( f (x), 1(x)) = (G( f (x)),G(1(x))) = ( f (G(x)), 1(G(x))) = ( f (u), 1(u)) = ( f , 1)(u)

and hence the map ( f , 1) becomes G-continuous.
The sufficiency is obvious by Theorem 3.19.
2. If f and 1 are G-continuous and (x,y) is a sequence of the points of X × X such that G(x,y) =

(G(x),G(y)) = (u, v), Then G(x) = u and G(y) = v. By the G-continuities of f and 1we have that G( f (x)) = f (u)
and G( f (y)) = f (v). Hence we have the following

G(( f × 1)(x,y)) = G( f (x), 1(y)) = (G( f (x),G(1(y))) = ( f (G(x)), 1(G(y))) = ( f (u), 1(u))) = ( f × 1)(u, v)

which completes the G-continuity of f × 1.
The proof of converse way is obvious by Theorem 3.19 and 1.

Theorem 3.23. Let G be a method preserving the G-convergence of subsequences. Then for the projection map
π1 : X × X→ X, (x, y) 7→ x if A ⊆ X is a G-open subset, then π1

−1(A) is a G-open subset in X × X.

Proof. Let A ⊆ X be a G-open subset. To prove that π1
−1(A) is G-open we use Theorem 3.13 . Let

(u, v) ∈ π1
−1(A) and (x,y) a sequence in X × X such that G(x,y) = (G(x),G(y)) = (u, v). Then u ∈ A and

G(x) = u. Since A is G-open the sequence x is almost in A. Hence the sequence (x,y) is almost in π1
−1(A).

Therefore π1
−1(A) is G-open.
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4. G-Connected Topological Groups with Operations

G-connectedness of a topological group with operations is adapted from [11] as follows.

Definition 4.1. A non-empty subset A of X is called G-connected if there are no non-empty disjoint G-closed
subsets F and K of A such that A = F ∪ K. Particularly X is called G-connected, if there are no non-empty,
disjoint G-closed subsets of X whose union is X.

Theorem 4.2. If one of the subsets A and B is a G-connected neighbourhood of 0 ∈ X, then A ? B for Ω′2 is
G-connected.

Proof. Let B be a G-connected neighbourhood of 0 ∈ X. Since by Theorem [11, Theorem 1], the image of
a G-connected subset under a G-continuous function is G-connected and by Theorem 3.7 for a ∈ A the
function fa : X → X, x 7→ a ? x is G-continuous, we obtain that the set a ? B, is G-connected. By the fact
that a ? 0 = 0, each subset a ? B includes 0. Hence by Theorem [11, Theorem 3] A ? B =

⋃
a∈A a ? B is

G-connected.

Theorem 4.3. The G-connected component of the identity 0 ∈ X of an additive group of X is a G-closed, subgroup
with operations of X.

Proof. Write K0 for the G-connected component of the point 0. By Theorem [10, Theorem 5], K0 is G-closed.
To prove that K0 is a subgroup with operations, we initially need prove that K0 ? K0 ⊆ K0, where K0 ? K0 is
the set of all points x ? y for x, y ∈ K0. Here

K0 ? K0 =
⋃
x∈K0

(x ? K0)

and each x ? K0 is G-connected subset including 0 ∈ K0. Hence K0 × K0 is G-connected as a union of
G-connected subsets which include 0 as a common point. But the largest G-connected subset in X including
0 is K0. Hence K0 ? K0 ⊆ K0. Further since each ω ∈ Ω1 is G-continuous, ω(K) is a G-connected subset
including 0 ∈ G. Hence ω(K0) ⊆ K0. Hence by Definition 3.4 K0 is a subgroup with operations of X.

Theorem 4.4. The G-connected component of 0 ∈ X is a G-closed, normal subgroup of X.

Proof. By Theorem [10, Theorem 6] (K0,+) is a normal subgroup of X. Moreover by Theorem 4.2 for ? ∈ Ω2
′

the subset X ? K0 is G-connected. By the fact that K0 is the largest G-connected subset including 0 ∈ X, it
follows that X ? K0 ⊆ K0. Hence K0 is a nomal subgroup with operations of X.

Theorem 4.5. Let 0 ∈ X be the identity of additive operation. Writing Ka for the G-connected component of a point
a ∈ X, Ka = K0 + a.

Proof. Since the function fa : X→ X, x 7→ x + a is G-continuous, K0 + a is G-connected and a ∈ K0 + a. Hence
K0 + a ⊆ Ka since Ka is the largest G-connected subset including a.

On the other hand, if b ∈ Ka, then b− a ∈ Ka − a ⊆ K0 since Ka − a is a G-connected subset including 0 ∈ X.
Hence b − a ∈ K0 and so b ∈ K0 + a. That means Ka ⊆ K0 + a. Consequently we obtain that Ka = K0 + a.

Theorem 4.6. If f , 1 : X × X → X are G-continuous, then B = {(x, y) | f (x, y) = 1(x, y)} is a G-closed subset of
X × X.

Proof. If (x,y) = (xn, yn) is a sequence of the points in B such that (G(x),G(y)) = (u, v), then f (x,y) = 1(x,y)
and G( f (x,y)) = G(1(x,y)). By the G-continuities of f and 1 it follows that f (G(x,y)) = 1(G((x,y)) which
implies that f (u, v) = 1(u, v). Hence (u, v) ∈ B, i.e., B is G-closed.

Theorem 4.7. In a topological group X, the G-hull of an abelian subgroup is still an abelian subgroup.
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Proof. Let A be an abelian subgroup of X. By Theorem 3.10 we know that [A]G is a subgroup of X. Hence it
is sufficient just to prove that it is abelian. Let f , 1 : X × X → X be the functions defined by f (x, y) = x + y
and 1(x, y) = y + x. Then f and 1 are G-continuous and by Theorem 4.6 B = {(x, y) | f (x, y) = 1(x, y)} is
G-closed. Since A is abelian we have A×A ⊆ B and and hence [A×A]G ⊆ [B]G. Since B is G-closed [B]G ⊆ B
and by Proposition 3.15 [A×A]G = [A]G × [A]G. Hence we conclude that [A]G × [A]G ⊆ B and therefore [A]G
is abelian.

Theorem 4.8. If X is G-connected, then X × X is still G-connected.

Proof. If X is G-connected, then for an a ∈ X, the subset A = {a} × X is G-connected as the image of a
G-connected set under G-continuous map fa : X → X × X, x 7→ (a, x). Similarly for each x ∈ X the subset
Bx = X×{x} is G-connected and A∩Bx has a common point (a, x). Since X×X =

⋃
x∈X A∪Bx by [11, Corollary

3] X × X is G-connected.

5. Fundamental System of G-Open Neighbourhoods

Let X be a topological group with operations and a ∈ X. A class Ba of G-open neighbourhoods of a is
called a fundamental system of G-open neighbourhoods of a if for each G-open neighbourhood U of a, there is a
V ∈ Ba such that V ⊆ U.

Theorem 5.1. Let a ∈ X. If B0 is a fundamental system of G-open neighbourhoods of 0, then the subsets a + U for
U ∈ B0 constitute a fundamental system of G-open neighbourhoods of a.

Proof. Let U be a G-open neighbourhood of a. Since the map fa : X → X, x 7→ x − a is G-open, U − a is a
G-open neighbourhood of 0. Since B0 is a fundamental system of G-open neighbourhoods of 0, there exists
a G-open neighbourhood V of 0 such that V ⊆ U − a. Hence V + a is a G-open neighbourhood of a and
V + a ⊆ U as required.

Theorem 5.2. A fundamental system B0 of G-open neighbourhoods of 0 satisfies the following conditions:
1. If a ∈ U ∈ B0, then there exists V ∈ B0 such that V + a ⊆ U.
2. If U ∈ B0 and a ∈ X, then there exists V ∈ B0 such that a + V − a ⊆ U.
3. If U is a G-open neighbourhood of 0, then there is a V ∈ B0 such that V ⊆ U −U.
4. If U is a G-open neighbourhood of 0, then there is a V ∈ B0 such that V ⊆ U + U.

Proof. 1. If a ∈ U ∈ B0, then U − a is a G-open neighbourhood of 0. Since B0 is a fundamental system of
G-open neighbourhoods of 0, there exists V ∈ B0 such that V ⊆ U− a. Hence we have V + a ⊆ U as required.

2. If U ∈ B0 and a ∈ X, then −a + U + a is a G-open neighbourhood of 0 ∈ X. Since B0 is a fundamental
system of G-open neighbourhoods of 0, there is a G-open neighbourhood V in B0 such that V ⊆ −a + U + a.
It follows that a + V − a ⊆ U to complete the proof.

3. If U is a G-open neighbourhood of 0, then by [34, Theorem 29] U −U is a G-open neighbourhood of
0. Since B0 is a fundamental system of G-open neighbourhoods of 0, there is a G-open neighbourhood V in
B0 such that V ⊆ U −U.

4. The proof is similar to that of 5.

Theorem 5.3. For a subgroup with operations A of X, the following are equivalent:
1. A is a G-neighbourhood of 0.
2. A is a G-open neighbourhood of 0.
3. A is a G-closed neighbourhood of 0.

Proof. (1)⇒ (2) If A is a G-neighbourhood of 0 and a ∈ A, then A + a is a G-neighbourhood of a because the
map fa : X → X, x 7→ x + a is G-open and since A is a subgroup with operations A + a = A. Hence A is a
G-neighbourhood of each a. Therefore A is a G-open neighbourhood of 0.

(2) ⇒ (3): If A is a G-open neighbourhood of 0, then by [11, Theorem 5] it is also G-closed which
completes the proof.

(3)⇒ (1): The proof is obvious.
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Proposition 5.4. For any point a ∈ X, the subset {a} is G-closed.

Proof. If x is a sequences in {a} which is G-convergent to u, then x is a constant sequence x = (a, a, . . . ) and
by the regularity of G, we conclude that G(x) = u = a. Hence {a} is G-closed.

Theorem 5.5. For a fundamental system B of G-open neighbourhoods of 0 we have the following:

1.
⋂

B∈B B = {0}.
2. The intersection of all G-open neighbourhoods of 0 ∈ X is {0}.

Proof. 1. If B be a fundamental system of G-open neighbourhoods of 0, then for a non-zero element a of
X, 0 < {a} and since by Proposition 5.4 {a} is G-closed, X\{a} is G-open. Since B is a fundamental system of
G-open neighbourhoods of 0, there is a B ∈ B such that 0 ∈ B ⊆ X\{a}. Hence a < B and therefore a <

⋂
B∈B B.

We conclude that
⋂

B∈B B = {0} as required.
2. By (1), the proof is obvious.

6. Conclusion

In this paper we consider G-continuity, G-hull, G-sequential connectedness and fundamental system of
G-open neighbourhoods for a category of topological groups with operations which include topological
groups. Some of the results, especially those on G-fundamental system, are even new in topological group
case.

To generalize the results of this paper to more general case of topological T algebras, we first recall a
fact on semi-abelian categories: The notion of semi-abelian category as proposed in [28] (see also [40] and
[46]) has typical categorical properties such as possessing finite products, coproducts, a zero object and
hence kernels, pullbacks of monomorphisms and coequalizers of kernel pairs. Groups, rings, algebras and
all abelian categories are semi-abelian, say.

In [6] for a certain algebraic theory the term ‘algebraic model’ is used for the objects of the semi-abelian
category. Let T be an algebraic theory whose category is semi-abelian. A topological model of T is a model
of the theory of T with a topology which makes all the operations of the theory continuous. The category
TopT, for a semi-abelian theory T, is generally no longer semi-abelian because it is not Bar exact. But in [6]
the category TopT of the topological models T is studied and some classical results in topological groups
is generalized to this category TopT. For example when T is the theory of groups, then TopT becomes the
category of topological groups and we obtain the results for topological groups.

Hence the methods of the paper [6] could be be useful to deal with TopT and obtain more general results
for topological T algebras.
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[18] H. Çakallı, B. Thorpe, On summability in topological groups and a theorem of D.L. Prullage, Ann. Soc. Math. Pol. Comm. Math.,

Ser. I, 29 (1990) 139–148.
[19] J. Connor, K.-G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math. 33 (2003)

93–121.
[20] M. Dik, I. Canak, New Types of Continuities, Abstr. Appl. Anal. 2010 (2010) 1085–3375.
[21] T. Datuashvili, Cohomology of internal categories in categories of groups with operations, In: J. Adamek and S. Mac Lane (eds.),

Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, World Sci. Publishing, Teaneck, NY, 1989.
[22] T. Datuashvili, Whitehead homotopy equivalence and internal category equivalence of crossed modules in categories of groups

with operations, Proc. A. Razmadze Math. Inst. 113 (1995) 3–30.
[23] T. Datuashvili, Kan extensions of internal functors. Nonconnected case, J. Pure Appl. Algebra 167 (2002) 195–202.
[24] T. Datuashvili, Cohomologically trivial internal categories in categories of groups with operations, Appl. Categ. Structures 3

(1995) 221–237.
[25] T. Datuashvili, Categorical, homological and homotopical properties of algebraic objects, Dissertation, Georgian Academy of

Science, Tbilisi, 2006.
[26] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. (3) (1956) 366–416.
[27] T.B. Iwinski, Some remarks on Toeplitz methods and continuity, Comment. Math. Prace Mat. 17 (1972) 37–43.
[28] G. Janelidze, L. Márki, W. Tholen, Semi-abelian categories, Category theory 1999 (Coimbra). J. Pure Appl. Algebra, 168 (2002)

367–386.
[29] S. Lin, L. Liu, G-methods, G-spaces and G-continuity in topological spaces, Topology Appl. 212 (2016) 29–48.
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