Filomat 32:7 (2018), 2553–2561 https://doi.org/10.2298/FIL1807553S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Classification of Closed Subspaces of Noncommutative L₂ Space Associated with a Factor of Type I

C. Shen^a, L. Jiang^a, X. Wei^a

^aSchool of Mathematics and Statistics, Beijing Institute of Technology

Abstract. In this article, we discuss the relationship between the projections of a factor \mathcal{M} of type *I* and the closed subspaces of the noncommutative L_2 space $L_2(\mathcal{M})$. Moreover, we consider the classification of these closed subspaces.

1. Introduction

The notation and terminology in this paper agrees, for the most part, with that in Jones[4] and Xu[13]. Here are a few specific items that are worthy of attention.

Let \mathscr{H} be a Hilbert space with an inner product \langle, \rangle , denote by $B(\mathscr{H})$ the set of all bounded linear mappings from \mathscr{H} to itself. If \mathscr{M} is a strongly(weakly) closed *-subalgebra of $B(\mathscr{H})$ containing the unit *I*, \mathscr{M} is called a von Neumann algebra. If \mathscr{B} is a subset of $B(\mathscr{H})$, we define its commutant as $\mathscr{B}' = \{x \in B(\mathscr{H}) : xy = yx \text{ for all } y \in \mathscr{B}\}$, and the double commutant $\mathscr{B}'' = (\mathscr{B}')'$. Let \mathscr{M} be a *-algebra on a Hilbert space \mathscr{H} with $I \in \mathscr{M}$, then \mathscr{M} is a von Neumann algebra if and only if $\mathscr{M} = \mathscr{M}''$.

We define the spectrum of x to be the set $\sigma(x) = \{\lambda \in \mathbb{C} | \lambda I - x \text{ is not invertible} \}$. An element $x \in \mathcal{M}$ is positive (denoted by $x \ge \theta$ where θ is the zero element in \mathcal{M}) if $x = x^*$ and $\sigma(x) \subset \mathbb{R}^+$, set $\mathcal{M}_+ = \{x \in \mathcal{M} | x \ge \theta\}$. If an element $p \in \mathcal{M}$ satisfies $p = p^* = p^2$, p is called a projection. We denote by $\mathcal{P}(\mathcal{M})$ the set of projections in \mathcal{M} . Two projections e and f in a von Neumann algebra \mathcal{M} are said to be equivalent relative to \mathcal{M} , denoted as $e \sim_{\mathcal{M}} f(\text{written } e \sim f \text{ for convenience })$, if there is a partial isometry $u \in \mathcal{M}$ such that $u^*u = e$ and $uu^* = f$. We say $e \le f$ if $e(\mathcal{H}) \subset f(\mathcal{H})$ and $e \le f$ if there is a projection $f_1 \in \mathcal{M}$ with $f_1 \le f$ and $e \sim f_1$. A projection $e \in \mathcal{M}$ is finite if the only projection f in \mathcal{M} such that $f \le e$ and $f \sim e$ is f = e and infinite if there is an $f \sim e$ with $f \leqq e$.

A factor on the Hilbert space \mathscr{H} is a von Neumann algebra \mathscr{M} on \mathscr{H} such that $\mathscr{M} \cap \mathscr{M}' = \mathbb{C}I$. Murray and von Neumann showed in [9] that if \mathscr{M} is a factor there is a unique "dimension function" $d : \mathscr{P}(\mathscr{M}) \to [0, \infty]$ subject to

1.
$$d(\theta) = 0;$$

2. $d(\sum_{i=1}^{\infty} e_i) = \sum_{i=1}^{\infty} d(e_i)$ if $e_i \perp e_j$ for $i \neq j$,

Keywords. noncommutative L₂ space, bimoduler property, projection, factor of type I

Received: 04 July 2017; Accepted: 27 September 2017

²⁰¹⁰ Mathematics Subject Classification. 46C07; 47L60, 47A67

Communicated by Dragan S. Djordjević

Research supported by NSFC (11371222)

Email addresses: shcc881111@163.com (C. Shen), jianglining@bit.edu.cn (L. Jiang), wxiaomin1509@163.com (X. Wei)

3. d(e) = d(f) if $e \sim f$.

It follows that $d(e) = d(f) \Rightarrow e \sim f$. A factor \mathscr{M} is said to be of type *I* if the range of *d* is $\{1, 2, \dots, n\}$ with $n = \infty$ possible – of type I_n if $n < \infty$ – of type I_∞ if $n = \infty$. It is fairly easy to prove that if \mathscr{M} is of type *I* it is like $B(\mathscr{H}) \otimes id$ on $\mathscr{H} \otimes \mathscr{K}$.

Definition 1.1. Let \mathscr{M} be a von Neumann algebra. A trace on \mathscr{M} is a mapping $\tau : \mathscr{M}_+ \to [0, \infty]$ satisfying:

- 1. for $x, y \in \mathcal{M}_+$, $\lambda \in \mathbb{R}_+$, $\tau(x + \lambda y) = \tau(x) + \lambda \tau(y)$;
- 2. for $x \in \mathcal{M}$, $\tau(x^*x) = \tau(xx^*)$.

In addition, a trace τ is said to be normal if $\sup_{\lambda} \tau(x_{\lambda}) = \tau(\sup_{\lambda} x_{\lambda})$ for any bounded monotonic increasing net $\{x_{\lambda}\}$ in \mathcal{M}_{+} ; finite if $\tau(1) < \infty$; semi-finite if for any $x \in \mathcal{M}_{+}$, there is a $y \in \mathcal{M}_{+}$ such that $y \leq x$ and $\tau(y) < \infty$; faithful if for $x \in \mathcal{M}_{+}$, $\tau(x) = 0 \Rightarrow x = \theta$.

In the next section, unless stated in particular, \mathcal{M} will always denote a von Neumann algebra on \mathcal{H} . If there is a normal faithful semi-finite trace τ on \mathcal{M} , we call (\mathcal{M}, τ) a noncommutative measure space.

For $x \in B(\mathcal{H})$, let $|x| = (x^*x)^{\frac{1}{2}}$, there is a unique partial isometry u from $(\ker x)^{\perp}$ onto R(x) such that x = u|x|. In addition, $u^*u = P_{(\ker x)^{\perp}}$ and $uu^* = P_{\overline{R(x)}}$. Let $r(x) = u^*u(l(x) = uu^*)$, then r(x)(l(x)) is called the right (left) support of x. If $x = x^*$, then r(x) = l(x), this common projection is called the support of x and denoted by s(x).

Definition 1.2. Let $S_+(\mathcal{M}) = \{x \in \mathcal{M}_+ : \tau(s(x)) < \infty\}$ and $S(\mathcal{M})$ be the linear span of $S_+(\mathcal{M})$. Usually, we use S_+ and S to represent $S_+(\mathcal{M})$ and $S(\mathcal{M})$ respectively.

An operator $x \in \mathcal{M}$ belongs to *S* if and only if there is an $e \in \mathcal{P}(\mathcal{M})$ satisfying $\tau(e) < \infty$ such that exe = x. $x \in S$ implies $|x|^2 \in S_+$, and so $\tau(|x|^2) < \infty$. Moreover, *S* is a strongly dense ideal of \mathcal{M} , and $x \in S$ implies $x^* \in S$.

Now let

$$||x||_2 = [\tau(|x|^2)]^{\frac{1}{2}}, x \in S.$$

Then $\|\cdot\|_2$ is a norm on *S*. We denote the completion of $(S, \|\cdot\|_2)$ by $L_2(\mathcal{M}, \tau)$ (shorthand for $L_2(\mathcal{M})$), it is a Hilbert space, and we call it noncommutative L_2 space.

In this paper, we classify the closed spaces of a noncommutative L_2 space associated with a factor of type I. If $e \in \mathcal{P}(\mathcal{M})$, $e\mathcal{M}e$ is a von Neumann subalgebra of \mathcal{M} , then $L_2(e\mathcal{M}e)$ is a closed subspace of $L_2(\mathcal{M})$. However, for any closed subspace of $L_2(\mathcal{M})$, is there a projection $e \in \mathcal{P}(\mathcal{M})$ such that this subspace can be expressed by $L_2(e\mathcal{M}e)$?

2. Main result

In this section, we study the relationship between the projections of a factor \mathcal{M} of type *I* and the closed subspaces of the noncommutative L_2 space $L_2(\mathcal{M})$.

Lemma 2.1. Let (\mathcal{M}, τ) be a noncommutative measure space, $e, f \in \mathcal{P}(\mathcal{M})$. If $e \sim f$, then $e\mathcal{M}e$ is *-isomorphism to $f\mathcal{M}f$.

Proof. Since $e \sim f$, there is a partial isometry $u \in \mathcal{M}$ such that $u^*u = e$ and $uu^* = f$. Let

$$\varphi : e\mathcal{M}e \to f\mathcal{M}f$$
$$exe \mapsto fuxu^*f.$$

We claim that φ is a *-isomorphism and left its proof to readers. \Box

Lemma 2.2. If (\mathcal{M}, τ) and (\mathcal{N}, υ) are noncommutative measure spaces and $\pi : \mathcal{M} \to \mathcal{N}$ is an isomorphism such that $\upsilon \circ \pi = \tau$, then π maps $S(\mathcal{M})$ onto $S(\mathcal{N})$.

Proof. For $x \in S(\mathcal{M})$, there is an $e \in \mathcal{P}(\mathcal{M})$ satisfying $\tau(e) < \infty$ such that exe = x. Since π is an isomorphism,

$$\pi(e)\pi(x)\pi(e) = \pi(exe) = \pi(x).$$

Moreover, $\pi(e)$ is a projection in \mathcal{N} and

$$v(\pi(e)) = \tau(e) < \infty.$$

Therefore, $x \in S(\mathcal{N})$, and π maps $S(\mathcal{M})$ to $S(\mathcal{N})$.

For any $y \in S(\mathcal{N}) \subseteq \mathcal{N}$, there exists an $f \in \mathcal{P}(\mathcal{N})$ satisfying $v(f) < \infty$ such that fyf = y and there is an $x \in \mathcal{M}$ such that $\pi(x) = y$. Then

$$\pi(\pi^{-1}(f)x\pi^{-1}(f)) = f\pi(x)f = fyf = y = \pi(x).$$

Since π is an injection, $\pi^{-1}(f)x\pi^{-1}(f) = x$. Besides, $\pi^{-1}(f)$ is a projection and $\tau(\pi^{-1}(f)) = v(f) < \infty$. Consequently, $x \in S(\mathcal{M})$, so π maps $S(\mathcal{M})$ onto $S(\mathcal{N})$. \Box

Proposition 2.3. Let (\mathcal{M}, τ) be a noncommutative measure space, $e, f \in \mathcal{P}(\mathcal{M})$. If $e \sim f$, then $L_2(e\mathcal{M}e)$ is unitary isomorphic to $L_2(f\mathcal{M}f)$.

Proof. Let φ be the isomorphism from *eMe* to *fMf*, then φ maps S(eMe) onto S(fMf). For any $x \in M$,

$$\|\varphi(exe)\|_{2}^{2} = \|fuxu^{*}f\|_{2}^{2} = \tau(fux^{*}u^{*}f \cdot fuxu^{*}f)$$

= $\tau(uex^{*}exeu^{*}) = \tau(ex^{*}exeu^{*}u) = \tau(ex^{*}exe) = \|exe\|_{2}^{2}.$

Since $e\mathscr{M}e$ is $\|\cdot\|_2$ -norm dense in $L_2(e\mathscr{M}e)$, $L_2(e\mathscr{M}e)$ is unitary isomorphic to $L_2(f\mathscr{M}f)$. \Box

Proposition 2.3 shows that $e \sim f \Rightarrow L_2(e\mathcal{M}e) \cong L_2(f\mathcal{M}f)$. Thus, it is natural to ask whether the inverse proposition is true.

As we have known, for $e \in \mathcal{P}(\mathcal{M})$, $L_2(e\mathcal{M}e) \subseteq L_2(\mathcal{M})$. However, the closed subspaces of $L_2(\mathcal{M})$ can not always expressed as $L_2(e\mathcal{M}e)$ for any $e \in \mathcal{P}(\mathcal{M})$. Indeed, let $\mathcal{M} = M_n(\mathbb{C})$ and τ be a normalized trace on \mathcal{M} , that is $\tau(I) = 1$. Since all the norms are equivalent on a finite dimensional normed linear space, $L_2(\mathcal{M}) = M_n(\mathbb{C})$. There are only n + 1 projections in \mathcal{M} up to projection equivalent, but $L_2(\mathcal{M})$ has at least $n^2 + 1$ closed subspaces up to isomorphism. Thus, there must be some closed subspaces of $L_2(\mathcal{M})$ which can not be expressed as $L_2(e\mathcal{M}e)$ for any $e \in \mathcal{P}(\mathcal{M})$. Then we will ask that under which conditions the closed subspace of $L_2(\mathcal{M})$ can be expressed as $L_2(e\mathcal{M}e)$ for some $e \in \mathcal{P}(\mathcal{M})$.

In this paper, we answer these questions under the case of factor of type I_n and factor of type I_{∞} . To answer the two questions, we need the following definition.

Definition 2.4. Let (\mathcal{M}, τ) be a noncommutative measure space and E be the orthogonal projection from $L_2(\mathcal{M})$ onto its closed subspace \mathcal{L} . E is called a projection with bimodule property if $E(y_1xy_2) = y_1E(x)y_2$ and $E(x^*) = E(x)^*$ for any $x \in L_2(\mathcal{M})$, $y_1, y_2 \in \mathcal{L}$.

First of all, we discuss the above two questions in the case of type I_n -factor.

Lemma 2.5. [11] If \mathcal{A} is a finite dimensional C*-algebra, then \mathcal{A} can be decomposed into the direct sum $\mathcal{A} = \sum_{k=1}^{n} \bigoplus \mathcal{A}_k$, where each \mathcal{A}_k is isomorphic to the algebra of $n_k \times n_k$ matrices.

Theorem 2.6. Let $\mathcal{M} = M_n(\mathbb{C})$ and τ be a normalized trace on \mathcal{M} . If \mathcal{L} is a closed subspace of $L_2(\mathcal{M})$, then $E: L_2(\mathcal{M}) \to \mathcal{L}$ is a projection with bimodule property if and only if $\mathcal{L} = M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C}) \oplus O_{l \times l} (1 \le k \le n, l \ge 0 \text{ and } \sum_{i=1}^k n_i + l = n)$. Furthermore, the decomposition is unique in the sense that if $\mathcal{L}_1 = M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C})$, then $\mathcal{L}_1 \cong \mathcal{L}_2 \Leftrightarrow s = t$ and there is a $\sigma \in S_t$ such that $n_i = m_{\sigma(i)}(1 \le i \le s)$, where S_t is the permutation group on $\{1, 2, \cdots, t\}$.

Proof. If
$$\mathcal{L} = \begin{bmatrix} B_{11} & & \\ & \ddots & \\ & & B_{kk} \\ & & & 0 \end{bmatrix}$$
 where $B_{ii} \in M_{n_i}(\mathbb{C})$, 0 is a null matrix of order $l, 1 \le k \le n, l \ge 0$ and

 $\sum_{i=1}^{k} n_i + l = n$. Then for $A \in M_n(\mathbb{C})$, A can be written as the form $[A_{ij}]$ where $A_{ij} \in M_{n_i \times n_j}(\mathbb{C})(1 \le i, j \le k+1, n_{k+1} = l)$ such that

$$E(A) = \begin{bmatrix} A_{11} & & \\ & \ddots & \\ & & A_{kk} & \\ & & & 0 \end{bmatrix}.$$

For any $A = [A_{ij}] \in M_n(\mathbb{C}), B \in \mathcal{L}$,

$$E(A^*) = E(A)^*$$

$$E(AB) = E\left(\begin{bmatrix} A_{11} & \cdots & A_{1k} & A_{1k+1} \\ \vdots & \vdots & \vdots \\ A_{k1} & \cdots & A_{kk} & A_{kk+1} \\ A_{k+11} & \cdots & A_{k+1k} & A_{k+1k+1} \end{bmatrix} \begin{bmatrix} B_{11} & & & \\ & \ddots & & \\ & & B_{kk} & & \\ & & & 0 \end{bmatrix} \right)$$
$$= E\left(\begin{bmatrix} A_{11}B_{11} & A_{12}B_{22} & \cdots & A_{1k}B_{kk} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ A_{k1}B_{11} & A_{k2}B_{22} & \cdots & A_{kk}B_{kk} & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix} \right)$$
$$= E(A)B.$$

Similarly, E(BA) = BE(A). Thus, *E* is a projection with bimodule property.

Conversely, if $E : L_2(\mathcal{M}) \to \mathcal{L}$ is a projection with bimodule property, then $(\mathcal{L}, \|\cdot\|)$ is a C*-algebra. Indeed, for any $x, y \in \mathcal{L}$, E(x) = x, E(y) = y, then

$$xy = E(x)y = E(xy) \in \mathcal{L},$$

$$x^* = E(x)^* = E(x^*) \in \mathcal{L},$$

$$||xy|| \le ||x|| \cdot ||y||,$$

$$||x^*x|| = ||x||^2.$$

Thus $(\mathcal{L}, \|\cdot\|)$ is a C*-algebra with dim $\mathcal{L} < \infty$. Since all the norms are equivalent on a finite dimensional space, \mathcal{L} can be written as $M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C}) \oplus O_{l \times l}$ for some $1 \le k \le n$ and $\sum_{i=1}^k n_i + l = n$.

Without loss of generality, we can assume $n_1 \le n_2 \le \cdots \le n_s$ and $m_1 \le m_2 \le \cdots \le m_t$. " \Leftarrow " If s = t and $m_i = n_i (1 \le i \le s)$, then $\mathcal{L}_1 = \mathcal{L}_2$.

" \Rightarrow " If $\mathcal{L}_1 \cong \mathcal{L}_2$, we can show s = t and $m_i = n_i (1 \le i \le s)$ by induction. \Box

Definition 2.7. If $\mathcal{L} = M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_s}(\mathbb{C})$, where $n_1 \leq n_2 \leq \cdots \leq n_s$ and $\sum_{i=1}^k n_i \leq n$, we call \mathcal{L} a type (n_1, n_2, \cdots, n_s) subspace of $M_n(\mathbb{C})$.

The answers of the two questions in the case of type I_n -factor is in the following.

Corollary 2.8. Suppose \mathscr{M} is a factor of type I_m , that is $\mathscr{M} \cong M_m(\mathbb{C}) \otimes id_{\mathscr{H}}$ where \mathscr{H} is a finite dimensional Hilbert space.

- 1. For $e, f \in \mathcal{P}(\mathcal{M}), L_2(e\mathcal{M}e) \cong L_2(f\mathcal{M}f) \Leftrightarrow e \sim f;$
- 2. For a closed subspace \mathcal{L} of $L_2(\mathcal{M})$, there is an $e \in \mathscr{P}(\mathcal{M})$ (that is $e = e_0 \otimes id_{\mathscr{H}}$ where $e_0 \in \mathscr{P}(M_m(\mathbb{C}))$) such that $\mathcal{L} \cong L_2(e\mathscr{M}e) \Leftrightarrow \mathcal{L} = \mathcal{L}_0 \otimes I_{\mathscr{H}}$ where \mathcal{L}_0 is a type $(m_1)(m_1 \leq m)$ subspace of $M_m(\mathbb{C})$.

In particular, if $\mathcal{M} = M_n(\mathbb{C})$, then for $e, f \in \mathcal{P}(\mathcal{M})$, $L_2(e\mathcal{M}e) \cong L_2(f\mathcal{M}f) \Leftrightarrow e \sim f$; for a closed subspace \mathcal{L} of $L_2(\mathcal{M})$, there is an $e \in \mathcal{P}(\mathcal{M})$ such that $\mathcal{L} \cong L_2(e\mathcal{M}e) \Leftrightarrow \mathcal{L}$ is a type $(n_1)(n_1 \leq n)$ subspace of $L_2(\mathcal{M})$.

We now describe an example to indicate how to calculate the number of pairwise inequivalent subspaces of type (n_1, n_2, \cdots, n_s) .

Example 2.9. Let \mathcal{L} be a type (n_1, n_2, \dots, n_s) nonzero subspace of $M_n(\mathbb{C})$. We can show the following conclusion by induction.

- 1. If s = 1, \mathcal{L} is isomorphic to $L_2(e\mathcal{M}e)$ for some $e \in \mathcal{P}(\mathcal{M})$, the number of such subspaces is n in a sense of isometric *-isomorphism.
- 2. If s = 2, \mathcal{L} is isomorphic to $L_2(e\mathcal{M}e) \oplus L_2(f\mathcal{M}f)$ for some $e, f \in \mathcal{P}(\mathcal{M})$, the number of such subspaces up to isometric *-isomorphism is $\begin{cases} k^2, & \text{if } n = 2k; \\ k(k+1), & \text{if } n = 2k + 1. \end{cases}$ 3. If s = 3, for a fixed m, the number of type (m, n_2, n_3) subspaces up to isometric *-isomorphism is
 - - k^2 , if n = 2k + 3m 2;

$$k(k+1)$$
, if $n = 2k + 3m - 1$

4. For any s > 3, and fixed n_1, n_2, \dots, n_{s-2} , the number of type $(n_1, n_2, \dots, n_{s-2}, n_{s-1}, n_s)$ subspaces up to isometric

*-isomorphism is
$$\begin{cases} k^2, & \text{if } n = 2k + 3n_{s-2} + \sum_{i=1}^{s} n_i - 2; \\ k(k+1), & \text{if } n = 2k + 3n_{s-2} + \sum_{i=1}^{s-3} n_i - 1. \end{cases}$$

Proof. 1. If $\mathcal{L} = M_{n_1}(\mathbb{C})$, let $e = e_{11} + \cdots + e_{n_1n_1}$ where e_{ii} is a matrix unit. Then $\mathcal{L} \cong L_2(e\mathcal{M}e)$ and n_1 may be 1, 2, \cdots , *n*. Therefore, the number of type (*n*₁) subspaces is *n*.

If $\mathcal{L} = M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C})$, let $e = e_{11} + \cdots + e_{n_1n_1}$, $f = e_{(n_1+1)(n_1+1)} + \cdots + e_{(n_1+n_2)(n_1+n_2)}$ where e_{ii} is a matrix unit. Then $\mathcal{L} \cong L_2(e\mathcal{M}e) \oplus L_2(f\mathcal{M}f)$ and (n_1, n_2) may be

(k, k) (if n = 2k) or (k, k), (k, k + 1) (if n = 2k + 1). Therefore, the number of type (n_1, n_2) subspaces is

$$\begin{cases} (n-1) + (n-3) + \dots + 1 = k^2, & \text{if } n = 2k; \\ (n-1) + (n-3) + \dots + 2 = k(k+1), & \text{if } n = 2k+1 \end{cases}$$

2. If s = 3, $n_1 = m$, n = 2k + 3m - 2, \mathcal{L} may be type

$$(m, m, m),$$
 $(m, m, m + 1),$ $\cdots,$ $(m, m, n - 2m),$
 $(m, m + 1, m + 1),$ $(m, m + 1, m + 2),$ $\cdots,$ $(m, m + 1, n - 2m - 1),$
 \vdots
 $(m, m + k - 1, m + k - 1)$

If s = 3, $n_1 = m$, n = 2k + 3m - 1, \mathcal{L} may be type

$$(m, m, m),$$
 $(m, m, m + 1),$ $\cdots,$ $(m, m, n - 2m),$
 $(m, m + 1, m + 1),$ $(m, m + 1, m + 2),$ $\cdots,$ $(m, m + 1, n - 2m - 1),$
 \vdots
 $(m, m + k - 1, m + k - 1),$ $(m, m + k - 1, m + k)$

Therefore, the number of type (m, n_2, n_3) subspaces is

$$\begin{cases} (n-3m+1) + (n-3m-1) + \dots + 1 = k^2, & \text{if } n = 2k+3 \times m-2; \\ (n-3m+1) + (n-3m-1) + \dots + 2 = k(k+1), & \text{if } n = 2k+3 \times m-1. \end{cases}$$

3. If $s > 3, n = 2k + 3n_{s-2} + \sum_{i=1}^{s-3} n_i - 2$ for fixed $n_1, n_2, \dots, n_{s-2}, \mathcal{L}$ may be type $(n_1, \dots, n_{s-2}, n_{s-2}, n_{s-2}), \dots, (n_1, \dots, n_{s-2}, n_{s-2}, n - \sum_{i=1}^{s-2} n_i - n_{s-2}),$ $(n_1, \dots, n_{s-2}, n_{s-2}, n_{s-2} + 1), \dots, (n_1, \dots, n_{s-2}, n_{s-2} + 1, n - \sum_{i=1}^{s-2} n_i - n_{s-2} - 1),$:

 $(n_1, \dots, n_{s-2}, n_{s-2} + k - 1, n_{s-2} + k - 1).$ If $s > 3, n = 2k + 3n_{s-2} + \sum_{i=1}^{s-3} n_i - 1$ for fixed $n_1, n_2, \dots, n_{s-2}, \mathcal{L}$ may be type

$$(n_1, \dots, n_{s-2}, n_{s-2}, n_{s-2}), \dots, (n_1, \dots, n_{s-2}, n_{s-2}, n - \sum_{i=1}^{s-2} n_i - n_{s-2}),$$

 $(n_1, \dots, n_{s-2}, n_{s-2}, n_{s-2} + 1), \dots, (n_1, \dots, n_{s-2}, n_{s-2} + 1, n - \sum_{i=1}^{s-2} n_i - n_{s-2} - 1),$
:

 $(n_1, \dots, n_{s-2}, n_{s-2} + k - 1, n_{s-2} + k - 1), (n_1, \dots, n_{s-2}, n_{s-2} + k - 1, n_{s-2} + k).$ Therefore, the number of type (m, n_2, n_3) subspaces is

$$\begin{cases} (n - \sum_{\substack{i=1 \ s-2}}^{s-2} n_i - n_{s-2} - n_{s-2} + 1) + \dots + 1 = k^2, & \text{if } n = 2k + 3n_{s-2} + \sum_{\substack{i=1 \ s-3}}^{s-3} n_i - 2; \\ (n - \sum_{i=1}^{s-2} n_i - n_{s-2} - n_{s-2} + 1) + \dots + 2 = k(k+1), & \text{if } n = 2k + 3n_{s-2} + \sum_{i=1}^{s-3} n_i - 1. \end{cases}$$

Next, we discuss the case of type I_{∞} -factor.

Suppose that $\mathscr{M} = B(\mathscr{H})$ where \mathscr{H} is a separable infinite dimensional Hilbert space and $\{\xi_i\}_{i=1}^{\infty}$ is an orthonormal basis of \mathscr{H} . We define the trace τ on \mathscr{M} to be $\tau(x) = \sum_{i=1}^{\infty} \langle x\xi_i, \xi_i \rangle$. Then $S(\mathscr{M}) = F(\mathscr{H})$, which is the class of all finite rank operators and $L_2(\mathscr{M}) = L^2(\mathscr{H})$, which is the class of all Hilbert-Schmidt operators on \mathscr{H} . Moreover, for $e \in \mathscr{P}(\mathscr{M})$, $L_2(e\mathscr{M}e) = L^2(e\mathscr{H})$.

In the following, we list several basic properties of $L^2(\mathcal{H})$ that we shall use, often without comment, in the sequel.

1. $||x|| \le ||x||_2, \forall x \in L^2(\mathscr{H});$

2. $L^{2}(\mathcal{H})$ is a self-adjoint ideal of $B(\mathcal{H})$ and a normed *-algebra;

3. $\|\xi \otimes \eta\|_2 = \|\xi\|\|\eta\| = \|\xi \otimes \eta\|, \ \forall \xi, \eta \in \mathcal{H};$

4. $F(\mathcal{H})$ is dense in $L^2(\mathcal{H})$ in the norm $\|\cdot\|_2$ and $F(\mathcal{H})$ is linearly spanned by the rank-one projections;

Lemma 2.10. Let $\mathcal{M} = B(\mathcal{H})$ with \mathcal{H} a separable infinite dimensional Hilbert space, $e, f \in \mathcal{P}(\mathcal{H})$. If $L^2(e\mathcal{H}) \cong L^2(f\mathcal{H})$, then $e \sim f$.

Proof. If $L^2(e\mathcal{H}) \cong L^2(f\mathcal{H})$, since \mathcal{H} is separable, dim $(L^2(e\mathcal{H})) = \dim(L^2(f\mathcal{H})) = n$ with $n = \infty$ possible. Let

$$d: \mathscr{P}(\mathscr{M}) \to [0, \infty]$$

be the dimension function. Then $d(e) = \dim(e\mathcal{H})$.

- 1. If $n = \infty$, then *e*, *f* are infinite projections. Therefore, $d(e) = d(f) = \infty$, that is $e \sim f$.
- 2. If $n < \infty$, then dim $(e\mathcal{H}) = \dim(f\mathcal{H}) < \infty$. Therefore $d(e) = d(f) = \dim(e\mathcal{H})$, thus $e \sim f$.

Theorem 2.11. Let \mathscr{H} be a separable infinite dimensional Hilbert space, $e_i, f_i \in \mathscr{P}(\mathscr{H})$. If $\mathcal{L}_1 = \sum_{i=1}^n \oplus L^2(e_i \mathscr{H})$ with $e_i \perp e_j \text{ for } i \neq j, \ \mathcal{L}_2 = \sum_{j=1}^m \bigoplus L^2(f_j \mathscr{H}) \text{ with } f_i \perp f_j \text{ for } i \neq j. \text{ Then } \mathcal{L}_1 \cong \mathcal{L}_2 \Leftrightarrow m = n \text{ and there is a } \sigma \in S_n \text{ such that } e_i \sim f_{\sigma(i)} (1 \leq i \leq n) \text{ with } m, n = \infty \text{ possible.}$

Proof. We may suppose $n = \infty$, $e_i \leq e_{i+1}$, $f_j \leq f_{i+1}$. " \leftarrow " If $m = n = \infty$ and $e_i \sim f_i$, then $L^2(e_i \mathscr{H}) \cong L^2(f_i \mathscr{H})$. Let φ_i be the isomorphic mapping from $L^2(e_i \mathscr{H})$ onto $L^2(f_i \mathscr{H})$ and $\varphi = \sum_{i=1}^{\infty} \bigoplus \varphi_i$, then φ is an isomorphism from \mathcal{L}_1 onto \mathcal{L}_2 . " \Rightarrow " If φ is the isomorphic mapping from \mathcal{L}_1 onto \mathcal{L}_2 . Let $\varphi_i = \varphi|_{L^2(e_i \mathscr{H})}$, then φ_i is an isomorphic mapping from $L^2(e_i \mathcal{H})$ onto $L^2(f_i \mathcal{H})$. Therefore, $e_i \sim f_i$.

Theorem 2.12. Let \mathscr{H} be a separable infinite dimensional Hilbert space and \mathscr{L} be a closed subspace of $L^2(\mathscr{H})$, then $E: L^2(\mathscr{H}) \to \mathcal{L}$ is an orthogonal projection with bimodule property if and only if there are $\{e_i\} \subset \mathscr{P}(\mathscr{M})$ satisfying $e_i \perp e_j$ for $i \neq j$ such that $\mathcal{L} = \sum_{i=1}^n \oplus L^2(e_i \mathscr{H})$ with $n = \infty$ possible.

Proof. The proof of sufficiency can be divided into three steps.

Case a. $\mathcal{L} = L^2(e\mathcal{H})$ for some $e \in \mathcal{P}(\mathcal{H})$ and E is the orthogonal projection from $L^2(\mathcal{H})$ onto $L^2(e\mathcal{H})$ such that E(x) = exe for all $x \in L^2(\mathcal{H})$. Then for any $x \in L^2(\mathcal{H})$, $y = eye \in L^2(e\mathcal{H})$,

$$E(x^*) = ex^*e = (exe)^* = E(x)^*,$$
$$E(xy) = exye = exe \cdot eye = E(x)y,$$
$$E(yx) = eyxe = eye \cdot exe = yE(x).$$

Hence, *E* is a projection with bimodule property.

Case b. $\mathcal{L} = \sum_{i=1}^{n} \oplus L^2(e_i \mathscr{H})$ for some $e_i \in \mathscr{P}(\mathscr{M})$ such that $e_i \perp e_j$ when $i \neq j$. Let *E* be the orthogonal

projection from $L^{2}(\mathcal{H})$ onto $\sum_{i=1}^{n} \oplus L^{2}(e_{i}\mathcal{H})$ such that for any $x \in L^{2}(\mathcal{H})$, $E(x) = \begin{bmatrix} e_{1}xe_{1} & & \\ & \ddots & \\ & & e_{n}xe_{n} \end{bmatrix}$. The proof of bimodule property of *E* is similar to the proof of sufficiency of Theorem 2.7.

Case c. $\mathcal{L} = \sum_{i=1}^{\infty} \oplus L^2(e_i \mathscr{H})$ for some $e_i \in \mathscr{P}(\mathscr{M})$ such that $e_i \perp e_j$ when $i \neq j$. For $x \in L^2(\mathscr{H})$, let $E(x) = \sum_{i=1}^{\infty} \oplus e_i x e_i$, then *E* is the orthogonal projection from $L^2(\mathscr{H})$ onto \mathcal{L} . Indeed, for $x \in L^2(\mathscr{H})$, $e_i x e_i \in L^2(e_i \mathscr{H})$. Let F_i be an orthonormal basis in $e_i \mathcal{H}$, then

$$\|e_i x e_i\|_2^2 = \sum_{\xi_j^{(i)} \in F_i} \langle e_i x e_i \xi_j^{(i)}, \xi_j^{(i)} \rangle = \sum_{\xi_j^{(i)} \in F_i} \langle x \xi_j^{(i)}, \xi_j^{(i)} \rangle.$$

2559

The set $\{\xi_j^{(i)} | \xi_j^{(i)} \in F_i, i = 1, 2, \dots\}$ is an orthonormal set in \mathscr{H} , it is contained in an orthonormal basis, denote this orthonormal basis by *F*. Then, $\sum_{i=1}^{\infty} ||e_i x e_i||_2^2 \leq \sum_{\xi \in F} \langle x \xi, \xi \rangle = ||x||_2^2 < \infty$. Therefore, $\sum_{i=1}^{\infty} \oplus e_i x e_i \in \mathcal{L}$. For any $y = \sum_{i=1}^{\infty} \oplus y_i \in \mathcal{L}$, where $y_i \in L^2(e_i \mathscr{H})$, then $y_i = e_i y_i e_i$. Since $e_i \perp e_j$ for $i \neq j$,

$$y = \sum_{i=1}^{\infty} \oplus e_i y_i e_i = \left(\sum_{i=1}^{\infty} \oplus e_i\right) \cdot \left(\sum_{i=1}^{\infty} \oplus y_i\right) \cdot \left(\sum_{i=1}^{\infty} \oplus e_i\right)$$
$$= \left(\sum_{i=1}^{\infty} \oplus e_i\right) y\left(\sum_{i=1}^{\infty} \oplus e_i\right) = \sum_{i=1}^{\infty} \oplus e_i y e_i.$$
(1)

For any $x \in L^2(\mathcal{H})$, $y = \sum_{i=1}^{\infty} \bigoplus e_i y e_i \in \mathcal{L}$,

$$E(x^{*}) = \sum_{i=1}^{\infty} \oplus e_{i}x^{*}e_{i} = \sum_{i=1}^{\infty} \oplus (e_{i}xe_{i})^{*} = (\sum_{i=1}^{\infty} \oplus e_{i}xe_{i})^{*} = E(x)^{*}$$
$$E(xy) = \sum_{i=1}^{\infty} e_{i}xye_{i} = \sum_{i=1}^{\infty} e_{i}x(\sum_{j=1}^{\infty} e_{j}ye_{j})e_{i} = \sum_{i=1}^{\infty} e_{i}xe_{i}ye_{i},$$
$$E(x)y = (\sum_{i=1}^{\infty} e_{i}xe_{i})(\sum_{j=1}^{\infty} e_{j}ye_{j}) = \sum_{i=1}^{\infty} e_{i}xe_{i}ye_{i}.$$

Therefore, E(xy) = E(x)y. Similarly, we can get E(yx) = yE(x).

"Necessity" If *E* is an orthogonal projection from $L^{2}(\mathscr{H})$ onto its closed subspace \mathcal{L} , then $||\mathcal{E}||_{2} \leq 1$. For $\xi, \eta \in \mathscr{H}$, $||\mathcal{E}(\xi \otimes \eta)|| \leq ||\mathcal{E}(\xi \otimes \eta)||_{2} \leq ||\mathcal{E}||_{2}||\xi \otimes \eta||_{2} \leq ||\xi \otimes \eta||_{2} = ||\xi \otimes \eta||$, then $\mathcal{E}|_{F(\mathscr{H})}$ is a projection with $||\mathcal{E}|| \leq 1$. Since $F(\mathscr{H})$ is dense in $K(\mathscr{H})$ in the norm $||\cdot||$, $\mathcal{E}|_{F(\mathscr{H})}$ has a unique norm topology extension (denoted \widetilde{E}) to $K(\mathscr{H})$ and $||\widetilde{E}|| \leq 1$. Therefore, \widetilde{E} is a projection from $K(\mathscr{H})$ onto $\overline{\mathcal{L}}^{\|\cdot\|}$ with bimodule property. Hence, $\overline{\mathcal{L}}^{\|\cdot\|}$ is a C*-subalgebra of $K(\mathscr{H})$. Then $\overline{\mathcal{L}}^{\|\cdot\|} \cong \sum_{\varphi \in P(\overline{\mathcal{L}}^{\|\cdot\|})} \oplus \mathcal{B}(\mathscr{H}_{\varphi})$, where $P(\overline{\mathcal{L}}^{\|\cdot\|})$ is the set of extreme point of the state space on $\overline{\mathcal{L}}^{\|\cdot\|}$. Since \mathscr{H} is separable, so is $K(\mathscr{H})$. Thus the number of φ in $P(\overline{\mathcal{L}}^{\|\cdot\|})$ is countable. Therefore, $\overline{\mathcal{L}}^{\|\cdot\|} \cong \sum_{i=1}^{n} \oplus \mathcal{B}(\mathscr{H}_{\varphi_{i}})$ where $\varphi_{i} \in P(\overline{\mathcal{L}}^{\|\cdot\|})$ with $n = \infty$ possible. Let Φ be the isometric *-isomorphism from $\overline{\mathcal{L}}^{\|\cdot\|}$ onto $\sum_{i=1}^{n} \oplus \mathcal{B}(\mathscr{H}_{\varphi_{i}})$ and I_{i} be the identity of $\mathcal{B}(\mathscr{H}_{\varphi_{i}})$. Set $e_{i} = \Phi^{-1}(I_{i})$, then e_{i} is a projection in $\mathcal{B}(\mathscr{H})$. We claim $\mathcal{L} \cong \sum_{i=1}^{n} \oplus \mathcal{L}^{2}(e_{i}\mathscr{H})$.

Indeed, for any $x \in F(\mathcal{H})$, $E(x) = \sum_{i=1}^{n} \oplus e_i x e_i$. Since x is the linear combination of rank-one projections, we may suppose $x = \xi \otimes \xi$, where $\xi \in \mathcal{H}$ and $\|\xi\| = 1$. Then $e_i x e_i = e_i \xi \otimes e_i \xi$ is a rank-one projection or 0, that is $e_i x e_i \in F(e_i \mathcal{H})$. Therefore, $E(F(\mathcal{H})) \subset (\sum_{i=1}^{n} \oplus F(e_i \mathcal{H}), \|\cdot\|_2) \subset \sum_{i=1}^{n} \oplus L^2(e_i \mathcal{H})$. Hence, $\mathcal{L} = \overline{E(F(\mathcal{H}))}^{\|\cdot\|_2} \subset \sum_{i=1}^{n} \oplus L^2(e_i \mathcal{H})$.

Conversely, for any $x \in \sum_{i=1}^{n} \oplus L^{2}(e_{i}\mathscr{H})$. If $n = 1, x \in L^{2}(e_{1}\mathscr{H})$, there is a sequence $\{x_{n}\} \subset F(e_{1}\mathscr{H}) \subset F(\mathscr{H})$, such that $E(x_{n}) = x_{n} \xrightarrow{\|\cdot\|_{2}} x$. Since E is $\|\cdot\|_{2}$ -continuous, $x \in \mathcal{L}$. Therefore, $L^{2}(e_{1}\mathscr{H}) \subset \mathcal{L}$. If $n < \infty, x = \sum_{i=1}^{k} \oplus x_{i}$ where $x_{i} \in L^{2}(e_{i}\mathscr{H})$ with $k < \infty$, then for any $1 \le i \le k$, there is a sequence $\{x_{i}^{(n)}\} \subset F(e_{i}\mathscr{H}) \subset F(\mathscr{H})$, such that

$$E(x_i^{(n)}) = x_i^{(n)} \xrightarrow{\|\cdot\|_2} x_i. \text{ Since } k < \infty \text{ and } E \text{ is } \|\cdot\|_2 - \text{continuous, } x \in \mathcal{L}. \text{ Therefore, } \sum_{i=1}^k \oplus L^2(e_i\mathscr{H}) \subset \mathcal{L}. \text{ If } n = \infty,$$

$$\sum_{i=1}^\infty \oplus L^2(e_i\mathscr{H}) = \lim_{k \to \infty} \sum_{i=1}^k \oplus L^2(e_i\mathscr{H}). \text{ By the continuity of } E, \sum_{i=1}^\infty \oplus L^2(e_i\mathscr{H}) \subset \mathcal{L}. \square$$

References

- [1] N. P. Brown, N. Ozawa, C*-algebras and finite-dimensional approximations, American Mathmatical Society, 2008.
- [2] J. B. Conway, A course in operator theory, American Mathmatical Society, 2000.
- [3] R. G. Douglas, Banach algebra techniques in operator theory, Springer, Berlin, 1998.
- [4] V. F. R. Jones, Subfactors and knots, American Mathmatical Society, 1991.
- [5] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras (Volume I: Elementary Theory), Academic Press, San Diego, California, 1983.
- [6] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras(Volume II: Advanced Theory), Academic Press. INC, London, 1986.
- [7] B.R. Li, Introduction to operator algebras, World Scientific Publishing Co. Pte. Ltd., Singapore, 1992.
- [8] G. J. Murphy, C*-algebras and operator theory, Academic Press, London, 1990.
- [9] F. Murray, I. von Neumann, On rings of operators, Ann. Math. 37 (1936) 116-229.
- [10] I. Segal, Irreducible representations of operator algebras, Bulletin of the American Mathematical Society 53 (2) (1947) 73–88.
- [11] M. Takesaki, Theory of operator algebra I, Science Press, Beijing, 2002.
- [12] L. Wang, On the properties of some sets of von Neumann algebras under perturbation. Sci China Math, 58 (8)(2015) 1707–1714.
- [13] Q. H. Xu, N. B. Turdebek, Z. Q. Chen, Introduction to operator algebras and noncommutative L^p spaces, Science Press, Beijing, 2010 (in Chinese).