Note on the Uniqueness Holomorphic Function on the Unit Disk

Tuğba Akyela, Tahir Aliyev Azeroğlub
aDepartment of Computer Engineering, Maltepe University, Maltepe - Istanbul 34857, Turkey
bDepartment of Mathematics, Gebze Technical University, Gebze-Kocaeli 41400, Turkey

Abstract. Let \(f \) be an holomorphic function the unit disk to itself. We provide conditions on the local behavior of \(f \) along boundary near a finite set of the boundary points that requires \(f \) to be a finite Blaschke product.

1. Introduction

In 1994, Daniel M. Burns and Steven G. Krantz ([1]) proved that if the holomorphic function \(f : D \rightarrow D \) satisfies the condition
\[
f(z) = z + O((z - 1)^4) \quad z \rightarrow 1, \quad z \in D, \tag{1.1}
\]
then \(f(z) \equiv z \) on the unit disk.

The example
\[
f(z) = z + \frac{1}{10} (z - 1)^3
\]
shows that the exponent 4 in (1.1) can not be replaced by 3. In fact, the proof shows that \(O((z - 1)^4) \) can be replaced by \(o((z - 1)^3) \).

In 2001, Dov Chelst ([2]), in turn, established the following generalization of this result.

\textbf{Theorem 1.1.} Let \(f : D \rightarrow D \) be a holomorphic function from the disk to itself. In addition, let \(\phi : D \rightarrow D \) be a finite Blaschke product which equals \(\tau \in \partial D \) on a finite set \(A_f \subset \partial D \). If
\begin{enumerate}
\item[(i)] for a given \(\gamma_0 \in A_f \),
\[f(z) = \phi(z) + o((z - \gamma_0)^3), \quad \text{as } z \rightarrow \gamma_0,\]
\item[(ii)] for all \(\gamma \in A_f - \{\gamma_0\},
\[f(z) = \phi(z) + O((z - \gamma)^{k_\gamma}), \quad \text{for some } k_\gamma \geq 2 \text{ as } z \rightarrow \gamma,\]
\end{enumerate}
then \(f(z) \equiv \phi(z) \) on the disk.

\textbf{Keywords.} Holomorphic function, Harnack inequality, Phragmen-Lindelöf principle.
It was shown that the above condition \(k_\gamma \geq 2 \) can not be replaced by \(k_\gamma \geq 1 \).

In ([3]) and ([4]), this problem was generalized in the following aspects:

a) more general majorant was taken instead of the usual power majorant in (i) and (ii);

b) in (i) and (ii), the conditions \(z \to \gamma \), which usually stated approaching from inside of the disk before, were taken as the behavior of the function \(f \) along the boundary.

In 2015, M. Mateljević proved Theorem 1 in ([5]), where instead of Blaschke product was taken inner function and in (i) and (ii), the behavior of the function \(f \) along the boundary was considered.

Recently similar problems were investigated in ([6]) and ([7]). For more detail literature and the other types of the results, we refer to ([8]), ([9]), ([5]), ([10]) and references therein.

In the present study, we refined the results in ([4]). In particular, from our proofs it is followed that \(O(z - \gamma)^k \) in Theorem 1.1 can be replaced by \(o(z - \gamma) \).

We propose the following assertion for the proofs of our results.

(A) Let \(u = u(z) \) be a positive harmonic function on the open disk \(\mathbb{U}(z, r_0), r_0 > 0 \). Suppose that for \(\theta_0 \in [0, 2\pi) \), \(\lim_{r \to r_0} u(re^{i\theta_0}) = 0 \) is satisfied. Then

\[
\lim_{r \to r_0} \inf \frac{u(re^{i\theta_0})}{r_0 - r} > 0.
\]

This assertion follows from Harnack inequality. For more general results and related estimates, see also ([11, Theorem 1.1]), ([12]), ([13]).

(B) Let the function \(u \) be a subharmonic function in the unit disk, \(E \) is the finite subset of the unit circle \(\partial D \) such that

\[
\lim_{z \to \zeta, z \in \partial D} u(z) = 0, \quad \forall \zeta \in \partial D \setminus E,
\]

and

\[
u(z) = o(|z - z|^{-1}) \text{ as } z \to \zeta \text{ for each } \zeta \in E,
\]

then \(u(z) \leq 0 \) for all \(z \in D \).

The basic exposition for this version of Phragmen-Lindelöf Principle can be found in ([14, pp. 79-90]), ([15, pp. 176-186]) and ([16, Chapter 4, section 8 and Chapter 5, section 9]).

Let \(\mathfrak{N} \) be a class of functions \(\mu : (0, +\infty) \to (0, +\infty) \) for each of which \(\log \mu(x) \) is concave with respect to \(\log x \). For each function \(\mu \in \mathfrak{N} \) the limit

\[
\mu_0 = \lim_{x \to 0} \frac{\log \mu(x)}{\log x}
\]

exists, and \(-\infty < \mu_0 \leq +\infty \). Here, the function \(\mu \in \mathfrak{N} \) is called bilogarithmic concave majorant ([17]).

\(\mathfrak{N} \) be the class of sets with zero inner capacity ([18, p.210]).

2. Main Results

Let \(d(z, A) \) be the distance from the point \(z \) to the set \(A \).

Theorem 2.1. Let \(\phi : D \to D \) be a finite Blaschke product which equals \(\tau \in \partial D \) on a finite set \(A_\tau \subset \partial D \) and \(f : D \to D \) be a holomorphic function that is continuous on \(\overline{D} \cap \{ z : d(z, A_\tau) < \delta_0 \} \) for some \(\delta_0, \mu_1, \mu_2 \in \mathfrak{N}, \mu_0^1 > 3 \), \(\mu_0^2 > 1 \). Suppose that the following conditions are satisfied

(i) for a given \(\gamma_0 \in A_\tau \),

\[
f(z) = \phi(z) + O(\mu_1(|z - \gamma_0|)), z \in \partial D, z \to \gamma_0,
\]

(ii) \(\lim_{z \to \gamma_0} f(z) = 0 \).
Theorem 2.2. Let
\[f(z) = \phi(z) + O(\mu^2(\lvert z - \gamma \rvert)), \quad z \in \partial D, \quad z \to \gamma. \]

Then \(f(z) \equiv \phi(z) \) on \(D \).

Following result is generalization of Theorem 2.1.

Theorem 2.2. Let \(\phi : D \to D \) be a finite Blaschke product which equals \(\tau \in \partial D \) on a finite set \(A_f \subset \partial D \) and \(f : D \to D \) be a holomorphic function, \(Q \in \mathfrak{M}, \mu^1, \mu^2 \in \mathfrak{M}, \mu^1_0 > 3, \mu^2_0 > 1 \). Let the following conditions are satisfied
\[(i) \text{ for a given } \gamma_0 \in A_f, \]
\[
\limsup_{z \to \zeta \in D} \left| f(z) - \phi(z) \right| = O(\mu^1(\lvert \zeta - \gamma_0 \rvert)), \quad \zeta \in \partial D \setminus Q, \quad \zeta \to \gamma_0, \tag{2.1}
\]
\[(ii) \text{ for all } \gamma \in A_f \setminus \{\gamma_0\}, \]
\[
\limsup_{z \to \zeta \in D} \left| f(z) - \phi(z) \right| = O(\mu^2(\lvert \zeta - \gamma \rvert)), \quad \zeta \in \partial D \setminus Q, \quad \zeta \to \gamma \tag{2.2}
\]

Then \(f(z) \equiv \phi(z) \) on \(D \).

Proof. Let the assumptions of Theorem 2.1 are satisfied. By the condition (2.1), there exist a number \(C_1 > 0 \) and \(\delta_0 \in (0, 1) \) such that
\[
\limsup_{z \to \zeta \in D} \left| f(z) - \phi(z) \right| = C_1 \mu^1(\lvert \zeta - \gamma_0 \rvert)), \quad \zeta \in \partial D \setminus Q, \quad \lvert \zeta - \gamma_0 \rvert \leq \delta_0.
\]

Let us denote \(k \) and \(C_2 \) as follows
\[
k := \sup_{\lvert z - \gamma_0 \rvert = \delta_0, z \in D} \left| f(z) - \phi(z) \right|,
\]
\[
C_2 := \max \left\{ \frac{k}{\mu^1(\delta_0)}, C_1 \right\}.
\]

It can be easily seen that for all points of the set \(\partial(D \cap U(\gamma_0, \delta_0)) \setminus Q \), the inequality
\[
\limsup_{z \to \zeta \in D} \left| f(z) - \phi(z) \right| = C_2 \mu^1(\lvert \zeta - \gamma_0 \rvert)
\]

is satisfied.

Applying Theorem 3 in ([17]) (see also ([19]), ([20])) to the set \(D \cap U(\gamma_0, \delta_0) \) and to the function \(f(z) - \phi(z) \), we get
\[
\left| f(z) - \phi(z) \right| \leq C_2 \mu^1(\lvert z - \gamma_0 \rvert)), \quad \forall z \in D \cap U(\gamma_0, \delta_0). \tag{2.3}
\]

From \(\mu^1_0 > 3 \) there are some positive constants \(\varepsilon \) and \(\sigma < \min(\delta_0, 1) \) such that
\[
\frac{\log \mu^1(x)}{\log x} \geq 3 + \varepsilon \quad \forall x \in (0, \sigma)
\]

and
\[
\log \mu^1(x) \leq (3 + \varepsilon) \log x, \quad \forall x \in (0, \sigma)
\]

In other words,
\[\mu^2(x) \leq x^3 + c, \quad \forall x \in (0, a). \] (2.4)

From the inequalities (2.3) and (2.4) we take the inequality
\[|f(z) - \phi(z)| \leq C_2 |z - \gamma_0|^{3 + \epsilon}, \quad \forall z \in D \cap U(\gamma_0, a). \] (2.5)

Similarly, for any point \(\gamma \in A_f \setminus \{\gamma_0\} \), from the condition \(\mu^2_0 > 1 \) and (2.2) we have
\[|f(z) - \phi(z)| \leq C_3 |z - \gamma|^{1 + \epsilon}, \quad \forall z \in D \cap U(\gamma, \sigma_1) \] (2.6)

with some constants \(C_3 \) and \(\sigma_1 \).

Consider the following harmonic function in the unit disk
\[\psi(z) = \Re \left(\frac{1 + f(z)}{1 - f(z)} \right) - \Re \left(\frac{1 + \phi(z)}{1 - \phi(z)} \right). \]

Since a finite Blaschke Product \(\phi \) is holomorphic on \(\overline{D} \) and and \(|\phi(z)| = 1 \) on \(\partial D \), we have the second term of \(\psi \) is zero on \(\partial D \setminus A_f \), and also the first term of \(\psi \) is nonnegative. Consequently, after taking limitinfs to any boundary point in \((\partial D \setminus \Omega) \setminus A_f \), one always reaches the nonnegative value (infinity is also possible).

Now, let us examine the behaviour of the function \(\psi \) at points of set \(A_f \). Let us represent \(\psi(z) \) in the form
\[\psi(z) = \Re \left(\frac{2 (f(z) - \phi(z))}{(1 - f(z))(1 - \phi(z))} \right). \]

Now, let us take any point \(\gamma \in A_f \setminus \{\gamma_0\} \). It can be easily seen that for any \(z, |z| = 1, |\phi'(z)| > 0 \). If \(\left| \phi'(\gamma) \right| = c_{\gamma} \), then there exists a constant \(\sigma_\gamma \in (0, a_1) \) such that
\[|1 - \phi(z)| \geq \frac{c_\gamma}{2} |y - z|, \quad \forall z \in D \cap U(y, \sigma_\gamma). \] (2.7)

From (2.6)
\[\lim_{z \to \gamma} \frac{1 - f(z)}{y - z} = c_\gamma \]

and there exists \(\sigma'_{\gamma} \in (0, \sigma_\gamma) \) such that
\[|1 - f(z)| \geq \frac{c_\gamma}{2} |y - z|, \quad \forall z \in D \cap U(y, \sigma'_{\gamma}). \] (2.8)

Then, from (2.6), (2.7) and (2.8)
\[\frac{2 (f(z) - \phi(z))}{(1 - f(z))(1 - \phi(z))} \leq \frac{8C_3}{c_\gamma^2} \frac{1}{|y - z|^{1 + \epsilon}} \quad \forall z \in D \cap U(y, \sigma'_{\gamma}). \]

Thus, the function \(\psi(z) \) satisfies the following relation
\[\lim_{z \to \gamma} |z - \gamma| \psi(z) = 0 \] (2.9)
on every point $\gamma \in A_f \setminus \{\gamma_0\}$.

Similarly, for the point γ_0, using (2.5), we have

$$|\psi(z)| \leq C_4 |z - \gamma_0|^{1+\varepsilon} \quad \forall z \in D \cap U(\gamma_0, \sigma')$$

for some positive constants C_4 and σ'. In particular,

$$\lim_{z \to \gamma_0} \psi(z) = 0. \quad (2.11)$$

From also here

$$\lim_{z \to \gamma_0} |z - \gamma_0| \psi(z) = 0. \quad (2.12)$$

So, the function $\psi(z)$ satisfies the relation (2.9) on every point of finite set A_f. From the assertion (B) we have either $\psi(z) > 0$, $z \in D$ or $\psi(z) \equiv 0$. If $\psi(z) \equiv 0$, then the proof is finished. Assume that the relation $\psi(z) \equiv 0$ is not satisfied. If we take $z = r\gamma_0$ in (2.10), we obtain

$$\lim_{r \to 1} \frac{\psi(r\gamma_0)}{1 - r} = 0. \quad (2.12)$$

If ψ is not constant, (2.11) and (2.12) contradict with assertion (A) statement. Hence, $\psi \equiv 0$. This implies that $f(z) = \phi(z)$ on the disk. \[\square \]

Theorem 2.2 and Theorem 2.3 generalize the results in ([4]), where instead of the condition $\mu_0^2 > 1$ were taken $\mu_0^2 > 2$. Moreover, the part of the proof of Theorem 2.3 which is after (2.4) shows that $O(z - \gamma)^k$, $k \geq 2$ in Theorem 1.1 can be replaced by $o(z - \gamma)$.

References

