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Generalized Cauchy Integrals on the Plane
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Abstract. The integrals with homogeneous-difference kernels are considered on a smooth contour. The
boundary properties of the integrals are described in the Hölder space. An analogue of the known
Sokhotski–Plemelj formula is obtained. Moreover, the differentiation formula of these integrals is also
given.

Let D ⊂ C be a plane domain with a smooth boundary Γ and the function Q(t, ξ), t ∈ Γ, be odd with
respect to ξ ∈ C and homogeneous of degree −1. We call the integral

(Iϕ)(z) =

∫
Γ

Q(t, t − z)ϕ(t)d1t, z ∈ D,

by generalized Cauchy type integral. This form permits to represent the classical Cauchy type integrals [5],
the corresponding integrals for solutions of first order elliptic systems [2, 7], the double layer potential in
the theory of elliptic equations of second order [1, 4]. These also occur in applications [3].

Let Cµ(G), 0 < µ ≤ 1, be the usual Hölder functional space on the set G ⊆ C with Hölder exponent µ
and the corresponding norm

|ϕ|µ,G = |ϕ|0,G + [ϕ]µ,G [ϕ]µ = sup
z1,z2

|ϕ(z1) − ϕ(z2)|
|z1 − z2|

µ .

We denote by Cn,µ(G), n ≥ 1, the corresponding space of continuously differentiable functions ϕ, for
which ϕ′ = (∂ϕ/∂x, ∂ϕ/∂y) ∈ Cn−1,µ(G). The class C1,µ of smooth contours is defined with respect to their
parametrization.

We have also to introduce notations for homogeneous functions. Let us denote by Hλ ⊆ C∞(C \ 0) the
class of functions Q(ξ), ξ = ξ1 + iξ2, which are homogeneous of degree λ. We define norms in this class by

|Q|(n) = max
0≤i≤n

|Q(i)
ξ |0,Ω, n = 0, 1, . . . ,

where Ω is the unit circle {|ξ| = 1}. Note that

|Q|1,Ω ≤M1|Q|(1), (1)
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Keywords. Cauchy integrals, Hölder space, Laplace operator, singular integral
Received: 18 December 2016; Revised: 12 July 2017; Accepted: 13 July 2017
Communicated by Allaberen Ashyralyev
This paper was published under project AP05134615 and target program BR05236656 of the Science Committee of the Ministry of

Education and Science of the Republic of Kazakhstan. The first author was supported by the State contract of the Russian Ministry of
Education and Science (contract No. 1.7311.2017/8.9).

Email addresses: polunin@bsu.edu.ru (Viktor A. Polunin), soldatov48@gmail.com (Alexandre P. Soldatov)



V.A. Polunin, A.P. Soldatov / Filomat 32:3 (2018), 1107–1116 1108

where M1 depends only on λ.
Let Cµ(n)(G,Hλ) be the class of functions Q(t, ξ) ∈ Hλ, for which Q(i)

ξ (t, ξ) ∈ Cµ(G), i ≤ n, uniformly
with respect to |ξ| = 1. The analogous class C1,ν(n)(G,Hλ) corresponds to C1,µ(G). Note that differentiation
Q→ ∂Q/∂ξi acts Cµ(n)(G,Hλ)→ Cµ(n−1)(G,Hλ−1), n ≥ 1.

It follows from these definitions the following properties.

Lemma 1. (a) If Q ∈ Hλ then for all ξ, η ∈ C the inequality

|Q(ξ) −Q(η)| ≤M|Q|(1)(|ξ|λ−1 + |η|λ−1)|ξ − η|, (2)

is valid, where M > 0 doesn’t depend only on λ.
(b) Let a set G be bounded, the kernel Q(t0, t; ξ) ∈ Cµ(1)(G × G,H0) and Q(t, t, ξ) ≡ 0. Then the function

q(t0, t) = Q(t0, t; t − t0) belongs to Cµ(G × G) and q(t, t) = 0.
(c) Let a smooth contour Γ ⊆ C belongs to C1,µ, so that the unit tangent vector e(t), t ∈ Γ belongs to Cµ(Γ). Let a

kernel Q0(t0, t; ξ) ∈ Cµ(1)(Γ × Γ,H0) be even with respect to ξ.
Then the function q0(t0, t) = Q0(t0, t; t− t0), extended by q0(t0, t0) = Q0[t0, t0; e(t0)] at t = t0, belongs to Cµ(Γ×Γ).

Particularly, if a kernel Q(t0, t; ξ) ∈ Cµ(1)(Γ × Γ,H−1) is odd with respect to ξ, then Q(t0, t; t − t0) = q(t0, t)(t − t0)−1

with a function q ∈ Cµ(Γ × Γ).

Proof. (a) It is obviously that (1) is equivalent to

|Q(ξ′) −Q(η′)| ≤M|Q|(1)(|ξ′|λ−1 + |η′|λ−1)|ξ′ − η′|

with respect to ξ′ = ξ/|ξ|, and η′ = η/|ξ|. So we can put |ξ| = 1. Then

|Q(ξ) −Q(η)| =

∣∣∣∣∣∣Q(ξ) − |η|λQ
(
η

|η|

)∣∣∣∣∣∣ ≤ [Q]1,Ω

∣∣∣∣∣ξ − η

|η|

∣∣∣∣∣ + |Q|0,Ω|1 − |η|λ|.

It is obviously ∣∣∣∣∣ξ − η

|η|

∣∣∣∣∣ ≤ |ξ − η| + ∣∣∣∣∣1 − 1
|η|

∣∣∣∣∣ |η| ≤ 2|ξ − η|,

taking into account that |1 − |η|| = ||ξ| − |η|| ≤ |ξ − η|. Analogously we have

|1 − |η|λ| ≤ |λ|max(1, |η|λ−1)|1 − |η|| ≤ |λ|(1 + |η|λ−1)|ξ − η|.

It follows from these inequalities that

|Q(ξ) −Q(η)| ≤ (2[Q]1,Ω + |λ||Q|0,Ω)(1 + |η|λ−1)|ξ − η|,

and the last with (1) gives (2), where |ξ| = 1.
(b) By definition

|q0(t0, t)| ≤ |Q|Cµ(0) |t0 − t|µ ≤M|Q|Cµ(0) ,

and it is sufficient to estimate ∆ = q0(t1, t)− q0(t2, t) and ∆ = q0(t0, t1)− q0(t0, t2). Let us consider, for example,
the first one. Putting δ = |t1 − t2| the cases |t1 − t| ≤ 2δ |t1 − t| ≥ 2δ consider separately. For the first case
|t2 − t| ≤ 3δ and, therefore,

|∆| ≤ |Q|Cµ(0) (|t1 − t|µ + |t2 − t|µ) ≤ (2µ + 3µ)|Q|Cµ(0)δµ. (3)

For the second case by virtue of the inequality |t − t1| − δ ≤ |t − t2| ≤ |t − t1| + δ we have

δ ≤ |t − t2| ≤ 2|t − t1|. (4)

We can write
|∆| ≤ |Q(t1, t, t − t1) −Q(t2, t, t − t1)| + |Q(t2, t, t − t1) −Q(t2, t, t − t2)| =
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= |t1 − t|µQ̃1(t − t1) + |t2 − t|µ[Q̃2(t − t1) − Q̃2(t − t2)],

where
Q̃1(ξ) =

Q(t1, t, ξ) −Q(t2, t, ξ)
|t1 − t2|

µ , Q̃2(ξ) =
Q(t2, t, ξ) −Q(t, t, ξ)

|t2 − t|µ
∈ H0.

By virtue of (2) it follows

|∆| ≤ |Q|Cµ(0)δµ + M|Q|Cµ(1)δ|t2 − t|µ(|t1 − t|−1 + |t2 − t|−1). (5)

Taking into account (4) we have:

δ|t2 − t|µ(|t1 − t|−1 + |t2 − t|−1) ≤ 3δ|t2 − t|µ−1
≤ 3δµ.

Together with (3), (5) we complete the proof.
(c) It is sufficient to prove that q0(t0, t) ∈ Cµ(Γ0 × Γ0) for every arc Γ0 ⊆ Γ. We suppose that the

parametrization γ : [0, 1]→ Γ0 belongs to the class C1,µ[0, 1] and a(s0, s) = q0[γ(s0), γ(s)], 0 ≤ s, s0 ≤ 1. Since
the function Q0 is homogeneous and even we can represent the last function in the form

a(s0, s) = Q0[γ(s0), γ(s); b(s0, s)], b(s0, s) =
γ(s) − γ(s0)

s − s0
.

It is obvious that b ∈ Cµ([0, 1]× [0, 1]) and |b(s0, s)| ≥ c for some c > 0. Then a ∈ Cµ([0, 1]× [0, 1] and therefore
q0 ∈ Cµ(Γ0 × Γ0).

The second part of (c) follows easily from the first one because q(t0, t) = Q0(t0, t, t − t0) with Q0(t0, t, ξ) =
ξQ(t0, t, ξ).

Theorem 2. Let Γ ∈ C1,µ and the generalized Cauchy kernel Q(t; ξ) belong to Cµ(2)(Γ,H−1).
Then the integral operator I : Cµ(Γ)→ Cµ(D) is bounded with the norm estimate |I|L ≤ C|Q|Cµ(2) .

Proof. Suppose that ρ > 0 is a small such that for any t0 ∈ Γ the arc Γρ(t0) = Γ ∩ {|z − t0| ≤ ρ} is smooth and
there exists the parametrization γ : [−ρ;ρ]→ Γρ(t0) of class C1,µ satisfying to conditions

|γ(s) − t0| = |s|, |s| ≤ ρ, (6)

|γ′|0 + [γ′]µ ≤M′, (7)

where M′ > 0 does not depend on t0 ∈ Γ.
Let L(t0) be the tangent to Γ at t0. It is obviously that segment Lρ(t0) = L(t0) ∩ {|z − t0| ≤ ρ} has the

parametric representation l(s) = t0 + γ′(0)s, |s| ≤ ρ. By virtue of (7) we get the estimate

|γ(s) − l(s)| ≤
∫ s

0
|γ′(τ) − γ′(0)|dτ ≤M′sµ+1. (8)

Let us denote by Sρ(t0) circular sector of radius ρ with top t0 with angle θ for fixed 0 < θ < π. The
symmetry axis of the sector is directed along the inner normal to Γ. Then for sufficiently small ρ we have
the estimate

|z − t| ≥ δ(|z − t0| + |t0 − t|); t ∈ Γ ∪ L(t0), z ∈ Sρ(t0), (9)

where the constant 0 < δ < 1 does not depend on the point t0 ∈ Γ.
Let us consider the functionφ = Iϕ in the sector Sρ(t0). For its partial derivatives Let z ∈ Sρ(t0), z = x1+ix2

and we have the expression
∂φ

∂x j
(z) =

∫
Γ

P(t, t − z)d1t, j = 1, 2,

with kernel

P(t, ξ) =
∂Q
∂ξ j

(t, ξ)ϕ(t) ∈ Cµ(1)(Γ,H−2).
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Particularly, taking into account Lemma 1 (a)

|P(t, ξ)| ≤M|Q|C0(1) |ϕ|0|ξ|
−2, (10)

|P(t, ξ) −Q j(t0, ξ)| ≤M|Q|Cµ(1) |ϕ|µ|t − t0|
µ
|ξ|−2, (11)

|P(t, ξ) − P(t, η)| ≤M|Q|C0(2) |ϕ|0(|ξ|−3 + |η|−3)|ξ − η|, (12)

where constant M > 0 does not depend on Q and ϕ.
The function

h(z) =

∫
L(t0)

Q j(t0, t − z)d1t, z < L(t0),

satisfies the condition h[z + sγ j(0)] = h(z), s ∈ R. By virtue of homogeneity we have

h[t0 + s(z − t0)] = s−1h(z), s > 0.

Therefore, this function is identically equal to zero. So, the function ∂φ/∂x j can be represented as a sum
ψ0 + ψ1(z) + χ, where

ψ0(z) =

∫
Γ

[Q j(t, t − z) −Q j(t0, t − z)]d1t,

ψ1(z) =

∫
Γ\Γρ(t0)

−

∫
L(t0)\Lρ(t0)

 Q j(t0, t − z)]d1t,

and

χ(z) =

∫
Γρ(t0)
−

∫
Lρ(t0)

 Q j(t0, t − z)d1t.

By virtue of (9), (11) we have obvious inequality

|ψ0(z)| ≤Mδ−2
|Q|Cµ(1) |ϕ|µK, K =

∫
Γ

|t − t0|
µd1t

(|t − t0| + |t0 − z|)2 ,

Taking into account (6)

K ≤ ρ−2
∫

Γ\Γρ(t0)
|t − t0|

µd1t + M′
∫
−ρ

ρ

|s|µds
(|s| + |t0 − z|)2 .

The last integral is less than

|t0 − z|µ−1
∫
R

|s|µds
(|s| + 1)2 ,

as a result we have the estimate

|ψ0(z)| ≤M0|Q|Cµ(1) |ϕ|µ|t0 − z|µ−1, z ∈ Sρ(t0), (13)

where constant M0 does not depend on Q and ϕ.
For the function ψ1(z) by virtue of (9), (10) we can write

|ψ1(z)| ≤MK|Q|C0(1) |ϕ|0, K =

∫
Γ\Γρ(t0)

+

∫
L(t0)\Lρ(t0)

 |t − z|−2d1t,

K ≤ ρ−2
∫

Γ\Γρ(t0)
d1t + δ−2

∫
|s|≥ρ
|s|−2d1s.

Therefore we have the estimate

|ψ1(z)| ≤M1|Q|C0(1) |ϕ|0|t0 − z|µ−1, z ∈ Sρ(t0). (14)
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Consider the function χ(z). According to (6) we can write

χ(z) =

∫ ρ

−ρ
[Q j(t0, γ(s) − z)|γ′(s)| −Q j(t0, l(s) − z)]ds = χ0(z) + χ1(z)

with

χ0(z) =

∫ ρ

−ρ
Q j(t0, γ(s) − z)[|γ′(s)| − 1]ds,

χ1(z) =

∫ ρ

−ρ
[Q j(t0, γ(s) − z) −Q j(t0, l(s) − z)]ds.

The function χ0(z) satisfies the analogous estimate (14). We have for the function χ1(z) according to (8), (12)

|χ1(z)| ≤MM′|Q|C0(2) |ϕ|0K, K =

∫ ρ

−ρ
(|γ(s) − z|−3 + |l(s) − z|−3)|s|1+µds.

By virtue of (6), (9) values |γ(s)− z|, |l(s)− z| are both not less than δ(|s|+ |z− t0|) for z ∈ Sρ(t0). So the integral

K ≤ 2δ−3
∫ ρ

−ρ

|s|µ+1ds
(|s| + |z − t0|)3 ≤ 2δ−3

|z − t0|
µ−1

∫
R

|s|µ

(|s| + 1)3 ds.

Using inequalities (13), (14), we have the final estimate

|
φ∂

∂x j
(z)| ≤M|Q|Cµ(2) |ϕ|µ|z − t0|

µ−1, z ∈ Sρ(t0),

where M does not depend on Q and ϕ.
The distance from the point z ∈ D to Γ is denoted by d(z,Γ). If d(z,Γ) ≤ ρ and t0 ∈ Γ such that

d(z,Γ) = |z − t0|, then z ∈ Sρ(t0). Therefore the last inequality leads to the estimate

|ψ(z)| ≤ C|ϕ|µ,Γdµ−1(z,Γ),

for any z ∈ D, d(z,Γ) ≤ ρ. Since ψ = ∂φ/∂x j, we come to the validity of the theorem on the basis of Lemma
1 from [7].

Corollary 3. Let Γ ∈ C1,ν, let the kernel Q(u, t, ξ) depend on a parameter u ∈ G ⊆ Rk and belong to Cν(2)(G×Γ,H−1).
Let ϕ ∈ Cµ(Γ), µ < ν < 1.

Then the corresponding function

φ(u, z) =

∫
Γ

Q(u, t, t − z)ϕ(t)d1t,

belongs to Cµ(G ×D) with corresponding norm estimate.

Proof. Let z, z1, z2 ∈ D, u,u1,u2 ∈ G and z1 , z2, u1 , u2. Then by Theorem 2 we have the estimate

|φ(u, z)| + |φ(u, z1) − φ(u, z2)|z1 − z2|
−µ
≤M1|Q|Cµ(2) |ϕ|µ, (15)

where M1 > 0 doesn’t depend on Q and ϕ.
Let us write

[φ(u1, z) − φ(u2, z)]|u1 − u2]−µ =

∫
Γ

Q̃(t, t − z)ϕ(t)d1t,

with the kernel
Q̃(t, ξ) = [Q(u1, t, ξ) −Q(u2, t, ξ)]|u1 − u2]−µ.
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It follows from the next Lemma 4 that Q̃(t, ξ) ∈ Cε(2)(Γ) with 0 < ε ≤ ν − µ and the corresponding estimate

|Q̃|Cε(2)(Γ) ≤M|Q|Cε(2)(G×Γ

holds. Applying Theorem 2 with respect to ε = min(µ, ν − µ) we receive the estimate

|φ(u1, z) − φ(u2, z)||u1 − u2]−µ ≤M2|Q|Cε(2) |ϕ|ε.

Together with (15) it completes the proof.

Lemma 4. Let G ⊆ Rk, a function ψ(x, y) ∈ Cν(G × G) and ψ(x, y) = 0 for x = y.
Then the function ψ0(x, y) = |x − y|µ−νψ(x, y), where 0 < µ < ν, belongs to Cµ(G × G) and

[ψ0]µ ≤ 6[ψ]ν. (16)

Proof. First of all note that
|ψ(x, y)| = |ψ(x, y) − ψ(x, x)| ≤ [ψ]ν|x − y|ν

and therefore ψ0(x, y)→ 0 as x − y→ 0.
For fixed x0 ∈ G consider the functions ϕ(x) = ψ(x, x0), ϕ0(x) = ψ0(x, x0) of variable x. These functions

are linked by the corresponding relation ϕ0(x) = |x − x0|
µ−νϕ(x). We prove that

[ϕ0]µ ≤ 3[ϕ]ν. (17)

It is sufficient to establish this estimate under assumption x0 = 0 ∈ G. Let x, y ∈ G and for definiteness
|y| ≤ |x|. Putting ε = ν − µ we have:

|ϕ0(x) − ϕ0(y)| ≤ |ϕ(x) − ϕ(y)||x|−ε + |ϕ(y)| | |x|−ε − |y|−ε|.

Since |ϕ(y)| ≤ [ϕ]ν|y|µ+ε we receive

|ϕ0(x) − ϕ0(y)|
|x − y|µ

≤ [ϕ]ν∆, ∆ =
|x − y|ε

|x|ε
+

(|x|ε − |y|ε)|y|µ

|x − y|µ|x|ε
.

It is obviously,

∆ ≤
(|x| + |y|)ε

|x|ε
+

(|x|ε − |y|ε)|y|µ

(|x| − |y|)µ|x|ε
= (1 + t)ε + t

1 − tε

(1 − t)ε
,

where t = |y|/|x| ≤ 1. Since 1 − tε ≤ 1 − t ≤ (1 − t)µ, it follows ∆ ≤ 3 and hence (17) is valid.
Now it easily to prove (16). We write

|ψ0(x, y) − ψ0(x′, y′)| ≤ |ψ0(x, y) − ψ0(x′, y)| + |ψ0(x′, y) − ψ0(x′, y′)|

and by virtue of (17) we obtain

|ψ0(x, y) − ψ0(x′, y′)| ≤ 3[ψ]ν(|x − x′|µ + |y − y′|µ) ≤ 6[ψ]ν(|x − x′|2 + |y − y′|2)µ/2.

Corollary 5. Let Γ ∈ C1,µ, the generalized Cauchy kernel Q(t; ξ) belong to Cµ(2)(Γ,H−1) and

Q[t, e(t)] = 0, t ∈ Γ, (18)

where e(t) is the unit tangent vector to Γ at the point t.
Then the operator I is bounded C(Γ)→ C(D).
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Proof. With the help of (18) analogously to the proof of Theorem 2 we can establish that

M = sup
z∈D

∫
Γ

|Q(t, t − z)|d1t < ∞

and hence
sup
z∈D
|(Iϕ)(z)| ≤M|ϕ|0, ϕ ∈ C(Γ). (19)

Let ϕn ∈ Cµ(Γ) and |ϕn −ϕ|0 → 0 as n→∞. By Theorem 2 the functions Iϕn ∈ Cµ(D). By virtue of (19) it
follows that Iϕ ∈ C(D) and hence the operator I is bounded in C(Γ)→ C(D).

Example 6. The double layer potential for Laplace operator is defined by the kernel

Q(t, ξ) =
1
π

ξ1n1(t) + ξ2n2(t)
|ξ|2

,

where n(t) ∈ C is the unit outward normal, satisfies (18). It is well known that the operator I is bounded
C(Γ)→ C(D) for this case.

The question of boundary values (Iϕ)+(t0) = lim(Iϕ)(z) as z → t0, z ∈ D, of the function Iϕ is closely
related to the singular integral

(I∗ϕ)(t0) =

∫
Γ

Q(t0, t − t0)ϕ(t)d1t, t0 ∈ Γ.

If Cµ(2)(Γ,H−1) then by Lemma 1 (c) we can write

Q(t0, t; t − t0) =
q(t0, t)
t − t0

, q ∈ Cν(Γ × Γ)

and thus the singular integral (I∗ϕ)(t0) exists.
Let the unit tangent vector e(t0) to Γ at the point t0 be oriented positively with respect to the domain D

and L(t0) be the correspondence tangent line, which is oriented by e(t0). Let us consider the integral

σ(t0) =

∫
L(t0)

Q(t0, t − z)d1t, z ∈ G+(t0), (20)

where the half-plane G+(t0) is on the left from L(t0). This integral is singular with respect to∞ and does not
depend on point z ∈ G+. It follows from the formula∫

L(t0)

∂Q
∂x j

(t0, t − z)d1t = 0, z ∈ G+, j = 1, 2,

which has already used in the proof of Theorem 2.

Theorem 7. Let Γ ∈ C1,ν and the generalized Cauchy kernel Q(t; ξ) ∈ Cν(2)(Γ,H−1). Then

σ ∈ Cµ(Γ), 0 < µ < ν, (21)

and for ϕ ∈ Cµ(Γ) the following formula

(Iϕ)+(t0) = σ(t0)ϕ(t0) + (I∗ϕ)(t0), t0 ∈ Γ, (22)

is valid. Particularly, the singular operator I∗ is bounded in Cµ(Γ).
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Proof. We can put z = t0 + ie(t0) ∈ G+(t0) in (21). Then

σ(t0) =

∫
L(t0)

Q[t0, t − t0 − ie(t0)]d1t =

∫
R

Q[t0, (s − i)e(t0)]ds =

=

∫ 1

−1
Q[t0, (s − i)e(t0)]ds +

∫ 1

−1
(Q[t0, (1 − is)e(t0)] −Q[t0, e(t0)])

ds
s
.

By Lemma 4 we can write

σ(t0) =

∫ 1

−1
q(t0, s)

|s|ν−µds
s

with some function q ∈ Cµ(Γ × [−1, 1]), that proves the first part of the theorem.
Using notions from the proof of Theorem 2 it is easi to see that∫

Γ

[Q(t, t − z)ϕ(t) −Q(t0, t − z)ϕ(t0)]d1t→
∫

Γ

[Q(t, t − t0)ϕ(t) −Q(t0, t − t0)ϕ(t0)]d1t

and ∫
Γρ(t0)
−

∫
Lρ(t0)

 Q(t0, t − z)d1t→

∫
Γρ(t0)
−

∫
Lρ(t0)

 Q(t0, t − t0)d1t

as z→ t0, z ∈ Sρ(t0). So it is sufficiently to prove the equality

lim
ε→0

∫
Lρ(t0)

Q[t0, t − t0 − iεe(t0)]d1t = σ(t0),

where we take into account that ∫
Lρ(t0)

Q(t0, t − t0)d1t = 0.

Since ∫
Lρ(t0)

Q(t0, t − z)d1t =

∫
|s|≤ρ/ε

Q[t0, (1 − i)se(t0)]ds,

this equality is obvious.

Let two generalized Cauchy kernels Q j(t, ξ), j = 1, 2, are given. The expression

Q(t; ξ, η) = Q1(t, ξ)η1 + Q2(t, ξ)η2, η = η1 + iη2 ∈ C,

is called the Cauchy kernel if the function Q(t; ξ, ξ) does not depend on ξ. For example, this condition is
satisfied for the case of the classical Cauchy kernel

Q(ξ, η) =
η

2πiξ
.

Let us consider the Cauchy type integral

(Iϕ)(z) =

∫
Γ

Q(t; t − z, dt)ϕ(t), z ∈ D, (23)

where dt = dt1 + idt2 and contour Γ is oriented.
We prove the following result which consists with the famous theorem (see monograph by N.I. Muskhe-

lishvili) for the classical Cauchy kernel.
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Theorem 8. Let Γ = ∂D be a smooth contour oriented positively with respect to D and the Cauchy kernel Q(t; ξ, η) ∈
Cµ(1)(Γ,H−1). Then the operator I defined by (23) is bounded Cµ(Γ) → Cµ(D) with a corresponding norm estimate.
Nevertheless the formula (22) for boundary values holds with the coefficient

σ(t0) =
1
2

∫
T

Q(t0; ξ, dξ), (24)

where T denotes the unit circumference, oriented counterclockwise.
Particularly the singular operator I∗ is bounded in Cµ(Γ).

Proof. For fixed t ∈ Γ the differential form Q(t; ξ, dξ) = Q1(ξ)dξ1 + Q2(ξ)dξ2 is closed i.e.

∂Q2

∂ξ1
=
∂Q1

∂ξ2
. (25)

Indeed by definition we have equalities

Q j(ξ) +
∂Q1

∂ξ j
ξ1 +

∂Q2

∂ξ j
ξ2 = 0, j = 1, 2,

and the Euler identity for homogeneous functions.

Q j(ξ) =
∂Q j

∂ξ1
ξ1 +

∂Q j

∂ξ2
ξ2, j = 1, 2.

It implies (25) from these equalities at once.
Let z0 ∈ D and ε > 0 such that {|z − z0| ≤ ε} ⊆ D. By virtue of (24) and (25) we can write∫

Γ

Q(t0, t − z0, dt) =

∫
|t−z0 |=ε

Q(t0, t − z0, dt) = 2σ(t0). (26)

It is established analogously the following relation for the singular integral∫
Γ

Q(t0, t − t0, dt) = σ(t0). (27)

From (26) it follows that ∫
Γ

∂Q
∂x j

(t0, t − z, dt) = 0, z ∈ D,

and particularly the partial derivatives of φ = Iϕ we can be represented in the form

∂φ

∂x j
(z) =

∫
Γ

[
∂Q
∂ξ j

(t, t − z, dt)ϕ(t) −
∂Q
∂ξ j

(t0, t − z, dt)ϕ(t0)
]
, j = 1, 2.

So analogously to the proof of Theorem 2 we obtain the estimate (13) and hence the operator I is bounded
in Cµ.

Let us consider formulas (22), (24). According to the proof of Theorem 7 it is sufficient to prove this
formula for Q(t0, ξ, η) and ϕ = 1. In this case it follows from (26), (27) immediately.

Notice that (24) coincides with the corresponding formula (20) defined by

σ(t0) =

∫
L(t0)

Q(t0, t − z, dt), z ∈ G+(t0). (28)

It is sufficient to apply the form Q(t0, t − z, dt) in the domain Gn = {|z − t0| < n} ∩ G−(t0), where n = 1, 2, . . .
and G−(t0) is the half-plane on the left f L(t0). Then∫

∂Gn

Q(t0, t − z, dt) =

(∫
Ln

−

∫
Γn

)
Q(t0, t − z, dt) = 0,
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where Ln = {|z− t0| < n} ∩L(t0) and Γn is the correspondence semi-circumference. It remains to note that the
integral ∫

Γn

Q(t0, t − z, dt)

coincides with (28).

It is easy to prove the following differentiation formula of the function φ = Iϕ, defined by (23).

Lemma 9. Let Γ ∈ C1,µ, ϕ ∈ C1(Γ), the Cauchy kernel Q belong to C1,µ(1)(Γ,H−1) and Q0(t; ξ, η) = Q′t(t; ξ, η), where
prime denotes differentiation with respect to arc length parameter.

Then for function φ = Iϕ with density ϕ ∈ C1(Γ) the following differentiation formula holds:(
η1
∂φ

∂x1
+ η2

∂φ

∂x2

)
(z) =

∫
Γ

Q0(t, t − z, η)ϕ(t)d1t +

∫
Γ

Q(t, t − z, η)ϕ′(t)d1t.

Obviously, the function Q0 in this lemma is in fact the generalized Cauchy kernel. Therefore together
with Theorems 2 and 8 we can obtain the following result.

Theorem 10. Let a smooth contour Γ ∈ C1,µ be oriented positively with respect to D and the Cauchy kernel
Q(t; ξ, η) ∈ C1,µ(2)(Γ,H−1). Then the operator I is bounded C1,µ(Γ)→ C1,µ(D) with a corresponding norm estimate.

Let us apply these results to the singular Cauchy integral

(I∗ϕ)(t0) =

∫
Γ

Q(t; t − t0, dt)ϕ(t), t0 ∈ Γ.

Corollary 11. Under the conditions of Theorem 10 the singular operator I∗ is bounded in C1,µ(Γ), with the corre-
sponding norm estimate. Wherein the derivative of function ψ = I∗ϕ is given by the formula

ψ′(t0) =

∫
Γ

Q0[t, t − t0, e(t0)]ϕ(t)d1t +

∫
Γ

Q[t, t − t0, e(t0)]ϕ′(t)d1t,

where Q0 = Q′t.
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