A Study on Certain Köthe Spaces

Medine Yeşilkayagil ${ }^{\text {a }}$, Feyzi Başar ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Uşak University, 1 Eyliul Campus, 64200 - Uşak, Turkey
${ }^{b}$ Inönï University, Malatya 44280, Turkey

Abstract

Let $A=\left(a_{n k}\right)$ be a Köthe matrix. In this paper, we introduce the space $\lambda^{b s}(A)$ and we emphasize on some topological properties of the spaces $c_{0}(A), \lambda^{b s}(A)$ and $\lambda^{p}(A)$ together with some inclusion relations, where $1 \leq p \leq \infty$.

1. Introduction

Let ω be the vector space of all real or complex valued sequences. Any vector subspace of ω is called a sequence space. A sequence space λ with linear topology is called a K-space if each of the maps $P_{n}: \lambda \rightarrow \mathbb{C}$ defined by $P_{n}(x)=x_{n}$ is continuous for all $x=\left(x_{n}\right) \in \lambda$ and every $n \in \mathbb{N}$, where \mathbb{C} and \mathbb{N} denote the complex field and the set of natural numbers, respectively. A Fréchet space is a complete linear metric space. A K-space λ is called an $F K$-space if λ is a complete linear metric space. A normed $F K$-space is called a $B K$-space.

Given a $B K$-space λ we denote the $n^{t h}$ section of a sequence $x=\left(x_{k}\right) \in \lambda$ by $x^{[n]}=\sum_{k=0}^{n} x_{k} e^{k}$ and we say that x is; $A K$ (abschnittskonvergent) when $\lim _{n \rightarrow \infty}\left\|x-x^{[n]}\right\|_{\lambda}=0, A B$ (abschnittsbeschränkt) when $\sup _{n \in \mathbb{N}}\left\|x^{[n]}\right\|_{\lambda}<\infty$ and $A D$ (abschnittsdicht) when ϕ is dense in λ, where e^{n} is a sequence whose only non-zero term is 1 in $n^{\text {th }}$ place for each $n \in \mathbb{N}$ and ϕ is the set of all finitely non-zero sequences. If one of these properties holds for every $x \in \lambda$, then we said that the space λ has that property. It is trivial that $A K$ implies $A B$ and $A D$.

The $\alpha-, \beta-, \gamma$ - and f-duals $\lambda^{\alpha}, \lambda^{\beta}, \lambda^{\gamma}$ and λ^{f} of a sequence space λ are defined as follows;

$$
\begin{aligned}
\lambda^{\alpha} & =\left\{x=\left(x_{k}\right) \in \omega: x y=\left(x_{k} y_{k}\right) \in \ell_{1} \text { for all } y=\left(y_{k}\right) \in \lambda\right\}, \\
\lambda^{\beta} & =\left\{x=\left(x_{k}\right) \in \omega: x y=\left(x_{k} y_{k}\right) \in c s \text { for all } y=\left(y_{k}\right) \in \lambda\right\}, \\
\lambda^{\gamma} & =\left\{x=\left(x_{k}\right) \in \omega: x y=\left(x_{k} y_{k}\right) \in b s \text { for all } y=\left(y_{k}\right) \in \lambda\right\}, \\
\lambda^{f} & =\left\{\left(f\left(e^{k}\right)\right): f \in \lambda^{\prime}\right\},
\end{aligned}
$$

where λ^{\prime} is the continuous dual of the space λ.
A matrix $A=\left(a_{n k}\right)$ of non-negative numbers is called a Köthe matrix if it satisfies the following conditions:
(i) For each $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $a_{n k}>0$.

[^0](ii) $a_{n k} \leq a_{n, k+1}$ for all $n, k \in \mathbb{N}$.

The spaces $\lambda^{p}(A)$ with $1 \leq p<\infty, \lambda^{\infty}(A)$ and $c_{0}(A)$ are defined, as follows;

$$
\begin{aligned}
& \lambda^{p}(A):=\left\{x=\left(x_{n}\right) \in \omega:\|x\|_{k}=\left(\sum_{n=0}^{\infty}\left|x_{n} a_{n k}\right|^{p}\right)^{1 / p}<\infty \text { for each } k \in \mathbb{N}\right\}, \\
& \lambda^{\infty}(A):=\left\{x=\left(x_{n}\right) \in \omega:\|x\|_{k}=\sup _{n \in \mathbb{N}}\left|x_{n} a_{n k}\right|<\infty \text { for each } k \in \mathbb{N}\right\} \\
& c_{0}(A):=\left\{x=\left(x_{n}\right) \in \lambda^{\infty}(A): \lim _{n \rightarrow \infty} x_{n} a_{n k}=0 \text { for each } k \in \mathbb{N}\right\}
\end{aligned}
$$

For every Köthe matrix A, the spaces $\lambda^{p}(A)$ with $1 \leq p \leq \infty$ and $c_{0}(A)$ are Fréchet spaces, $[1,8]$. A Fréchet sequence space λ is called a Köthe space if $\lambda=\lambda^{1}(A)$ for some Köthe matrix A. The spaces $\lambda^{p}(A), 1<p \leq \infty$ are called as generalized Köthe spaces by Bierstedt et al. [1]. In some sources, for example [3, 7], the spaces $\lambda^{p}(A)$ denoted by $K^{\ell_{p}}(A)$ and called by $\ell_{p}-$ Köthe space for $1 \leq p<\infty$.

Let ℓ be a Banach space of scalar sequences with a norm $\|\cdot\|_{\ell}$ such that
(i) $a=\left(a_{n}\right) \in \ell_{\infty}, x=\left(x_{n}\right) \in \ell \Rightarrow a x=\left(a_{n} x_{n}\right) \in \ell,\|a x\|_{\ell} \leq\|a\|_{\infty}\|x\|_{\ell}$
(ii) $\left\|e^{n}\right\|_{\ell}=1$ for all $n \in \mathbb{N}$.

The space $\left(\ell,\|\cdot\|_{\ell}\right)$ is called admissible, [7]. With the usual dual norm, the space ℓ^{α} is also admissible.
For a given Banach sequence space ℓ and a Köthe matrix A, the ℓ-Köthe space $K^{\ell}(A)$ is the space of all scalar sequences $x=\left(x_{n}\right)$ such that

$$
\begin{equation*}
\|x\|_{k}=\left\|\left(x_{n} a_{n k}\right)\right\|_{\ell}<\infty \text { for each } k=1,2, \ldots \tag{1}
\end{equation*}
$$

Equipped with semi-norms given by (1) $K^{\ell}(A)$ is a Fréchet space, [3].
It is well-known that the space $b s$ of bounded series is defined by

$$
b s:=\left\{x=\left(x_{k}\right) \in \omega:\|x\|_{b s}=\sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n} x_{k}\right|<\infty\right\}
$$

and is an admissible space with the norm $\|\cdot\|_{b s}$.
Following [3, 7], we define the new space $\lambda^{b s}(A)$ by

$$
\lambda^{b s}(A):=\left\{x=\left(x_{n}\right) \in \omega:\|x\|_{k}^{b s}=\sup _{m \in \mathbb{N}}\left|\sum_{n=0}^{m} x_{n} a_{n k}\right|<\infty \text { for each } k \in \mathbb{N}\right\} .
$$

One can easily see that the space $\lambda^{b s}(A)$ is a Fréchet space with the norm $\|\cdot\|_{k}^{b s}$.
A sequence space λ is called
(i) solid if $\widetilde{\lambda}=\left\{u=\left(u_{n}\right) \in \omega: \exists x \in \lambda, \forall n \in \mathbb{N}\right.$ such that $\left.\left|u_{n}\right| \leq\left|x_{n}\right|\right\} \subset \lambda$.
(ii) monotone if $u x=\left(u_{k} x_{k}\right) \in \lambda$ for every $x=\left(x_{k}\right) \in \lambda$ and $u=\left(u_{k}\right) \in \chi$,
where χ denotes the set of all sequences of zeros and ones, [2].
Obviously, each solid space is monotone.
Let λ be an $F K$-space. Then, λ is a conservative space if $c \subset \lambda$, [10].
A $B K$-space λ is said to have monotone norm if $\left\|x^{[m]}\right\| \geq\left\|x^{[r]}\right\|$ for $m>r$ and $\|x\|=\sup \left\|x^{[m]}\right\|,[10]$.
Let λ be a locally convex space. Then,
(i) λ is called bornological if every circled, convex subset $A \subset \lambda$ that absorbs every bounded set in λ is a neighborhood of $0,[6]$.
(ii) A subset is called barrel if it is absolutely convex, absorbing and closed in λ. Moreover, λ is called a barrelled space if each barrel is a neighbourhood of zero, [2].

Lemma 1.1. ([2, Theorem 7.1.10 (a), p. 343]) If λ is a solid sequence space, then $\lambda^{\alpha}=\lambda^{\beta}=\lambda^{\gamma}$.
Lemma 1.2. ([10, Theorem 7.2.7, p. 106]) Let $\lambda \supset \phi$ be an FK-space. Then, the following statements hold:
(i) $\lambda^{\beta} \subset \lambda^{\gamma} \subset \lambda^{f}$.
(ii) If λ has $A K$-property, then $\lambda^{\beta}=\lambda^{f}$
(iii) If λ has $A D$-property, $\lambda^{\beta}=\lambda^{\gamma}$.

Lemma 1.3. ([6, Corollary 7.1, p. 60]) Every Banach space and every Fréchet space is a barrelled space.
Lemma 1.4. [6, p. 61] Every Fréchet space and hence every Banach space is bornological.
Lemma 1.5. Let $y_{n}=y\left(e^{n}\right)$ for each $n \in \mathbb{N}$. Then, the following statements hold:
(i) ([5, Lemma 27.11, p. 332]) $\lambda^{\prime}=\lambda^{\alpha}$ for every Köthe matrix A and $\lambda=\lambda^{p}(A), 1 \leq p<\infty$, respectively, $\lambda=c_{0}(A)$; where the duality is given by $y(x)=\sum_{n} x_{n} y_{n}$.
(ii) ([5, Proposition 27.13, p. 332]) For every Köthe matrix A and $\lambda=\lambda^{p}(A), 1 \leq p<\infty$, respectively, $\lambda=c_{0}(A)$ $\left(\|\cdot\|_{b}\right)_{b \in \lambda^{\infty}(A)}$ is a fundamental system of seminorms for λ^{\prime}; where for $y \in \lambda^{\prime}=\lambda^{\alpha}$ we define

$$
\begin{aligned}
& \|y\|_{b}=\left(\sum_{n=0}^{\infty}\left|y_{n} b_{n}\right|^{q}\right)^{1 / q} \text { for } \lambda=\lambda^{p}(A) \text { with } 1<p<\infty, q=\frac{p}{p-1}, \\
& \|y\|_{b}=\sup _{n \in \mathbb{N}}\left|y_{n} b_{n}\right| \text { for } \lambda=\lambda^{1}(A), \\
& \|y\|_{b}=\sum_{n=0}^{\infty}\left|y_{n} b_{n}\right| \text { for } \lambda=c_{0}(A) .
\end{aligned}
$$

Further we have,

$$
\begin{equation*}
\lambda^{\prime}=\lambda^{\alpha}=\left\{y \in \omega:\|y\|_{b}<\infty \text { for all } b \in \lambda^{\infty}(A)\right\} \tag{2}
\end{equation*}
$$

In this paper, we use standard terminology and notation due to [5] and [4].

2. Main Results

Theorem 2.1. Let $1 \leq p \leq \infty$ and let $a_{n k} \geq K \in \mathbb{R}^{+}$for each $n, k \in \mathbb{N}$. Then, the spaces $\lambda^{p}(A), c_{0}(A)$ and $\lambda^{b s}(A)$ are BK-spaces.

Proof. Assume that there exists a $K \in \mathbb{R}^{+}$such that $a_{n k} \geq K$ for each $n, k \in \mathbb{N}$.
Let $x=\left(x_{n}\right) \in \lambda^{p}(A)$ with $1 \leq p<\infty$. Then,

$$
\begin{equation*}
\left|P_{n}(x)\right|=\left|x_{n}\right| \leq\left(\sum_{n=0}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p} \leq \frac{1}{K}\left(\sum_{n=0}^{\infty}\left|x_{n} a_{n k}\right|^{p}\right)^{1 / p} \leq \frac{1}{K}\|x\|_{k} \tag{3}
\end{equation*}
$$

where $P_{n}: \lambda^{p}(A) \rightarrow \mathbb{C}$ for each $n \in \mathbb{N}$. Hence, by (3) each of the linear maps P_{n} is bounded and so is continuous. So, the spaces $\lambda^{p}(A)$ with $1 \leq p<\infty$ are K-spaces.

Let $p=\infty$. Then, one can easily see for all $x=\left(x_{n}\right) \in \lambda^{\infty}(A)$ that

$$
\begin{equation*}
\left|P_{n}(x)\right|=\left|x_{n}\right| \leq \frac{1}{K}\left|x_{n} a_{n k}\right| \leq \frac{1}{K} \sup _{n \in \mathbb{N}}\left|x_{n} a_{n k}\right|=\frac{1}{K}\|x\|_{k} \tag{4}
\end{equation*}
$$

where $P_{n}: \lambda^{\infty}(A) \rightarrow \mathbb{C}$ for each $n \in \mathbb{N}$. Hence, by (4), each of the linear maps P_{n} is bounded and so is continuous. Therefore, the space $\lambda^{\infty}(A)$ is a K-space. With the similar way, we see that $c_{0}(A)$ is a K-space.

It is easy to see that

$$
\sup _{n \in \mathbb{N}}\left|x_{n} a_{n k}\right|=\sup _{n \in \mathbb{N}}\left|\sum_{j=0}^{n} x_{j} a_{j k}-\sum_{j=0}^{n-1} x_{j} a_{j k}\right| \leq 2\|x\|_{k}^{b s}
$$

for all $x \in \lambda^{b s}(A)$. So, we have

$$
\begin{equation*}
\left|P_{n}(x)\right|=\left|x_{n}\right| \leq \sup _{n \in \mathbb{N}}\left|x_{n}\right| \leq \frac{1}{K} \sup _{n \in \mathbb{N}}\left|x_{n} a_{n k}\right| \leq \frac{2}{K}\|x\|_{k}^{b s}, \tag{5}
\end{equation*}
$$

where $P_{n}: \lambda^{b s}(A) \rightarrow \mathbb{C}$ for each $n \in \mathbb{N}$. Hence, by (5) each of the linear maps P_{n} is bounded and so is continuous. Therefore, the space $\lambda^{b s}(A)$ is a K-space.

In addition since these spaces are Fréchet spaces, they are $F K$-spaces and since their topology are normable, they are $B K$-spaces.

Let $\left\{a_{n k}\right\}_{n \in \mathbb{N}}$ be a bounded sequence for each $k \in \mathbb{N}$. Then, we have the following result:
Remark 2.2. The spaces $\lambda^{p}(A)$ with $1 \leq p \leq \infty, \lambda^{b s}(A)$ and $c_{0}(A)$ are not K-spaces with every Köthe matrix A.

Let $z=\theta$ and define the sequence $x=\left(x_{n}\right)$ and the matrix $A=\left(a_{n k}\right)$ by $x_{n}=2^{n}$ and $a_{n k}=1 / 8^{n+1}$ for all $n, k \in \mathbb{N}$, respectively. Then, $x \in \lambda^{p}(A)$. Suppose that there exists a $\delta>0$ for every $\varepsilon>0$ such that for $x \in \lambda^{p}(A), 1 \leq p \leq \infty$ the inequalities $\|x-z\|_{k}^{p}=\sum_{n=0}^{\infty}\left|x_{n} a_{n k}\right|^{p} \leq 1 / 6<\delta$ and $\|x-z\|_{k}=\sup _{n \in \mathbb{N}}\left|x_{n} a_{n k}\right| \leq 1 / 8<\delta$ hold. Also, we see that

$$
\begin{equation*}
\left|P_{n}(x)-P_{n}(z)\right|=\left|x_{n}\right| \tag{6}
\end{equation*}
$$

where $P_{n}: \lambda^{p}(A) \rightarrow \mathbb{C}, 1 \leq p \leq \infty$. By (6), we have $\left|P_{n}(x)-P_{n}(z)\right|=2^{n} \geq K \in \mathbb{R}^{+}$for every $n \in \mathbb{N}$. Hence, each of the linear maps P_{n} is not continuous at 0 . Therefore, the spaces $\lambda^{p}(A)$ are not K-spaces with the matrix A. Similarly, $c_{0}(A)$ is not a $K-$ space.

With above choosing, we have $x \in \lambda^{b s}(A)$ and $\|x-z\|_{k}^{p}=\sup _{m \in \mathbb{N}}\left|\sum_{n=0}^{m} x_{n} a_{n k}\right| \leq 1 / 6<\delta$. But, we conclude by (6) that each of the linear maps $P_{n}: \lambda^{b s}(A) \rightarrow \mathbb{C}$ is not continuous at 0 . Therefore, the space $\lambda^{b s}(A)$ is not a K-space.

Theorem 2.3. Let $a_{n k} \geq K \in \mathbb{R}^{+}$for each $n, k \in \mathbb{N}$. Then, the following statements hold:
(i) Let $1 \leq p<\infty$. Then, the spaces $\lambda^{p}(A)$ are $A K-$ spaces.
(ii) The space $c_{0}(A)$ is an $A K$-space.
(iii) The $A K$-section of the space $\lambda^{\infty}(A)$ is the space $c_{0}(A)$.

Proof. Let $a_{n k} \geq K \in \mathbb{R}^{+}$for each $n, k \in \mathbb{N}$. Then, the spaces $\lambda^{p}(A)$ and $c_{0}(A)$ are $F K$-spaces, where $1 \leq p \leq \infty$.
(i) Let $1 \leq p<\infty$ and let $x=\left(x_{n}\right) \in \lambda^{p}(A)$. Then, we derive that

$$
\lim _{m \rightarrow \infty}\left\|x-x^{[m]}\right\|_{k}^{p}=\lim _{m \rightarrow \infty}\left(\sum_{n \geq m+1}\left|x_{n} a_{n k}\right|^{p}\right)=0 .
$$

Hence, the spaces $\lambda^{p}(A)$ are $A K$-spaces.
(ii) Let $x=\left(x_{n}\right) \in c_{0}(A)$. That is, $x_{n} a_{n k} \rightarrow 0$, as $n \rightarrow \infty$, for each $k \in \mathbb{N}$. Therefore, we obtain that

$$
\lim _{m \rightarrow \infty}\left\|x-x^{[m]}\right\|_{k}=\lim _{n \rightarrow \infty}\left(\sup _{n \geq m+1}\left|x_{n} a_{n k}\right|\right)=0
$$

Hence, the space $c_{0}(A)$ is an $A K$-space.
(iii) For $x=\left(x_{n}\right) \in \lambda^{\infty}(A)$, we see that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|x-x^{[m]}\right\|_{k}=\lim _{n \rightarrow \infty}\left(\sup _{n \geq m+1}\left|x_{n} a_{n k}\right|\right) \tag{7}
\end{equation*}
$$

If $x \in c_{0}(A)$, we have $\lim _{m \rightarrow \infty}\left\|x-x^{[m]}\right\|_{k}=0$ for each $k \in \mathbb{N}$ in the relation (7).
This completes the proof.
A direct consequence of the definition of the $A B$-property, we have the following result:
Corollary 2.4. Let $a_{n k} \geq K \in \mathbb{R}^{+}$for each $n, k \in \mathbb{N}$. Then, the space $\lambda^{b s}(A)$ is an $A B$-space.
Theorem 2.5. The following inclusions hold:
(i) $\lambda^{1}(A) \subset \lambda^{b s}(A) \subset \lambda^{\infty}(A)$.
(ii) $\lambda^{p}(A) \subset \lambda^{r}(A)$ for $1 \leq p<r<\infty$.

Proof. (i) Let us take any $x \in \lambda^{1}(A)$. Then, for each $k \in \mathbb{N}$ we have $\sum_{n}\left|x_{n} a_{n k}\right|<\infty$ and so from the triangle inequality we have $\left|\sum_{n=0}^{m} x_{n} a_{n k}\right| \leq \sum_{n=0}^{m}\left|x_{n} a_{n k}\right|$. By taking supremum over $m \in \mathbb{N}$ in this inequality, we obtain $x \in \lambda^{b s}(A)$, that is, the inclusion $\lambda^{1}(A) \subset \lambda^{b s}(A)$ holds.

Now, let $x=\left(x_{n}\right) \in \lambda^{b s}(A)$. Since there exists a $L \in \mathbb{R}^{+}$such that $\left|\sum_{n=0}^{m} x_{n} a_{n k}\right| \leq L$ for each $k \in \mathbb{N}$, we obtain that

$$
\begin{align*}
\left|x_{m} a_{m k}\right| & =\left|\sum_{n=0}^{m} x_{n} a_{n k}-\sum_{n=0}^{m-1} x_{n} a_{n k}\right| \\
& \leq\left|\sum_{n=0}^{m} x_{n} a_{n k}\right|+\left|\sum_{n=0}^{m-1} x_{n} a_{n k}\right| \leq 2 L \tag{8}
\end{align*}
$$

for each $k \in \mathbb{N}$. Taking supremum over $m \in \mathbb{N}$ in (8), we have $x \in \lambda^{\infty}(A)$, as desired.
(ii) This follows applying Jensen's inequality.

Also, Meise and Vogt [5] have the following result:
Lemma 2.6. ([5, Proposition 27.16, p. 334]) The following statements are equivalent for every Köthe matrix A:
(i) There are $p, r \in[1, \infty]$ with $p \neq r$, so that $\lambda^{p}(A)=\lambda^{r}(A)$.
(ii) $\lambda^{p}(A)=\lambda^{r}(A)$ as Fréchet spaces, for all $p, r \in[1, \infty]$.
(iii) For each $k \in \mathbb{N}$ there exists an $m \in \mathbb{N}$ such that $\sum_{n=0}^{\infty} a_{n k} a_{n m}^{-1}<\infty$.

Although Lemma 2.6 is nowhere used in this paper, we record it for the reader.
Theorem 2.7. Let $1 \leq p<\infty$. Then, the following statements hold:
(i) Let $\left\{a_{n k}\right\}_{n \in \mathbb{N}} \in \ell_{p}$ for each $k \in \mathbb{N}$. Then, $\ell_{\infty} \subset \lambda^{p}(A)$.
(ii) Let $a_{n k} \geq K \in \mathbb{R}^{+}$for each $n, k \in \mathbb{N}$. Then, $\lambda^{p}(A) \subset c_{0}$.

Proof. Let $1 \leq p<\infty$.
(i) Let $\left\{a_{n k}\right\}_{n \in \mathbb{N}} \in \ell_{p}$ for each $k \in \mathbb{N}$ and let $x=\left(x_{n}\right) \in \ell_{\infty}$. Then, we have

$$
\sum_{n=0}^{\infty}\left|x_{n} a_{n k}\right|^{p} \leq\|x\|_{\infty}^{p} \sum_{n=0}^{\infty}\left|a_{n k}\right|^{p}<\infty,
$$

i.e, $x \in \lambda^{p}(A)$.
(ii) Let $a_{n k} \geq K \in \mathbb{R}^{+}$for each $n, k \in \mathbb{N}$ and let $x=\left(x_{n}\right) \in \lambda^{p}(A)$. Then, the series $\sum_{n=0}^{\infty}\left|x_{n} a_{n k}\right|^{p}$ converges for each $k \in \mathbb{N}$. Hence, the general term of this series tends to zero, as $n \rightarrow \infty$. Therefore, for each $k \in \mathbb{N}$ there exists an $\varepsilon>0$ and an $n_{0}(\varepsilon) \in \mathbb{N}$ such that $\left|x_{n}\right| K \leq\left|x_{n} a_{n k}\right|<\varepsilon$ when $n>n_{0}$. So, $x \in c_{0}$.

Remark 2.8. For $p=\infty$, depending on the choice of the Köthe matrix A we have the following statements:
(i) Define the Köthe matrix $A=\left(a_{n k}\right)$ by $a_{n k}=1 / 2^{n}$ for each $n, k \in \mathbb{N}$ and let $x=\left(x_{n}\right) \in \ell_{\infty}$. Hence, there exists a $L \in \mathbb{R}^{+}$such that $\sup _{n \in \mathbb{N}}\left|x_{n}\right| \leq L$ and so $\left|x_{n} a_{n k}\right|=\left|x_{n} / 2^{n}\right| \leq L$ for each $n, k \in \mathbb{N}$, that is, $x \in \lambda^{\infty}(A)$. Therefore, the inclusion $\ell_{\infty} \subset \lambda^{\infty}(A)$ holds for the matrix A. Also, if we define the unbounded sequence $x=\left(x_{n}\right)$ by $x_{n}=2^{n}$ for all $n \in \mathbb{N}$ then we obtain that $\sup _{n \in \mathbb{N}}\left|x_{n} a_{n k}\right|=1$. Hence, the inclusion $\ell_{\infty} \subset \lambda^{\infty}(A)$ is strict.
(ii) Define the Köthe matrix $A=\left(a_{n k}\right)$ by $a_{n k}=r \in \mathbb{R}^{+} \backslash\{1\}$ for each $n, k \in \mathbb{N}$ and let $x=\left(x_{n}\right) \in \lambda^{\infty}(A)$. Then, we have $r \sup _{n \in \mathbb{N}}\left|x_{n}\right|=\sup _{n \in \mathbb{N}}\left|x_{n} a_{n k}\right|<\infty$ and so the inclusion $\lambda^{\infty}(A) \subset \ell_{\infty}$ holds.

Since $\lambda^{1}(A)=\lambda^{\infty}(A)$ if and only if $\lambda^{1}(A)$ is nuclear (see Terzioğlu and Zahariuta [9]), Theorem 2.5 gives the following:

Corollary 2.9. The equalities $\lambda^{1}(A)=\lambda^{b s}(A)=\lambda^{\infty}(A)$ hold if and only if $\lambda^{1}(A)$ is nuclear.
Theorem 2.10. Let λ denotes any of the spaces $c_{0}(A)$ or $\lambda^{p}(A)$ with $1 \leq p \leq \infty$. Then, the space λ is solid.
Proof. Let $u=\left(u_{n}\right) \in \tilde{\lambda}$. Then, there exists a sequence $x=\left(x_{n}\right) \in \lambda$ such that $\left|u_{n}\right| \leq\left|x_{n}\right|$ for all $n \in \mathbb{N}$. Since $a_{n k} \geq 0$ for all $n, k \in \mathbb{N}$ by the definition of a Köthe matrix, we have

$$
\begin{equation*}
0<\left|u_{n}\right| a_{n k} \leq\left|x_{n}\right| a_{n k} \tag{9}
\end{equation*}
$$

for all $n, k \in \mathbb{N}$. If $\lambda=c_{0}(A)$, by letting $n \rightarrow \infty$ in the relation (9), we obtain $u \in c_{0}(A)$. Taking supremum or sum over $n \in \mathbb{N}$ in the relation (9) for each $k \in \mathbb{N}$, we have $u \in \lambda^{p}(A)$ with $1 \leq p \leq \infty$.

This completes the proof.
Corollary 2.11. Let λ be as in Theorem 2.10. Then, the space λ is monotone.
Corollary 2.12. Let λ be as in Theorem 2.10. Then, since the space λ is Fréchet, it is barrelled and bornological.
Remark 2.13. Consider the sequence $x=\left(x_{n}\right)$ and the Köthe matrix $A=\left(a_{n k}\right)$ defined by $x_{n}=(-1)^{n}$ and $a_{n k}=1$ for each $n, k \in \mathbb{N}$. Then, since

$$
\sup _{m \in \mathbb{N}}\left|\sum_{n=0}^{m} x_{n} a_{n k}\right|=\sup _{m \in \mathbb{N}} \frac{1+(-1)^{m}}{2}=1
$$

for each $k \in \mathbb{N}, x \in \lambda^{b s}(A)$. Then, the following statements hold:
(i) Let $u=\left(u_{n}\right) \in \chi$. Define the sequence $u=\left(u_{n}\right)$ by

$$
u_{n}:= \begin{cases}1, & \mathrm{n} \text { is even }, \\ 0, & \mathrm{n} \text { is odd }\end{cases}
$$

for every $n \in \mathbb{N}$. Therefore, we see for each $k \in \mathbb{N}$ that

$$
\sup _{m \in \mathbb{N}}\left|\sum_{n=0}^{m} u_{n} x_{n} a_{n k}\right|=\sup _{m \in \mathbb{N}}\left|\sum_{n=0}^{m / 2} u_{2 n} x_{2 n}\right|=\sup _{m \in \mathbb{N}}\left(\frac{m}{2}+1\right)=\infty,
$$

where m is even. Also, we derive same result when m is odd. Hence, $u x \notin \lambda^{b s}(A)$. That is to say that the space $\lambda^{b s}(A)$ is not monotone.
(ii) Let $u=\left(u_{n}\right)=(0,1,1,1, \ldots) \in \overparen{\lambda^{b s}(A)}$. Then, $\left|u_{n}\right| \leq\left|x_{n}\right|$ for all $n \in \mathbb{N}$. But $u \notin \lambda^{b s}(A)$, since

$$
\sup _{m \in \mathbb{N}}\left|\sum_{n=0}^{m} u_{n} a_{n k}\right|=\sup _{m \in \mathbb{N}}\left|\sum_{n=1}^{m} 1\right|=\sup _{m \in \mathbb{N}} m=\infty .
$$

Hence, the inclusion $\overparen{\lambda^{b s}(A)} \subset \lambda^{b s}(A)$ does not hold. So, the space $\lambda^{b s}(A)$ is not solid.
Corollary 2.14. Let λ^{α} be as in (2) and let $a_{n k} \geq K \in \mathbb{R}^{+}$for each $n, k \in \mathbb{N}$, and $1 \leq p<\infty$. Then, the following statements hold:
(i) Combining Lemma 1.1 and Theorem 2.10 gives that $\lambda^{\alpha}=\lambda^{\beta}=\lambda^{\gamma}$ whenever $\lambda \in\left\{c_{0}(A), \lambda^{p}(A)\right\}$.
(ii) Combining Lemma 1.2 and Part (i) of Theorem 2.3 gives that $\lambda^{f}=\lambda^{\alpha}$ whenever $\lambda=\lambda^{p}(A)$.

Corollary 2.15. The following statements hold:
(i) If $\left\{a_{n k}\right\}_{n \in \mathbb{N}} \in \ell_{\infty}$ for each $k \in \mathbb{N}$, then $\ell_{1} \subset \lambda^{1}(A)$.
(ii) If there exits a $K \in \mathbb{R}^{+}$such that $a_{n k} \geq K$ for each $n, k \in \mathbb{N}$, then $\lambda^{1}(A) \subset \ell_{1}$.

Theorem 2.16. Let $a_{n k} \geq K \in \mathbb{R}^{+}$for each $n, k \in \mathbb{N}$. Then, the following statements hold:
(i) For $1 \leq p<\infty$ the spaces $\lambda^{p}(A)$ have monotone norm.
(ii) The spaces $\lambda^{\infty}(A)$ and $c_{0}(A)$ have not monotone norm.

Proof. Assume that there exits a $K \in \mathbb{R}^{+}$such that $a_{n k} \geq K$ for each $n, k \in \mathbb{N}$. Then, the spaces $\lambda^{p}(A)$ and $c_{0}(A)$ are $B K$-spaces, where $1 \leq p \leq \infty$. Let $m>r$, where $m, r \in \mathbb{N}$.
(i) Let $x \in \lambda^{p}(A)$ for $1 \leq p<\infty$. Then, we have

$$
\begin{align*}
\left\|x^{[m]}\right\|_{k}^{p} & =\sum_{n=0}^{m}\left|x_{n} a_{n k}\right|^{p}=\sum_{n=0}^{r}\left|x_{n} a_{n k}\right|^{p}+\sum_{n=r+1}^{m}\left|x_{n} a_{n k}\right|^{p} \\
& =\left\|x^{[r]}\right\|_{k}^{p}+\sum_{n=r+1}^{m}\left|x_{n} a_{n k}\right|^{p} \tag{10}
\end{align*}
$$

From (10), we obtain that $\left\|x^{[m]}\right\|_{k} \geq\left\|x^{[r]}\right\|_{k}$. Also,

$$
\|x\|_{k}^{p}=\sum_{n=0}^{\infty}\left|x_{n} a_{n k}\right|^{p}=\sup _{m \in \mathbb{N}} \sum_{n=0}^{m}\left|x_{n} a_{n k}\right|^{p}=\sup _{m \in \mathbb{N}}\left\|x^{[m]}\right\|_{k^{\prime}}^{p}
$$

as desired.
(ii) Let $x \in \lambda^{\infty}(A)$. Since

$$
\begin{align*}
\left\{\left|x_{1} a_{1 k}\right|,\left|x_{2} a_{2 k}\right|, \ldots,\left|x_{r} a_{r k}\right|, 0,0, \ldots\right\} & \subset\left\{\left|x_{1} a_{1 k}\right|,\left|x_{2} a_{2 k}\right|, \ldots,\left|x_{m} a_{m k}\right|, 0,0, \ldots\right\} \\
& \subset\left\{\left|x_{1} a_{1 k}\right|, \ldots,\left|x_{m} a_{m k}\right|,\left|x_{m+1} a_{m+1, k}\right|, \ldots\right\}, \tag{11}
\end{align*}
$$

we have $\left\|x^{[m]}\right\|_{k} \geq\left\|x^{[r]}\right\|_{k}$. But, we obtain by the second part of the relation (11) that $\|x\|_{k} \geq\left\|x^{[m]}\right\|_{k}$. Hence, the space $\lambda^{\infty}(A)$ does not have monotone norm. Since the spaces $\lambda^{\infty}(A)$ and $c_{0}(A)$ are endowed with same norm, $c_{0}(A)$ does not have monotone norm.

This step completes the proof.
Remark 2.17. Consider the sequence $x=\left(x_{n}\right)$ and the Köthe matrix $A=\left(a_{n k}\right)$ defined by $x_{n}=2$ and $a_{n k}=n+k+2$ for each $n, k \in \mathbb{N}$. It is immediate that $a_{n k} \geq 2 \in \mathbb{R}^{+}$for each $n, k \in \mathbb{N}$. Then, the spaces $\lambda^{p}(A)$, $c_{0}(A)$ and $\lambda^{b s}(A)$ are $F K$-spaces by Theorem 2.1, where $1 \leq p \leq \infty$. Obviously, $x \in c$ but

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|x_{n} a_{n k}\right|^{p}=\sum_{n=0}^{\infty}[2(n+k+2)]^{p}=\infty, \\
& \sup _{n \in \mathbb{N}}\left|x_{n} a_{n k}\right|=\sup _{n \in \mathbb{N}} 2(n+k+2)=\infty,
\end{aligned}
$$

i.e., $x \notin \lambda^{p}(A)$, where $1 \leq p \leq \infty$. Hence, x does not belong to the spaces $c_{0}(A)$ and $\lambda^{b s}(A)$ by the definition of the space $c_{0}(A)$ and by Theorem 2.5. Therefore, the spaces $\lambda^{p}(A)$ with $1 \leq p \leq \infty, c_{0}(A)$ and $\lambda^{b s}(A)$ are not conservative for the matrix A. That is to say that the spaces $\lambda^{p}(A), c_{0}(A)$ and $\lambda^{b s}(A)$ are not conservative for every Köthe matrix A.

References

[1] K.D. Bierstedt, R.G. Meise, W.H. Summers, Köthe sets and Köthe sequence spaces, Functional Analysis, Holomorphy and Approximation Theory (Rio de Janeiro, 1980), pp. 27-91, North-Holland Mathematics Studies 71, North-Holland, New York, 1982.
[2] J. Boos, Classical and Modern Methods in Summability, Oxford University Press, Oxford, 2000.
[3] P. Djakov, T. Terzioğlu, M. Yurdakul, V. Zahariuta, Bounded operators and complemented subspaces of cartesian products, Math. Nachr. 284 (2-3) (2011), 217-228.
[4] G. Köthe, Topological Vector Spaces, Springer-Verlag New York Inc. New York, 1969
[5] R.G. Meise, D. Vogt, Introduction to Functional Analysis. Translated from the German by M.S. Ramanujan and revised by the authors, Oxford Graduate Texts in Mathematics 2, The Clarendon Press, Oxford University Press, New York, 1997.
[6] H.H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, Vol. 3, 5th printing, 1986.
[7] T. Terzioğlu, Diametral dimension and Köthe spaces, Turkish J. Math. 32 (2008) 213-218.
[8] T. Terzioğlu, D. Vogt, Some normability conditions on Fréchet spaces, Rev. Mat. Univ. Complut. Madrid 2 (1989) $213-216$.
[9] T. Terzioğlu, V. Zahariuta, Bounded factorization property for Fréchet spaces, Math. Nachr. 253 (2003) 81-91.
[10] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, New York, Oxford, 1984.

[^0]: 2010 Mathematics Subject Classification. Primary 46A45
 Keywords. Fréchet spaces, Köthe sequence spaces
 Received: 31 November 2016; Revised: 26 May 2017; Accepted: 29 May 2017
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: medine.yesilkayagil@usak.edu.tr (Medine Yeşilkayagil), feyzibasar@gmail.com (Feyzi Başar)

