Generalized Hyers-Ulam Stability for General Additive Functional Equations on Non-Archimedean Random Lie C^\ast-Algebras

Zhihua Wanga, Prasanna K. Sahoob

aSchool of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
bDepartment of Mathematics, University of Louisville, Louisville, KY 40292, USA

Abstract. In this paper, using the fixed point method, we prove some results related to the generalized Hyers-Ulam stability of homomorphisms and derivations in non-Archimedean random C^\ast-algebras and non-Archimedean random Lie C^\ast-algebras for the generalized additive functional equation

$$
\sum_{1 \leq i < j \leq n} f\left(\frac{x_i + x_j}{2}\right) + \sum_{i=1}^{n-2} x_i = \frac{(n-1)^2}{2} \sum_{i=1}^{n} f(x_i)
$$

where $n \in \mathbb{N}$ is a fixed integer with $n \geq 3$.

1. Introduction

In [34], Rassias and Kim introduced and investigated the following functional equation:

$$
\sum_{1 \leq i < j \leq n} f\left(\frac{x_i + x_j}{2}\right) + \sum_{i=1}^{n-2} x_i = \frac{(n-1)^2}{2} \sum_{i=1}^{n} f(x_i)
$$

where n is a fixed integer with $n \geq 2$. We observe that in the case $n = 2$, the functional equation (1) yields the Jensen functional equation $2f((x+y)/2) = f(x) + f(y)$ and there are many interesting results concerning the
stability problems of the Jensen equation [19, 32, 33]. In [12], Jang and Saadati proved the generalized Hyers-Ulam stability of homomorphisms and derivations in non-Archimedean C∗-algebras and non-Archimedean Lie C∗-algebras for the Jensen type functional equation \(f((x + y)/2) + f((x - y)/2) = f(x) \). For the case \(n = 3 \), Najati and Ranjbari [25] investigated homomorphisms between C∗-ternary algebras, and derivations on C∗-ternary algebras. In fact, in [34], the authors established the general solution of the functional equation (1) and investigated the generalized Hyers-Ulam stability problem of the functional equation (1) with \(n \geq 3 \) in quasi-\(\beta \)-normed spaces. In 2013, Kim et al. [18] proved some new Hyers-Ulam-Rassias stability results of \(n \)-Lie homomorphisms and Jordan \(n \)-Lie homomorphisms on \(n \)-Lie Banach algebras associated to the functional equation (1) using the fixed point method.

In this paper, using the fixed point method, we will investigate the generalized Hyers-Ulam stability results of homomorphisms and derivations in non-Archimedean random C∗-algebras and on non-Archimedean random Lie C∗-algebras for the additive functional equation (1) with \(n \geq 3 \).

2. Preliminaries

In this section, we adopt the usual terminology, notions and conventions of the theory of non-Archimedean random normed space as in [3–5, 16, 17, 20, 29, 36, 37]. Throughout this paper, \(\Delta^+ \) is the space of all probability distribution functions, i.e., the space of all mappings \(F : \mathbb{R} \cup \{-\infty, \infty\} \to [0, 1] \) such that \(F \) is left-continuous and non-decreasing on \(\mathbb{R}, F(0) = 0 \) and \(F(+\infty) = 1 \). \(D^+ \) is a subset of \(\Delta^+ \) consisting of all functions \(F \in \Delta^+ \) for which \(\lim_{x \to +\infty} F(x) = 1 \), where \(\lim_{x \to +\infty} f(x) \) denotes the left limit of the function \(f \) at the point \(x \). That is, \(\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(t) \). The space \(\Delta^+ \) is partially ordered by the usual point-wise order of functions, i.e., \(F \leq G \) if and only if \(F(t) \leq G(t) \) for all \(t \in \mathbb{R} \). The maximal element for \(\Delta^+ \) in this order is the distribution function \(\varepsilon_0 \) given by

\[
\varepsilon_0(t) = \begin{cases}
0, & \text{if } t \leq 0, \\
1, & \text{if } t > 0.
\end{cases}
\]

Definition 2.1. (cf. [36]). A mapping \(T : [0, 1] \times [0, 1] \to [0, 1] \) is a continuous triangular norm (briefly, a continuous t-norm) if \(T \) satisfies the following conditions:

1. \(T \) is commutative and associative;
2. \(T \) is continuous;
3. \(T(a, 1) = a \) for all \(a \in [0, 1] \);
4. \(T(a, b) \leq T(c, d) \) whenever \(a \leq c \) and \(b \leq d \) for all \(a, b, c, d \in [0, 1] \).

Typical examples of continuous t-norms are the Lukasiewicz t-norm \(T_L \), where \(T_L(a, b) = \max(a + b - 1, 0) \), \(\forall a, b \in [0, 1] \) and the t-norms \(T_P, T_M, T_D \), where \(T_P(a, b) := ab, T_M(a, b) := \min(a, b), T_D(a, b) := \begin{cases} \min(a, b), & \text{if } \max(a, b) = 1, \\
0, \quad \text{otherwise.}
\end{cases} \)

By a non-Archimedean field we mean a field \(\mathbb{K} \) equipped with a function (valuation) \(| \cdot | \) from \(\mathbb{K} \) into \([0, \infty) \) such that \(|r| = 0 \) if and only if \(r = 0 \), \(|rs| = |r||s|\), and \(|r + s| \leq \max(|r|, |s|)\) for \(r, s \in \mathbb{K} \). Clearly \(|1| = |\infty| = 1\) and \(|n| \leq 1 \) for all \(n \in \mathbb{N} \). By the trivial valuation we mean the function \(| \cdot |\) taking everything but 0 into 1 and \(|0| = 0 \) (i.e., the function \(| | \) is called the trivial valuation if \(|r| = 1, \forall r \in \mathbb{R}, r \neq 0, \) and \(|0| = 0 \). Let \(X \) be a vector space over a field \(\mathbb{K} \) with a non-Archimedean non-trivial valuation \(| \cdot |\). A function \(\| \cdot \| : X \to [0, \infty) \) is called a non-Archimedean norm if it satisfies the following conditions:

(i) \(\|x\| = 0 \) if and only if \(x = 0 \);
(ii) For any \(r \in \mathbb{K} \) and \(x \in X, \|rx\| = |r||x| \);
(iii) For all \(x, y \in X, \|x + y\| \leq \max(\|x\|, \|y\|) \) (the strong triangle inequality).
Then \((X, \| \cdot \|) \) is called a non-Archimedean normed space. Due to the fact that

\[
\|x_n - x_m\| \leq \max(\|x_{j+1} - x_j\|) : m \leq j \leq n - 1, \quad (n > m),
\]
a sequence \(\{x_n\} \) is Cauchy if and only if \(\{x_{n+1} - x_n\} \) converges to zero in a non-Archimedean normed space. By a complete non-Archimedean normed space we mean one in which every Cauchy sequence is convergent.

Example 2.2. (cf. [14]). For any non-zero rational number \(x \), there exists a unique integer \(n_x \in \mathbb{Z} \) such that \(x = \frac{a}{b} p^{-n_x} \), where \(a \) and \(b \) are integers not divisible by \(p \). Then \(x | p := p^{-n_x} \) defines a non-Archimedean norm on \(\mathbb{Q} \). The completion of \(\mathbb{Q} \) with respect to the metric \(d(x, y) = |x - y|_p \) is denoted by \(\mathbb{Q}_p \), which is called the \(p \)-adic number field.

A non-Archimedean Banach algebra is a complete non-Archimedean algebra \(\mathcal{A} \) which satisfies \(||ab|| \leq ||a|| ||b|| \) for all \(a, b \in \mathcal{A} \). For more detailed definitions of non-Archimedean Banach algebras, we refer the reader to [8, 38].

If \(\mathcal{U} \) is a non-Archimedean Banach algebra, then an involution on \(\mathcal{U} \) is a mapping \(t \to t^* \) from \(\mathcal{U} \) into \(\mathcal{U} \) which satisfies

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I) (t^{**} = t) for (t \in \mathcal{U});</td>
<td></td>
</tr>
<tr>
<td>(II) ((as + \beta t)^* = \overline{a} s + \beta t^*);</td>
<td></td>
</tr>
<tr>
<td>(III) ((st)^* = t^* s^*) for (s, t \in \mathcal{U}).</td>
<td></td>
</tr>
</tbody>
</table>

If, in addition, \(||t^* || = ||t||^2 \) for \(t \in \mathcal{U} \), then \(\mathcal{U} \) is a non-Archimedean \(C^* \)-algebra.

Definition 2.3. (cf. [14, 37]). A non-Archimedean random normed space (briefly, NA-RN-space) is a triple \((X, \mu, T)\), where \(X \) is a linear space over a non-Archimedean field \(\mathbb{K} \), \(T \) is a continuous \(t \)-norm, and \(\mu \) is a mapping from \(X \) into \(D^* \) such that the following conditions hold:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NA-RN1) (\mu_x(t) = \varepsilon_0(t)) for all (t > 0) if and only if (x = 0);</td>
<td></td>
</tr>
<tr>
<td>(NA-RN2) (\mu_{xt}(t) = \mu_x \left(\frac{t}{</td>
<td>c</td>
</tr>
<tr>
<td>(NA-RN3) (\mu_{x+y}(\max(t, s)) \geq T(\mu_x(t), \mu_y(s))) for all (x, y \in X) and (t, s \geq 0);</td>
<td></td>
</tr>
</tbody>
</table>

It is easy to see that if (NA-RN3) holds, then

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RN3) (\mu_{x+y}(t + s) \geq T(\mu_x(t), \mu_y(s))).</td>
<td></td>
</tr>
</tbody>
</table>

Example 2.4. (cf. [26]). Let \((X, \| \cdot \|) \) be a non-Archimedean normed linear space, and \(\alpha, \beta > 0 \). Define

\[
\mu_x(t) = \frac{\alpha t}{\alpha t + \beta \|x\|}
\]

for all \(x \in X \) and \(t > 0 \). Then \((X, \mu, T_M) \) is a non-Archimedean RN-space.

Proof. (NA - RN1) is obviously true. Notice that for any \(t \in \mathbb{R}, t > 0 \) and \(c \neq 0 \)

\[
\mu_{cx}(t) = \frac{\alpha t}{\alpha t + \beta \|cx\|} = \frac{\alpha t}{\alpha t + \beta |c| \|x\|} = \frac{\alpha \cdot \frac{t}{|c|}}{\alpha \cdot \frac{t}{|c|} + \beta \|x\|} = \mu_x \left(\frac{t}{|c|} \right),
\]

which implies that (NA - RN2) holds.

To prove (NA - RN3). We assume that \(\mu_x(t) \leq \mu_y(s) \), thus we have

\[
\frac{\|y\|}{s} \leq \frac{\|x\|}{t}.
\]

Now, if \(\|x\| \geq \|y\| \) for all \(x, y \in X \), then we have by the strong triangle inequality

\[
t \|x + y\| \leq t \|x\| \leq (\max(t, s)) \|x\|.
\]

Therefore,

\[
\frac{\beta \|x + y\|}{\alpha (\max(t, s))} \leq \frac{\beta \|x\|}{\alpha t}
\]

and so

\[
1 + \frac{\beta \|x + y\|}{\alpha (\max(t, s))} \leq 1 + \frac{\beta \|x\|}{\alpha t}.
\]
which implies that \(\mu_{s+y}(\max(t, s)) \geq \mu_s(t)\).

if \(\|x\| \leq \|y\|\) for all \(x, y \in X\), then we also have

\[
\|x + y\| \leq \|y\| \leq t \cdot \frac{s}{t} \|x\| \leq (\max(t, s))\|x\|.
\]

By the same way to the above, we can also get \(\mu_{s+y}(\max(t, s)) \geq \mu_s(t)\). Hence, \(\mu_{s+y}(\max(t, s)) \geq T_M(\mu_s(t), \mu_y(s))\) for all \(x, y \in X\) and \(t, s \geq 0\). Then \((X, \mu, T_M)\) is a non-Archimedean RN-space. \(\Box\)

Example 2.5. (cf. [26]). Let \((X, \| \cdot \|)\) be a non-Archimedean normed linear space, let \(\beta > \alpha > 0\) and

\[
\mu_s(t) = \begin{cases}
0, & t \leq \alpha\|x\|, \\
\frac{t}{\beta - \alpha}, & \alpha\|x\| < t \leq \beta\|x\|, \\
1, & t > \beta\|x\|.
\end{cases}
\]

Then \((X, \mu, T_M)\) is a non-Archimedean RN-space.

Proof. (NA – RN1) is obviously true. Notice that for \(c \neq 0\), if \(\mu_{cx}(t) = 1\), then \(t > \beta\|cx\|\), i.e. \(\frac{t}{\beta} > \beta\|x\|\) \(\Rightarrow \mu_{c}(\frac{t}{\beta}) = 1\).

Thus \(\mu_{cx}(t) = \mu_{c}(\frac{t}{\beta})\).

Again if \(\mu_{cx}(t) = \frac{t}{\beta - \alpha}\|cx\|\), then \(\alpha\|cx\| < t \leq \beta\|cx\|\), i.e. \(\alpha\|x\| < \frac{t}{\beta} \leq \beta\|x\|\), so we have

\[
\mu_{c}(\frac{t}{\beta}) = \frac{t}{\beta - \alpha}\|x\|,
\]

therefore, \(\mu_{cx}(t) = \mu_{c}(\frac{t}{\beta})\). Similarly, when \(\mu_{cx}(t) = 0\), then \(\mu_{cx}(t) = \mu_{c}(\frac{t}{\beta}) = 0\). Thus for \(c \neq 0\), \(\mu_{cx}(t) = \mu_{c}(\frac{t}{\beta})\)

which implies that (NA – RN2) holds.

Next, we have to show that

\[\mu_{s+y}(\max(t, s)) \geq T_M(\mu_s(t), \mu_y(s)).\]

If \(s = t = 0\), then in this case the relation is obvious. So we consider the case when \(t > 0, s > 0\).

If \(t > \beta\|x\|-\beta\|y\|\), \(\max(t, s) > \beta\|x\|\), \(\max(t, s) > \beta\|y\|\), and \(\mu_{s}(t) = 1, \mu_{y}(s) = 1\). Now, we have

\[\max(t, s) \geq \beta\|x\| (\text{ or } \beta\|y\|) \geq \beta(\|x\| + \|y\|)\]

Hence, we get

\[\mu_{s+y}(\max(t, s)) = 1 \Rightarrow \mu_{s+y}(\max(t, s)) \geq T_M(\mu_s(t), \mu_y(s)).\]

If \(t > \beta\|x\|\), and \(\alpha\|y\| < s \leq \beta\|y\|\), then \(\mu_{s}(t) = 1, \mu_{y}(s) = \frac{s}{\beta - \alpha}\|y\|\). Now, if \(\|x\| \geq \|y\|\), then we obtain

\[\max(t, s) \geq \beta\|x\| = \max(\beta\|x\|, \beta\|y\|) \geq \beta(\|x\| + \|y\|)\]

Hence, we have

\[\mu_{s+y}(\max(t, s)) = 1 \Rightarrow \mu_{s+y}(\max(t, s)) \geq T_M(\mu_s(t), \mu_y(s)).\]

Next, if \(\|y\| \geq \|x\|\). So we get

\[\max(t, s) \geq \alpha\|y\| = \max(\alpha\|x\|, \alpha\|y\|) = \alpha(\|x\| + \|y\|)\]

Hence, we get

\[\mu_{s+y}(\max(t, s)) = \frac{\max(t, s)}{\max(t, s) + (\beta - \alpha)\|x\| + \|y\|} \Rightarrow \mu_{s+y}(\max(t, s)) \geq T_M(\mu_s(t), \mu_y(s)).\]

If \(\alpha\|x\| < t \leq \beta\|x\|\), and \(\alpha\|y\| < s \leq \beta\|y\|\), then in this case the relation is similar to the proof of Example 2.4, and thus it is omitted. This completes the proof of the example. \(\Box\)
Definition 2.6. (cf. [14, 23]). A non-Archimedean random normed space \((X, \mu, T, T')\) is a non-Archimedean random normed space \((X, \mu, T)\) with an algebraic structure such that

\[\mu_{xy}(t) \geq T'(\mu_x(t), \mu_y(t)) \text{ for all } x, y \in X \text{ and all } t > 0, \text{ in which } T' \text{ is a continuous } t\text{-norm.} \]

Example 2.7. (cf. [23]). Let \((X, \| \cdot \|)\) be a non-Archimedean normed algebra. Define

\[\mu_x(t) = \begin{cases} 0, & x \neq 0, t \leq 0, \\ \frac{1}{t^{|t|}}, & x \neq 0, t > 0, \\ 1, & x = 0 \end{cases} \]

Then \((X, \mu, T_M)\) is a non-Archimedean RN-space. An easy computation shows that \(\mu_{xy}(t) \geq \mu_x(t)\mu_y(t)\) if and only if

\[\|xy\| \leq \|x\|\|y\| + t\|y\| + t\|x\| \]

for all \(x, y \in X\) and \(t > 0\). It follows that \((X, \mu, T_M, T_P)\) is a non-Archimedean random normed algebra.

Definition 2.8. (cf. [14]). Let \((X, \mu, T, T')\) and \((Y, \nu, T', T'')\) be non-Archimedean random normed algebras.

(a) An \(R\)-linear mapping \(f : X \to Y\) is called a homomorphism if \(f(xy) = f(x)f(y)\) for all \(x, y \in X\).

(b) An \(R\)-linear mapping \(f : X \to Y\) is called a derivation if \(f(xy) = xf(y) + f(x)y\) for all \(x, y \in X\).

Definition 2.9. (cf. [14]). Let \((\mathcal{U}, \mu, T, T')\) be non-Archimedean random Banach algebra, then an involution on \(\mathcal{U}\)

is a mapping \(u \to u'\) from \(\mathcal{U}\) into \(\mathcal{U}\) which satisfies

(I') \(u'' = u\) for \(u \in \mathcal{U}\);

(II') \((au + bv)' = \bar{a}u' + \bar{b}v'\);

(III') \((uv)' = v'u'\) for \(u, v \in \mathcal{U}\).

If, in addition, \(\mu_{u'v'}(t) = T'(\mu_x(t), \mu_y(t))\) for \(u \in \mathcal{U}\) and \(t > 0\), then \(\mathcal{U}\) is a non-Archimedean random \(C^*\)-algebra.

Definition 2.10. (cf. [14]) Let \((X, \mu, T)\) be a non-Archimedean RN-space. Let \(\{x_n\}\) be a sequence in \(X\). Then \(\{x_n\}\) is said to be convergent if there exists \(x \in X\) such that

\[\lim_{n \to \infty} \mu_{x_n-x}(t) = 1, \]

for all \(t > 0\). In this case, \(x\) is called the limit of the sequence \(\{x_n\}\).

A sequence \(\{x_n\}\) in \(X\) is called Cauchy if for each \(\varepsilon > 0\) and \(t > 0\), there exists \(n_0\) such that for all \(n \geq n_0\) and all \(p > 0\) we have \(\mu_{x_n-x_p}(t) > 1 - \varepsilon\). Due to

\[\mu_{x_n-x_p}(t) \geq \min\{\mu_{x_n-x_p-1}(t), \ldots, \mu_{x_n-1}(t)\}. \]

Therefore, the sequence \(\{x_n\}\) is Cauchy if for each \(\varepsilon \geq 0\) and \(t > 0\) there exists \(n_0\) such that for all \(n \geq n_0\), we have \(\mu_{x_n-x}(t) > 1 - \varepsilon\).

If each Cauchy sequence is convergent, then the random norm is said to be complete, and the non-Archimedean RN-space is called a non-Archimedean random Banach space.

Definition 2.11. Let \(S\) be a set. A function \(d : S \times S \to [0, \infty]\) is called a generalized metric on \(S\) if \(d\) satisfies

1. \(d(x, y) = 0\) if and only if \(x = y\);
2. \(d(x, y) = d(y, x), \forall x, y \in S\);
3. \(d(x, z) \leq d(x, y) + d(y, z), \forall x, y, z \in S.\)

The next Lemma 2.12 is due to Diaz and Margolis [6], which is extensively applied to the stability theory of functional equations.
Lemma 2.12. ([6]). Let (S,d) be a complete generalized metric space and $J : S \to S$ be a strictly contractive mapping with Lipschitz constant $L < 1$. Then for each fixed element $x \in S$, either
\[d(J^n x, J^{n+1} x) = \infty \]
for all nonnegative integers n or there exists a positive integer n_0 such that
(i) $d(J^n x, J^{n+1} x) < \infty$, $\forall n \geq n_0$;
(ii) the sequence $\{ J^n x \}$ is convergent to a fixed point y^* of J;
(iii) y^* is the unique fixed point of J in the set $S^* := \{ y \in S : d(J^n x, y) < +\infty \}$;
(iv) $d(y^*, y) \leq \frac{1}{1-L} d(y^*, y)$, $\forall y \in S^*$.

3. Stability of homomorphisms and derivations in non-Archimedean random C^*-algebras

In this section, assume that \mathcal{A} is a non-Archimedean random C^*-algebra with the norm $\mu^\mathcal{A}$ and that \mathcal{B} is a non-Archimedean random C^*-algebra with the norm $\mu^\mathcal{B}$. For a given mapping $f : \mathcal{A} \to \mathcal{B}$, we define
\[D_{\lambda,f}(x_1, \ldots, x_n) = \sum_{1 \leq i < j \leq n} f \left(\frac{\lambda x_i + \lambda x_j}{2} + \sum_{l=1}^{n-2} \lambda x_k \right) - \frac{(n-1)^2}{2} \sum_{i=1}^{n} \lambda f(x_i) \]
for all $x_1, \ldots, x_n \in \mathcal{A}(n \geq 3)$ and $\lambda \in \mathbb{T}^1 := \{ \lambda \in \mathbb{C} : |\lambda| = 1 \}$.

We need the following lemmas to prove the main results.

Lemma 3.1. (cf. [24]). Let V and W be linear spaces and let $n \geq 3$ be a fixed positive integer. A mapping $f : V \to W$ satisfies the functional equation (1) for all $x_1, \ldots, x_n \in V$ if and only if f is an additive mapping.

Lemma 3.2. (cf. [28]). Let $f : \mathcal{A} \to \mathcal{A}$ be an additive mapping such that $f(\lambda x) = \lambda f(x)$ for all $\lambda \in \mathbb{T}^1$ and all $x \in \mathcal{A}$. Then the mapping f is \mathbb{C}-linear.

Note that a \mathbb{C}-linear mapping $H : \mathcal{A} \to \mathcal{B}$ is called homomorphism in non-Archimedean random C^*-algebras if H satisfies $H(xy) = H(x)H(y)$ and $H(x^*) = H(x)^*$ for all $x, y \in \mathcal{A}$.

Now we are going to prove the generalized Hyers-Ulam stability of homomorphisms in non-Archimedean random C^*-algebras for the functional equation $D_{\lambda,f}(x_1, \ldots, x_n) = 0$.

Theorem 3.3. Let $f : \mathcal{A} \to \mathcal{B}$ be a mapping for which there are functions $\varphi : \mathcal{A}^n \to D^+$, $\psi : \mathcal{A}^2 \to D^+$ and $\eta : \mathcal{A} \to D^+$ such that $|\rho| < 1$ is far from zero and
\[\mu^\mathcal{B}_{D_{\lambda,f}(x_1, \ldots, x_n)}(t) \geq \varphi_{x_1, \ldots, x_n}(t) \]
(2)
\[\mu^\mathcal{B}_{f(xy) - f(x)f(y)}(t) \geq \psi_{x,y}(t) \]
(3)
\[\mu^\mathcal{B}_{f(x^*) - f(x)^*}(t) \geq \eta_x(t) \]
(4)
for all $\lambda \in \mathbb{T}^1$, $x_1, \ldots, x_n, x, y \in \mathcal{A}$ and $t > 0$. If there exists a constant $0 < L < 1$ such that
\[\varphi_{\rho x_1, \ldots, \rho x_n}(lt) \geq \varphi_{x_1, \ldots, x_n}(t) \]
(5)
\[\psi_{\rho x,y}(l^2 t) \geq \psi_{x,y}(t) \]
(6)
\[\eta_{\rho x}(lt) \geq \eta_x(t) \]
(7)
for all $x, y, x_1, \ldots, x_n \in \mathcal{A}$ and $t > 0$, then there exists a unique homomorphism $H : \mathcal{A} \to \mathcal{B}$ such that
\[\mu^\mathcal{B}_{f(x) - H(x)}(t) \geq \varphi_{x_{\rho x}} \left(\frac{|\rho|^2 (1-L)}{2} t \right) \]
(8)
for all $x \in \mathcal{A}$ and $t > 0$, where $\rho := n - 1$.

References

This implies that the inequality (8) holds. It follows from (2), (5) and (13) that
\[
\mu_{D_{\lambda,H}}(x_1, \ldots, x_n)(t) = \lim_{m \to \infty} \mu_{D_{\lambda,H}}(\rho^{m} x_1, \ldots, \rho^{m} x_n)(t)
\geq \lim_{m \to \infty} \varphi_{\rho^{m} x_1, \ldots, \rho^{m} x_n}(\rho^{m} t) = 1
\]
for all \(\lambda \in \mathbb{T}^1, x_1, \ldots, x_n \in \mathcal{A} \) and \(t > 0 \). Hence, we obtain
\[
D_{\lambda,H}(x_1, \ldots, x_n) = 0
\]
for all \(x_1, \ldots, x_n \in \mathcal{A} \). If we put \(\lambda = 1 \) in (15), then \(H \) is additive by Lemma 3.1. Also, letting \(x_1 = \cdots = x_n = x \) in the last equality, we obtain \(H(\lambda x) = \lambda H(x) \). Now by using Lemma 3.2, we infer that the mapping \(H \) is \(C \)-linear. On the other hand, it follows from (3), (6) and (13) that

\[
H_{[H(x) - H(y)]}(t) = \lim_{m \to \infty} H_{[H(x^m) - H(y^m)]}(|p|^{2m} t) \\
\geq \lim_{m \to \infty} \psi_{p^m, x^m, y^m}(|p|^{2m} t) = 1
\]

for all \(x, y \in \mathcal{A} \). So, \(H(xy) = H(x)H(y) \) for all \(x, y \in \mathcal{A} \). Thus \(H : \mathcal{A} \to \mathcal{B} \) is a homomorphism satisfying (8), as desired. Also, by (4), (7) and (13) and by a similar method, we have \(H(x^r) = H(x)^r \). This completes the proof of the theorem. \(\square \)

Theorem 3.4. Let \(f : \mathcal{A} \to \mathcal{B} \) be a mapping for which there are functions \(\varphi : \mathcal{A}^n \to D^* \), \(\psi : \mathcal{A}^2 \to D^* \) and \(\eta : \mathcal{A} \to D^* \) such that \(|p| < 1 \) is far from zero, and (2), (3) and (4) hold for all \(\lambda \in \mathbb{T}^1 \), \(x_1, \ldots, x_n, x, y \in \mathcal{A} \) and \(t > 0 \). If there exists a constant \(0 < L < 1 \) such that

\[
\varphi_{x_1, \ldots, x_n}(L) \geq \varphi_{x_1, \ldots, x_n}(t) \quad (16)
\]

\[
\psi_{x, y}(L) \geq \psi_{x, y}(t) \quad (17)
\]

\[
\eta_x(L) \geq \eta_x(t) \quad (18)
\]

for all \(x, y, x_1, \ldots, x_n \in \mathcal{A} \) and \(t > 0 \), then there exists a unique homomorphism \(H : \mathcal{A} \to \mathcal{B} \) such that

\[
\mu_{f(x)}^{B_{[H(x)]}}(t) \geq \varphi_{x_1, \ldots, x_n}(\frac{|p||p|^2(1 - L)}{2|L|} t) \quad (19)
\]

for all \(x \in \mathcal{A} \) and \(t > 0 \), where \(p := n - 1 \).

Proof. Let \(\Omega \) and \(d \) be as in the proof of Theorem 3.3. Then \((\Omega, d) \) becomes complete generalized metric space and the mapping \(\mathcal{J} : \Omega \to \Omega \) defined by

\[\mathcal{J} g(x) := \rho g \left(\frac{x}{\rho} \right), \text{ for all } g \in \Omega \text{ and } x \in \mathcal{A}.\]

Then, it is easy to see that \(d(\mathcal{J} g, \mathcal{J} h) \leq L d(g, h) \) for all \(g, h \in \mathcal{S} \). By (9) and (16), we obtain

\[
\mu_{f(x)}^{B_{[H(x)]}} \left(\frac{|2L|}{|p||p|^2} t \right) \geq \varphi_{x_1, \ldots, x_n}(L) \geq \varphi_{x_1, \ldots, x_n}(t)
\]

for all \(x \in \mathcal{A} \) and \(t > 0 \). So, we have \(d(f, \mathcal{J} f) \leq \frac{2L}{|p||p|^2} \).

The remaining assertion is similar to the corresponding part of Theorem 3.3. This completes the proof. \(\square \)

Corollary 3.5. Let \(\ell \in \{-1, 1\}, r
eq 1 \) and \(\theta \) be nonnegative real numbers. Suppose that \(f : \mathcal{A} \to \mathcal{B} \) be a mapping such that

\[
\mu_{f(x), x_1, \ldots, x_n}^{B_{[H(x)]}}(t) \geq \frac{t}{t + \theta(|x_1| + \cdots + |x_n|)}
\]

\[
\mu_{f(x) - f(x), y}^{B_{[H(x)]}}(t) \geq \frac{t}{t + \theta |y|}
\]

\[
\mu_{f(x') - f(x), y}^{B_{[H(x)]}}(t) \geq \frac{t}{t + \theta |y|}
\]
for all $\lambda \in \mathbb{T}_1$, $x_1, \ldots, x_n, y \in \mathcal{A}$ and $t > 0$. Then there exists a unique homomorphism $H : \mathcal{A} \to \mathcal{B}$ such that, if $\ell r > t$,

$$
\mu^B_{f(x), H(x)}(t) \geq \frac{\ell \rho((|\lambda| - |\rho|)\ell + \ell \rho(|\lambda| - |\rho|)\ell + \ell \rho \rho | \lambda^\prime | \rho} {\ell \rho((|\lambda| - |\rho|)\ell + \ell \rho(|\lambda| - |\rho|)\ell + \ell \rho \rho | \lambda^\prime | \rho} \tag{20}
$$

for all $x \in \mathcal{A}$ and $t > 0$, where $\rho := n - 1$.

Proof. The proof follows from Theorems 3.3 and 3.4 by taking

$$
\varphi_{x_1, \ldots, x_n}(t) = \frac{t}{l + \theta |x_1|_{\mathcal{A}} + |x_2|_{\mathcal{A}} + \cdots + |x_n|_{\mathcal{A}}},
$$
$$
\psi_{x, y}(t) = \frac{t}{l + \theta |x|_{\mathcal{A}} |y|_{\mathcal{A}}},
$$
$$
\eta_{x}(t) = \frac{t}{l + \theta |x|_{\mathcal{A}}}
$$

for all $x_1, \ldots, x_n, y \in \mathcal{A}$ and $t > 0$. We can choose $L = |\rho|^{(l-1)}$, we obtain the desired result. □

Note that a \mathcal{C}-linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ is called derivation on \mathcal{A} if δ satisfies $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in \mathcal{A}$.

We prove the generalized Hyers-Ulam stability of derivations on non-Archimedean random C^*-algebras for the functional equation $D_{\lambda, f}(x_1, \ldots, x_n) = 0$.

Theorem 3.6. Let $f : \mathcal{A} \to \mathcal{A}$ be a mapping for which there are functions $\varphi : \mathcal{A}^n \to D^*$, $\psi : \mathcal{A}^2 \to D^*$ and $\eta : \mathcal{A} \to D^*$ such that $|\rho| < 1$ is far from zero and

$$
\mu^\mathcal{A}_{D_{\lambda, f}(x_1, \ldots, x_n)}(t) \geq \varphi_{x_1, \ldots, x_n}(t)
$$

$$
\mu^\mathcal{A}_{f(xy) - f(x)y + f(x)y}(t) \geq \psi_{x, y}(t)
$$

$$
\mu^\mathcal{A}_{f(\lambda x) - f(x)}(t) \geq \eta_{x}(t)
$$

for all $\lambda \in \mathbb{T}_1$, $x_1, \ldots, x_n, y \in \mathcal{A}$ and $t > 0$. If there exits a constant $0 < L < 1$ such that (5), (6) and (7) hold, then there exists a unique derivation $\delta : \mathcal{A} \to \mathcal{A}$ such that

$$
\mu^\mathcal{A}_{f(x) - \delta(x)}(t) \geq \varphi_{x_1, \ldots, x_n}(t) \left(\frac{1 - L |\rho|^{1 - L} t}{|\rho|^{1 - L} t} \right)
$$

for all $x \in \mathcal{A}$ and $t > 0$, where $\rho := n - 1$.

Proof. By the same reasoning as in the proof of Theorem 3.3, the mapping $\delta : \mathcal{A} \to \mathcal{A}$ defined by

$$
\delta(x) := \lim_{m \to \infty} \frac{1}{|\rho|^m} f(\rho^m x) \quad \forall x \in \mathcal{A}
$$

(25)

is a unique \mathcal{C}-linear mapping which satisfies (24). We show that δ is a derivation. By (22) and (25), we have

$$
\mu^\mathcal{A}_{\delta(xy) - \delta(x)y - \delta(y)}(t) = \lim_{m \to \infty} \mu^\mathcal{A}_{f(\rho^m xy - f(\rho^m x)y - f(\rho^m y)x)(|\rho|^{2mt})}
$$

$$
\geq \lim_{m \to \infty} \psi_{x, y}(t) |\rho|^{2mt} = 1
$$

for all $x, y \in \mathcal{A}$ and all $t > 0$. Hence we have $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in \mathcal{A}$. This means that δ is a derivation satisfying (24). This completes the proof. □
4. Stability of homomorphisms and derivations in non-Archimedean random Lie C^*-algebras

A non-Archimedean random C^*-algebra C, endowed with the Lie product $[x, y] = \frac{yx - xy}{2}$ on C, is called a non-Archimedean random Lie C^*-algebra.

Definition 4.1. Let \mathcal{A} and \mathcal{B} be non-Archimedean random Lie C^*-algebras. A C-linear mapping $H : \mathcal{A} \to \mathcal{B}$ is called a non-Archimedean random Lie C^*-algebra homomorphism if $H([x, y]) = [H(x), H(y)]$ for all $x, y \in \mathcal{A}$.

In this section, assume that \mathcal{A} is a non-Archimedean random Lie C^*-algebra with the norm μ^A and that \mathcal{B} is a non-Archimedean random Lie C^*-algebra with the norm μ^B.

Now, we prove the generalized Hyers-Ulam stability of homomorphisms in non-Archimedean random Lie C^*-algebras for the equation $D_{\lambda,f(x_1, \ldots, x_n)} = 0$.

Theorem 4.2. Let $f : \mathcal{A} \to \mathcal{B}$ be a mapping for which there are functions $\varphi : \mathcal{A}^n \to D^+$, $\psi : \mathcal{A}^2 \to D^+$ and $\eta : \mathcal{A} \to D^+$ such that $|\varphi| < 1$ is far from zero, (2) and (4) hold and

$$\mu^B_{\varphi(x,y)-\{f(x,y)\}}(f)(l) \geq \psi(x,y)(l)$$

for all $x, y \in \mathcal{A}$ and $t > 0$. If there exists a constant $0 < L < 1$ and (5), (6) and (7) hold, then there exists a unique homomorphism $H : \mathcal{A} \to \mathcal{B}$ such that (8) holds for all $x \in \mathcal{A}$ and $t > 0$, where $\rho := n - 1$.

Proof. By the same reasoning as in the proof of Theorem 3.3, we can find the mapping $H : \mathcal{A} \to \mathcal{B}$ given by

$$H(x) := \lim_{m \to \infty} \frac{1}{|\varphi|^m} f(x^m)$$

for all $x \in \mathcal{A}$. It follows from (6), (26) and (27) that

$$\mu^B_{\varphi(x,y)-\{H(x),H(y)\}}(f)(l) = \lim_{m \to \infty} \mu^B_{\varphi(x,y)-\{f(x,y)\}}(f)(l) = 1$$

for all $x, y \in \mathcal{A}$ and $t > 0$, then

$$H([x, y]) = [H(x), H(y)]$$

for all $x, y \in \mathcal{A}$. Thus, $H : \mathcal{A} \to \mathcal{B}$ is a Lie C^*-algebra homomorphism satisfying (8), as desired. \(\Box \)

Theorem 4.3. Let $f : \mathcal{A} \to \mathcal{B}$ be a mapping for which there are functions $\varphi : \mathcal{A}^n \to D^+$, $\psi : \mathcal{A}^2 \to D^+$ and $\eta : \mathcal{A} \to D^+$ such that $|\varphi| < 1$ is far from zero, and (2), (4) and (26) hold for all $\lambda \in T^1$, $x_1, \ldots, x_n, y \in \mathcal{A}$ and $t > 0$. If there exists a constant $0 < L < 1$ and (16), (17) and (18) hold, then there exists a unique homomorphism $H : \mathcal{A} \to \mathcal{B}$ such that (19) holds for all $x \in \mathcal{A}$ and $t > 0$, where $\rho := n - 1$.

Proof. The proof follows from Theorem 3.4 and a method similar to Theorem 4.2. \(\Box \)

Corollary 4.4. Let $\ell \in [-1, 1]$, $r = \# \theta$ be nonnegative real numbers. Suppose that $f : \mathcal{A} \to \mathcal{B}$ be a mapping such that

$$\mu^B_{D_{\lambda,f(x_1, \ldots, x_n)}}(l) \geq \frac{l}{t + \theta (\|x_1\|_{\mathcal{A}} + \|x_2\|_{\mathcal{A}} + \cdots + \|x_n\|_{\mathcal{A}})}$$

$$\mu^B_{f(x,y)-\{f(x,y)\}}(l) \geq \frac{l}{t + \theta \cdot (\|x\|_{\mathcal{A}} + \|y\|_{\mathcal{A}})}$$

$$\mu^B_{f(x)\cdot f(y)}(l) \geq \frac{l}{t + \theta \cdot \|x\|_{\mathcal{A}}}$$

for all $\lambda \in T^1$, $x_1, \ldots, x_n, y \in \mathcal{A}$ and $t > 0$. Then there exists a unique homomorphism $H : \mathcal{A} \to \mathcal{B}$ such that (20) holds.
Proof. The proof follows from Theorems 4.2 and 4.3, and a method similar to Corollary 3.5. □

Definition 4.5. Let \mathcal{A} be non-Archimedean random Lie C^*-algebra. A C-linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ is called a Lie derivation if $\delta([x,y]) = [\delta(x), y] + [x, \delta(y)]$ for all $x, y \in \mathcal{A}$.

We prove the generalized Hyers-Ulam stability of derivations on non-Archimedean random Lie C^*-algebras for the functional equation $D_\rho(x, y) = L^\rho(x, y)(t) + \psi(y, t)x + \psi(x, t)y = 1$ for all $x, y \in \mathcal{A}$ and $t > 0$. If there exists a constant $0 < L < 1$ such that (5), (6) and (7) hold, then there exists a unique derivation $\delta : \mathcal{A} \to \mathcal{A}$ such that (24) holds for all $x \in \mathcal{A}$ and $t > 0$, where $\rho := n - 1$.

Proof. By the same reasoning as in the proof of Theorem 4.2, we can find the mapping $\delta : \mathcal{A} \to \mathcal{B}$ given by

$$\delta(x) := \lim_{m \to \infty} \frac{1}{|\rho|^m} f(p^m x)$$

for all $x \in \mathcal{A}$. It follows from (6), (28) and (29) that

$$f_{\infty}(\rho, x) = \lim_{m \to \infty} f((\rho, x, \rho, x, \ldots, x, \rho, x))^m (\rho^m t) \geq \lim_{m \to \infty} \psi(y, t)x + \psi(x, t)y = 1$$

for all $x, y \in \mathcal{A}$ and $t > 0$, then

$$\delta([x, y]) = [\delta(x), y] + [x, \delta(y)]$$

for all $x, y \in \mathcal{A}$. Thus, $\delta : \mathcal{A} \to \mathcal{A}$ is a Lie derivation satisfying (24), as desired. □

Acknowledgements: This research work was done during 2015-16 while the first author studied at the University of Louisville as a Visiting Scholar from the Hubei University of Technology.

References

