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On some Inequalities of τ−Measurable Operators

K.S. Tulenova, D. Dauitbeka

aAl-Farabi Kazakh National University, Almaty, Kazakhstan, and Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

Abstract. In this paper, we extended some inequalities which were proved By F. Kittaneh in [9] to the
τ-measurable operators.

1. Introduction and Preliminaries

LetH be a Hilbert space. Throughout this paper, we denote byM a finite von Neumann algebra in the
Hilbert space H with a normal faithful finite trace τ. The closed densely defined linear operator x in H
with domain D(x) is said to be affiliated withM if and only if u∗xu = x for all unitary u which belong to the
commutantM′ ofM. If x is affiliated withM, the x said to be τ-measurable if for every ε > 0 there exists a
projection e ∈ M such that e(M) ⊆ D(x) and τ(e⊥) < ε (where for any projection e we let e⊥ = 1 − e). The set
of all τ-measure operators will be denoted by L0(M). The set L0(M) is a ∗-algebra with sum and product
being the respective closure of the algebraic sum and product. Let P(M) be the lattice of projections ofM.
The sets

N(ε, δ) = {x ∈ L0(M) : ∃ e ∈ P(M) such that ‖xe‖ < ε and τ(e⊥) < δ}

(ε, δ > 0) from a base at 0 for an metrizable Hausdorff topology in L0(M) called the measure topology.
Equipped with the measure topology, L0(M) is a complete topological ∗-algebra (see [10, 11]). For x ∈ L0(M),
the generalised singular value function µ(·; x) = µ(·; ‖x‖) is defined by

µ(t; x) = inf{s ≥ 0 : τ(χ(s,∞)( ‖x‖) ≤ t}, t ≥ 0.

It follows directly that the singular value function µ(x) is a decreasing, right-continuous function on the
positive half-line [0,∞). Moreover, µ(uxv) ≤ ‖u‖‖v‖µ(x) for all u, v ∈ M and x ∈ L0(M) and

µ( f (x)) = f (µ(x))

whenever 0 ≤ x ∈ L0(M) and f is an increasing continuous function on [0,∞) which satisfies f (0) = 0.
We remark that ifM = L(H) and τ is the standard trace, then it is not difficult to see that L0(M) =M. In
particular, if dim(H) = n < ∞, then L0(M) may be identified with Mn(C). In this case,

µ(t; x) = s j(x), t ∈ [ j − 1, j), j = 1, 2, . . . .
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The space L0(M) is a partially ordered vector space with the ordering defined by setting x ≥ 0 if and
only if 〈xξ, ξ〉 ≥ 0 for all ξ ∈ D(x). If 0 ≤ xα ↑ x holds in L0(M), then supµ(t; xα) ↑α µ(t; x) for each t ≥ 0.
The trace τ extends to the positive cone of L0(M) as a non-negative extended real-valued functional which
is positively homogeneous, additive, unitarily invariant and normal. Further,

τ(x∗x) = τ(xx∗)

for all x ∈ L0(M) and

τ( f (x)) =

∫
∞

0
f (µ(t; x)dt

whenever 0 ≤ x ∈ L0(M) and f is any non-negative Borel function which is bounded on a neighbourhood
of 0 and satisfies f (0) = 0. If (M, σ) is a finite von Neumann algebra, if x ∈ L0(M) and y ∈ L0(M) then x is
said to be submajorised by y (in the sense of Hardy, Littlewood and Polya) if and only if∫ t

0
µ(s; x)ds ≤

∫ t

0
µ(s; y)ds

for all t ≥ 0. We write x ≺≺ y, or equivalently, µ(x) ≺≺ µ(y) (see [1]).
Given 0 < p ≤ ∞ we denote by Lp(M) the usual non-commutative Lp-spaces associated with (M, τ).

Recall that L∞(M) =M, equipped with the operator norm ‖ · ‖∞ := ‖ · ‖ (see [11, 14, 15]). The norm of Lp(M)
will be denoted by ‖ · ‖p.

It will be convenient to adopt the following terminology. A linear subspace E ∈ L0(M), equipped with
a norm ‖ · ‖E will be called fully symmetrically normed if E is symmetrically normed and has the property
that if x ∈ E, y ∈ L0(M) satisfy x ∈ E and y � x then y ∈ E and ‖x‖E ≤ ‖y‖E. (see [5, 6])

If a fully symmetrically normed space is Banach, then it will be simply called a fully symmetric space.
in [7], authors obtained following result which we will use it:

Corollary 1.1. Let E be a fully symmetric space on [0,∞) and suppose that x ∈ L0(M) and 0 ≤ a, b ∈ L0(M). If
ax, xb ∈ E(M, τ), then a

1
2 xb

1
2 ∈ E(M, τ) and

‖a
1
2 xb

1
2 ‖E(M) ≤

1
2
‖ax + xb‖E(M)

Recall the construction of a Banach symmetric operator space LE(M, τ) (for convenience LE(M)). Let E
be a Banach symmetric function space. Set

LE(M, τ) =
{
x ∈ L0(M, τ) : µ(x) ∈ E

}
.

We equip LE(M, τ) with a natural norm

‖x‖LE(M,τ) = ‖µ(x)‖E, x ∈ E(M, τ).

It was further established in [12, 16] that E(M, τ) is Banach (see [2, 13]).

We define the direct sum x ⊕ y as the block diagonal matrix
(

x 0
0 y

)
with the following norm

‖x ⊕ y‖ = max(‖x‖, ‖y‖)

2. Main Results

Lemma 2.1. Let E be a fully symmetric space on [0,∞) and x, y are τ−measurable positive operators such that
x + y ≥ a1 for some a ≥ 0, then

a‖x − y‖E(M) ≤ ‖x2
− y2
‖E(M) (1)
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Proof. To prove (1), we need to use the identity

x2
− y2 =

1
2

(x + y)(x − y) +
1
2

(x − y)(x + y).

Then since f (t) = t
1
2 is operator monotone function on [0,∞) and by Corollary 1.1, we obtain

a‖x − y‖E(M) = ‖(a1)
1
2 (x − y)(a1)

1
2 ‖E(M)

≤ ‖(x + y)
1
2 (x − y)(x + y)

1
2 ‖E(M)

≤
1
2
‖(x + y)(x − y) + (x − y)(x + y)‖E(M)

= ‖x2
− y2
‖E(M)

This completes the proof.

Lemma 2.2. If x, y are positive τ-measurable operators, then

‖xy − yx‖22 + ‖(x − y)2
‖

2
2 ≤ ‖x

2
− y2
‖

2
2

.

Proof. Let x, y be positive τ-measurable operators, then for all τ-measurable operator z, we have

‖xz − zy‖22 ≤ ‖xz + zy‖22 (2)

.
Indeed, (2) follows from the identity

‖xz + zy‖22 = τ((xz + zy)∗(xz + zy))

= τ((z∗x + yz∗)(xz + zy)) = τ(z∗x2z + z∗xy + y∗zxz + yz∗zy)

= τ(z∗y2z − z∗xzy − yz∗xz + yz∗zy) + 2τ(z∗xzy + yz∗xz)
= τ((xz − zy)∗(xz − zy)) + 2τ(z∗xzy) + 2τ(yz∗xz)

= ‖xz − zy‖22 + 2τ(yz∗xz) + 2τ(yz∗xz) = ‖xz − zy‖22 + 4τ(y
1
2 y

1
2 z∗xz)

= ‖xz − zy‖22 + 4τ(y
1
2 z∗x

1
2 x

1
2 zy

1
2 ) = ‖xz − zy‖22 + 4‖x

1
2 zy

1
2 ‖

2
2.

Let z = x − y; then we conclude that

‖x(x − y) + (x − y)y‖22 ≥ ‖x(x − y) − (x − y)y‖22

Thus

‖x2
− y2
‖

2
2 ≥ ‖x

2
− 2xy + y2

‖
2
2. (3)

Now observe that

Re(x2
− 2xy + y2) = (x − y)2,

Im(x2
− 2xy + y2) = i(xy − yx).
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Since

‖h‖22 = τ(h∗h) = τ((Reh + iImh)∗(Reh + iImh))
= τ((Reh − iImh)(Reh + iImh)) = τ(Reh · Reh) − iτ(Imh · Reh) + iτ(Reh · Imh)

+ τ(Imh · Imh) = τ(|Reh|2) + τ(|Imh|2) = ‖Reh‖22 + ‖Imh‖22

we get

‖x2
− 2xy + y2

‖
2
2 = ‖(x − y)2

‖
2
2 + ‖xz − zx‖22 (4)

Applying (3) and (4), we obtain the desired result.

Remark 2.3. Both Lemma 2.1 and 2.2 hold for the caseM is semifinite.

Theorem 2.4. Let x is τ-measurable operator with a polar decomposition x = u|x| then

‖u|x| − |x|u‖2∞ ≤ ‖x
∗x − xx∗‖2∞ ≤ ‖u|x| + |x|u‖

2
∞ · ‖u|x| − |x|u‖

2
∞ (5)

‖ |x|u|x|u∗ − u|x|u∗|x| ‖22 +
∥∥∥ |u|x| − |x|u|2∥∥∥2

2
≤ ‖x∗x − xx∗‖22

≤ ‖u|x| + |x|u‖2∞ · ‖u|x| − |x|u‖
2
2 (6)

Proof. We have |x|2−(u|x|u∗)2 = x∗x−xx∗. So, applying Lemmas 3.1 and 3.2 in [4] to the positive τ-measurable
operators |x| and u|x|u∗, we obtain

‖(|x| − u|x|u∗)2
‖E(M) = ‖x∗x − xx∗‖E(M) ≤ ‖|x| + u|x|u∗‖2∞ · ‖|x| − u|x|u∗‖22 (7)

Using the unitary invariance of these norms and the fact that ‖|x|2‖E(M) = ‖ |x∗|2‖E(M) for every x is
τ-measurable operator, we have

‖(|x| − u|x|u∗)2
‖E(M) = ‖ | |x| − u|x|u∗|2‖E(M) = ‖ |u(u∗|x| − |x|u∗)|2‖E(M)

= ‖ |u∗|x| − |x|u∗|2‖E(M) = ‖ |u|x| − |x|u|2‖E(M)

‖ |x| − u|x|u∗‖E(M) = ‖(|x|u − u|x|)u∗‖E(M) = ‖u|x| − |x|u‖E(M)

and
‖ |x| + u|x|u∗‖E(M) = ‖(|x|u + u|x|)u∗‖E(M) = ‖u|x| + |x|u‖E(M).

These relations, together with (7), yield inequality (5), and the second inequality in (6). The first
inequality in (6), which is a refinement of that Corollary 3.1. in [4] for the Hilbert-Schmidt norm, can be
obtained from Lemma 2.2 by a similar argument. Indeed,

‖ |x|u|x|u∗ − u|x|u∗|x| ‖22 +
∥∥∥ |u|x| − |x|u|2∥∥∥2

2
= ‖ |x|u|x|u∗ − u|x|u∗|x| ‖22 +

∥∥∥ (|x| − u|x|u∗)2
∥∥∥2

2

≤

∥∥∥|x|2 − |x∗|2∥∥∥2

2
= ‖x∗x − xx∗‖22 .
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Lemma 2.5. If x, y are positive τ-measurable operators, then

‖(x + y) ⊕ 0‖E(M) ≤ ‖x ⊕ y‖E(M) + ‖x
1
2 y

1
2 ⊕ x

1
2 y

1
2 ‖E(M). (8)

In particular, for the operator norm

‖x + y‖ ≤ max(‖x‖, ‖y‖) + ‖x
1
2 y

1
2 ‖. (9)

Proof. We have

(x + y) ⊕ 0 =

(
x + y 0

0 0

)
=

(
x

1
2 y

1
2

0 0

)
·

(
x

1
2 0

y
1
2 0

)
= T∗T

TT∗ =

(
x

1
2 y

1
2

0 0

)
·

(
x

1
2 0

y
1
2 0

)
=

(
x + y 0

0 0

)
= (x + y) ⊕ 0

‖(x + y) ⊕ 0‖E(M) = ‖TT∗‖E(M) = ‖T∗T‖E(M)

= ‖

(
x

1
2 0

y
1
2 0

)
·

(
x

1
2 y

1
2

0 0

)
‖E(M)

= ‖

(
x x

1
2 y

1
2

y
1
2 x

1
2 y

)
‖E(M)

= ‖

(
x 0
0 y

)
+

(
0 x

1
2 y

1
2

y
1
2 x

1
2 0

)
‖E(M)

≤ ‖x ⊕ y‖E(M) + ‖

(
0 x

1
2 y

1
2

y
1
2 x

1
2 0

)
‖E(M)

= ‖x ⊕ y‖E(M) + ‖

(
x

1
2 y

1
2 0

0 y
1
2 x

1
2

)
·

(
0 1
1 0

)
‖E(M)

= ‖x ⊕ y‖E(M) + ‖x
1
2 y

1
2 ⊕ y

1
2 x

1
2 ‖E(M)

This completes the proof.
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