Fredholm Generalized Composition Operators on Weighted Hardy Spaces

Sunil Kumar Sharmaa, Rohit Gandhib, B.S.Komalc

aM.P. Govt. College, Amb, Distt. Una, H.P, India
bLovely Professional University, Phagwara, Punjab, India
cM.I.E.T, Kot Bhalwal, Jammu, India

Abstract. The main purpose of this paper is to study Fredholm generalized composition operators on weighted Hardy spaces.

1. Introduction

Let f be an analytic function on the open unit disk Ω in a complex plane \mathbb{C} given by $f(z) = \sum_{n=0}^{\infty} f_n z^n$, where $\{f_n\}_{n=0}^{\infty}$ is a sequence of complex numbers. Let $\{\beta_n\}$ be a sequence of positive real numbers with $\beta(0) = 1$. For $p \in [1, \infty)$, let $H^p(\beta) = \{f : f(z) = \sum_{n=0}^{\infty} f_n z^n, \sum_{n=0}^{\infty} |f_n|^p \beta^n < \infty\}$ be the space of formal series. Then $H^p(\beta)$ is a Banach space under the norm $\|f\|_p = \sum_{n=0}^{\infty} |f_n|^p \beta^n$. For $p = 2$, the space $H^2(\beta)$ is a Hilbert space under the inner product defined as $\langle f, g \rangle = \sum_{n=0}^{\infty} f_n \overline{g_n} \beta^n$, where $f(z) = \sum_{n=0}^{\infty} f_n z^n$ and $g(z) = \sum_{n=0}^{\infty} g_n z^n$. The weighted Hardy space is denoted by $H^2(\beta)$. Let $\phi(z) = e^{zk}$ and $\hat{\phi}(z) = \frac{e^{zk}}{\beta^k}$, clearly $\{\hat{\phi}_k\}_{k=0}^{\infty}$ is an orthogonal basis for $H^2(\beta)$.

If $\phi : \Omega \to \Omega$ is a mapping such that the transformation $C_\phi : H^2(\beta) \to H^2(\beta)$ defined by $C_\phi f = f \circ \phi$, for every $f \in H^2(\beta)$, is continuous, we shall call it a composition operator induced by ϕ. A generalized composition operator $C^d_\phi : H^2(\beta) \to H^2(\beta)$ is defined by $C^d_\phi f = f' \circ \phi_0$, where f' is the derivative of f. By the anti-differential operator D_a we shall mean the operator $D_a : H^2(\beta) \to H^2(\beta)$ defined by

$$D_a (\sum_{n=0}^{\infty} f_n z^n) = \sum_{n=0}^{\infty} \frac{f_n z^{n+1}}{n+1}$$
Also the Differential operator D on $H^2(\beta)$ is defined by

$$D(\sum_{n=0}^{\infty} f_n z^n) = \sum_{n=0}^{\infty} n f_n z^{n-1}$$

Composition operators on the spaces of analytic functions were studied by Cowen[1], Ryff[4], Schwartz[5] and Singh[8]. Properties of generalized composition operators on weighted Hardy spaces were mentioned in the papers of Sharma[6]-[7], further Fredholm composition and weighted composition operators can be seen in the papers of Kumar[2], Maccluer[3] and Takagi[9]. In this paper we initiate the study of Fredholm generalized composition operators on weighted Hardy spaces. The symbol $B(H)$ denote the Banach algebra of all bounded linear operators on H into itself and N_0 denote the set $\{0, 1, 2, 3, \ldots\}$.

2. Fredholm generalized composition operators on weighted Hardy spaces

The necessary and sufficient condition for generalized composition operators to be Fredholm is investigated in this section.

Theorem 2.1. Suppose $\phi : \Omega \to \Omega$ is a mapping such that $\{\phi^n : n \in N_0\}$ is an orthogonal family in $H^2(\beta)$. Then $ker C^d_\phi = span[\epsilon_0]$, where $\phi^n(z) = (\phi(z))^n$.

Proof. If $f = \alpha \epsilon_0$, then clearly $C^d_\phi f = 0$, therefore $f \in ker C^d_\phi$

Next, if $C^d_\phi f = 0$ then for $f = \sum_{n=0}^{\infty} f_n \epsilon_n$

We have

$$C^d_\phi f = \sum_{n=1}^{\infty} n f_n \phi^{n-1} = 0$$

this implies that

$$||C^d_\phi f||^2 = \sum_{n=1}^{\infty} |f_n|^2 \beta_n^2 ||\phi^{n-1}||^2 = 0$$

so that

$$|f_n| = 0 \quad \text{for every} \quad n \in N$$

Hence

$$f = \alpha \epsilon_0.$$

Theorem 2.2. Suppose $\phi : \Omega \to \Omega$ is a mapping such that $\{\phi^n : n \in N_0\}$ is an orthogonal family in $H^2(\beta)$. Then C^d_ϕ has closed range if and only if there exists $\epsilon > 0$ such that $n||\phi^{n-1}|| \geq \beta_n$ for all $n \in N$.

Proof. We first assume that C^d_ϕ has closed range. Then C^d_ϕ is bounded away from zero on $(ker C^d_\phi)^\perp$, therefore there exists $\epsilon > 0$ such that

$$||C^d_\phi \epsilon_n|| \geq \epsilon ||\epsilon_n|| \quad \text{for all} \quad n \in N$$

which implies that

$$n||\phi^{n-1}|| \geq \epsilon \beta_n \quad \text{for all} \quad n \in N$$
Conversely suppose that the conditions is true. Then for $f \in (\ker C^d_{\phi})^\perp$ we have

$$
\|C^d_{\phi} f\|^2 = \| \sum_{n=1}^{\infty} f_n C^d_{\phi} e_n \|^2 = \sum_{n=1}^{\infty} |f_n|^2 n^2 \|\phi^{n-1}\|^2 \geq c^2 \sum_{n=1}^{\infty} |f_n|^2 \beta_n^2 = c^2 \|f\|^2$$

for every $f \in (\ker C^d_{\phi})^\perp$.

Then C^d_{ϕ} is bounded away from zero on $(\ker C^d_{\phi})^\perp$. Consequently C^d_{ϕ} has closed range. \(\square\)

Theorem 2.3. Let $\phi : \Omega \to \Omega$ be such that $\{\phi^n : n \in \mathbb{N}_0\}$ is an orthogonal family in $H^2(\beta)$. Then C^d_{ϕ} is Fredholm if and only if there exists $\epsilon > 0$ such that

$$\frac{n\|\phi^{n-1}\|}{\beta_n} \geq \epsilon \text{ for every } n \in \mathbb{N}.$$

Proof. Suppose the condition is true. Then in view of the theorem (2.2) C^d_{ϕ} has closed range. Also in view of theorem (2.1), $\ker C^d_{\phi}$ is a finite dimensional.

We show that $\ker C^d_{\phi}$ is zero dimensional. Let $g \in \ker C^d_{\phi}$, then $C^d_{\phi} g = 0$.

Therefore, for $n \in \mathbb{N}_0$ we have

$$0 = \langle C^d_{\phi} g, e_n \rangle = \langle g, C^d_{\phi} e_n \rangle = n \langle g, \phi^{n-1} \rangle.$$

Hence $g = 0$, thus $\ker C^d_{\phi} = \{0\}$. Hence C^d_{ϕ} is Fredholm.

The converse is easy to prove in view of theorem (2.1) and theorem (2.2). \(\square\)

Example 2.4. Let $\phi : \Omega \to \Omega$ be defined by $\phi(z) = z$, let $\beta_n = n!$, then $\frac{n\|\phi^{n-1}\|}{\beta_n} = \frac{n\beta_{n-1}}{\beta_n} = 1$. Therefore C^d_{ϕ} has closed range. Now $\ker C^d_{\phi} = \text{span}\{e_0\}$ and $\ker C^e_{\phi} = \{0\}$.

Hence C^d_{ϕ} is Fredholm.

3. Fredholm Differential and Anti-Differential operators on weighted Hardy spaces

In this section we obtain adjoint of anti-differential operator on weighted Hardy spaces. The condition for anti-differential operator to be Fredholm is also investigated in this section.

Theorem 3.1. Let $f \in H^2(\beta)$. Then

$$D^*_a f = \sum_{n=0}^{\infty} \frac{f_{n+1} \beta_{n+1}}{(n+1) \beta_n} z^n$$

where D^*_a is the adjoint of D_a.

Proof. For any $n \in \mathbb{N}_0$

Consider

$$\langle D^*_a e_{n+1}, f \rangle = \langle e_{n+1}, D_a f \rangle = \frac{1}{n+1} \left(\frac{\beta_{n+1}}{\beta_n} \right)^2 \langle e_n, f \rangle \text{ for every } f \in H^2(\beta).$$

Therefore,

$$D^*_a e_{n+1} = \frac{1}{n+1} \left(\frac{\beta_{n+1}}{\beta_n} \right)^2 e_n \text{ and } D^*_a e_0 = 0.$$
Now for \(f = \sum_{n=0}^{\infty} f_n e_n \)

\[
D_a^* f = \sum_{n=0}^{\infty} f_n D_a^* e_n = \sum_{n=0}^{\infty} f_{n+1} \frac{1}{n+1} \left(\frac{\beta_{n+1}}{\beta_n} \right)^2 e_n
\]

Theorem 3.2. Let \(D_a \in B(H^2(\beta)) \). Then \(D_a \) is Fredholm operator if and only if \(\frac{\beta_n}{\beta_{n-1}} \geq \epsilon \) for every \(n \geq 1 \).

Proof. Clearly, for \(n \geq 1 \), \(D_a^* e_n = \frac{1}{n} \left(\frac{\beta_n}{\beta_{n-1}} \right)^2 e_{n-1} \).

Since

\[
D_a^* e_0 = 0, \text{ so } e_0 \in \ker D_a^*.
\]

We shall show that \(\ker D_a^* = \text{span}\{e_0\} \).

Let \(f \in \ker D_a^* \), then

\[
D_a^* f = D_a^* \sum_{n=0}^{\infty} f_n e_n = \sum_{n=1}^{\infty} f_n \frac{1}{n} \left(\frac{\beta_n}{\beta_{n-1}} \right)^2 e_{n-1} = 0
\]

which implies that \(f_n = 0 \), \(\forall \ n \geq 1 \).

Hence \(f = f_0 e_0 \).

Thus \(\ker D_a^* = \text{span}\{e_0\} = M \).

Next we will see that \(D_a^* \) is bounded away from zero on \((\ker D_a^*)^\perp \) if and only if \(\frac{\beta_n}{\beta_{n-1}} \geq \epsilon \) for every \(n \geq 1 \).

Let \(f \in (\ker D_a^*)^\perp = M^\perp \).

Consider

\[
||D_a^* f||^2 = \sum_{n=1}^{\infty} \left(\frac{\beta_n}{\beta_{n-1}} \right)^2 (f_n)^2 \geq \epsilon^2 \sum_{n=1}^{\infty} \beta_n^2 = \beta^2 ||f||^2
\]

This is true for every \(f \in (\ker D_a^*)^\perp \).

Hence \(D_a^* \) has closed range. Also \(\ker D_a = \{0\} \). For if we have \(D_a f = 0 \),

then \(\sum_{n=0}^{\infty} f_n D_a e_n = 0 \) implies that \(\sum_{n=0}^{\infty} f_{n+1} e_n = 0 \) or \(\frac{f_n}{n+1} = 0 \) for all \(n \in N_0 \).

This implies that \(f = 0 \).

Thus \(\ker D_a = \{0\} \). Hence \(D_a \) is Fredholm. The converse follows by reversing the arguments.

In the next theorem we characterize Fredholm differential operator.

Theorem 3.3. Let \(D \in B(H^2(\beta)) \). Then \(D \) is Fredholm operator if and only if \(\frac{\beta_{n+1}}{\beta_n} \geq \epsilon \) for every \(n \geq 1 \).

Proof. We first note that \(\ker D = \text{span}\{e_0\} \).

For if we suppose that \(D f = 0 \) for \(f \in H^2(\beta) \),

then for \(f = \sum_{n=0}^{\infty} f_n e_n \) we have

\[
D f = \sum_{n=1}^{\infty} f_{n+1} e_n = 0
\]
which implies that
\[\sum_{n=1}^{\infty} n^2|f_n|^2 \beta_{n-1}^2 = 0 \]
which further implies that \(f_n = 0 \) for all \(n = 1, 2, \ldots \).
Hence \(f = f_0e_0 \) so that \(f \in \text{span}\{e_0\} \).
Next we shall see that \(\ker D^* = \{0\} \). Suppose \(f \in \ker D^* \).
Then \(D^*f = 0 \) or
\[D^*(\sum_{n=0}^{\infty} f_n e_n) = \sum_{n=0}^{\infty} f_n(n+1)(\frac{\beta_n}{\beta_{n+1}})^2 e_{n+1} = 0 \]
which implies that \(f_n = 0 \) for all \(n = 0, 1, \ldots \). Thus \(f = 0 \).
Finally we can show that if the given condition is satisfied, then \(D \) has closed range.
Let \(f \in (\ker D)^\perp \) and \(f = \sum_{n=1}^{\infty} f_n e_n \).
Then
\[||Df||^2 = ||\sum_{n=1}^{\infty} f_n n e_{n-1}||^2 = \sum_{n=0}^{\infty} |f_{n+1}|^2(n+1)^2 \beta_n^2 = \sum_{n=0}^{\infty} |f_{n+1}|^2(n+1)^2 \frac{\beta_n^2}{\beta_{n+1}^2} \beta_{n+1}^2 \geq \epsilon^2 \sum_{n=0}^{\infty} |f_{n+1}|^2 \beta_{n+1}^2 = \epsilon^2 ||f||^2 \]
Thus \(D \) is bounded away from zero on \((\ker D)^\perp \) which proves that \(D \) has closed range. We can conclude that \(D \) is Fredholm.

Conversely suppose \(D \) is Fredholm. Then \(D \) has closed range. Therefore \(D \) is bounded away from zero on \((\ker D)^\perp \).
We can find \(\epsilon > 0 \) such that
\[||De_n|| \geq \epsilon ||e_n|| \quad \forall \ n = 1, 2, \ldots \]
or
\[\frac{n \beta_{n-1}}{\beta_n} \geq \epsilon \quad \forall \ n = 1, 2, \ldots \]
This complete the proof of the theorem. □

References