The Classification of Closed Subspaces of Noncommutative L_{2} Space Associated with a Factor of Type I

C. Shen ${ }^{\text {a }}$, L. Jiang ${ }^{\text {a }}$, X. Wei ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Beijing Institute of Technology

Abstract

In this article, we discuss the relationship between the projections of a factor \mathscr{M} of type I and the closed subspaces of the noncommutative L_{2} space $L_{2}(\mathscr{M})$. Moreover, we consider the classification of these closed subspaces.

1. Introduction

The notation and terminology in this paper agrees, for the most part, with that in Jones[4] and $\mathrm{Xu}[13]$. Here are a few specific items that are worthy of attention.

Let \mathscr{H} be a Hilbert space with an inner product \langle,$\rangle , denote by B(\mathscr{H})$ the set of all bounded linear mappings from \mathscr{H} to itself. If \mathscr{M} is a strongly(weakly) closed *-subalgebra of $B(\mathscr{H})$ containing the unit I, \mathscr{M} is called a von Neumann algebra. If \mathscr{B} is a subset of $B(\mathscr{H})$, we define its commutant as $\mathscr{B}^{\prime}=\{x \in B(\mathscr{H}): x y=y x$ for all $y \in \mathscr{B}\}$, and the double commutant $\mathscr{B}^{\prime \prime}=\left(\mathscr{B}^{\prime}\right)^{\prime}$. Let \mathscr{M} be a $*$-algebra on a Hilbert space \mathscr{H} with $I \in \mathscr{M}$, then \mathscr{M} is a von Neumann algebra if and only if $\mathscr{M}=\mathscr{M}^{\prime \prime}$.

We define the spectrum of x to be the set $\sigma(x)=\{\lambda \in \mathbb{C} \mid \lambda I-x$ is not invertible $\}$. An element $x \in \mathscr{M}$ is positive (denoted by $x \geqslant \theta$ where θ is the zero element in \mathscr{M}) if $x=x^{*}$ and $\sigma(x) \subset \mathbb{R}^{+}$, set $\mathscr{M}_{+}=\{x \in \mathscr{M} \mid x \geqslant \theta\}$. If an element $p \in \mathscr{M}$ satisfies $p=p^{*}=p^{2}, p$ is called a projection. We denote by $\mathscr{P}(\mathscr{M})$ the set of projections in \mathscr{M}. Two projections e and f in a von Neumann algebra \mathscr{M} are said to be equivalent relative to \mathscr{M}, denoted as $e \sim_{\mathscr{M}} f($ written $e \sim f$ for convenience $)$, if there is a partial isometry $u \in \mathscr{M}$ such that $u^{*} u=e$ and $u u^{*}=f$. We say $e \leq f$ if $e(\mathscr{H}) \subset f(\mathscr{H})$ and $e \precsim f$ if there is a projection $f_{1} \in \mathscr{M}$ with $f_{1} \leqslant f$ and $e \sim f_{1}$. A projection $e \in \mathscr{M}$ is finite if the only projection f in \mathscr{M} such that $f \leq e$ and $f \sim e$ is $f=e$ and infinite if there is an $f \sim e$ with $f \supsetneqq e$.

A factor on the Hilbert space \mathscr{H} is a von Neumann algebra \mathscr{M} on \mathscr{H} such that $\mathscr{M} \cap \mathscr{M}^{\prime}=\mathbb{C} I$. Murray and von Neumann showed in [9] that if \mathscr{M} is a factor there is a unique "dimension function" $d: \mathscr{P}(\mathscr{M}) \rightarrow[0, \infty]$ subject to

1. $d(\theta)=0$;
2. $d\left(\sum_{i=1}^{\infty} e_{i}\right)=\sum_{i=1}^{\infty} d\left(e_{i}\right)$ if $e_{i} \perp e_{j}$ for $i \neq j$,

[^0]3. $d(e)=d(f)$ if $e \sim f$.

It follows that $d(e)=d(f) \Rightarrow e \sim f$. A factor \mathscr{M} is said to be of type I if the range of d is $\{1,2, \cdots, n\}$ with $n=\infty$ possible - of type I_{n} if $n<\infty-$ of type I_{∞} if $n=\infty$. It is fairly easy to prove that if \mathscr{M} is of type I it is like $B(\mathscr{H}) \otimes i d$ on $\mathscr{H} \otimes \mathscr{K}$.

Definition 1.1. Let \mathscr{M} be a von Neumann algebra. A trace on \mathscr{M} is a mapping $\tau: \mathscr{M}_{+} \rightarrow[0, \infty]$ satisfying:

1. for $x, y \in \mathscr{M}_{+}, \lambda \in \mathbb{R}_{+}, \tau(x+\lambda y)=\tau(x)+\lambda \tau(y)$;
2. for $x \in \mathscr{M}, \tau\left(x^{*} x\right)=\tau\left(x x^{*}\right)$.

In addition, a trace τ is said to be normal if $\sup \tau\left(x_{\lambda}\right)=\tau\left(\sup x_{\lambda}\right)$ for any bounded monotonic increasing net $\left\{x_{\lambda}\right\}$ in \mathscr{M}_{+}; finite if $\tau(1)<\infty$; semi-finite if for any $x \in \mathscr{M}_{+}$, there is a $y \in \mathscr{M}_{+}$such that $y \leqslant x$ and $\tau(y)<\infty$; faithful if for $x \in \mathscr{M}_{+}, \tau(x)=0 \Rightarrow x=\theta$.

In the next section, unless stated in particular, \mathscr{M} will always denote a von Neumann algebra on \mathscr{H}. If there is a normal faithful semi-finite trace τ on \mathscr{M}, we call (\mathscr{M}, τ) a noncommutative measure space.

For $x \in B(\mathscr{H})$, let $|x|=\left(x^{*} x\right)^{\frac{1}{2}}$, there is a unique partial isometry u from ($\left.\operatorname{ker} x\right)^{\perp}$ onto $\overline{R(x)}$ such that $x=u|x|$. In addition, $u^{*} u=P_{(\operatorname{ker} x)^{\perp}}$ and $u u^{*}=P_{\overline{R(x)}}$. Let $r(x)=u^{*} u\left(l(x)=u u^{*}\right)$, then $r(x)(l(x))$ is called the right (left) support of x. If $x=x^{*}$, then $r(x)=l(x)$, this common projection is called the support of x and denoted by $s(x)$.

Definition 1.2. Let $S_{+}(\mathscr{M})=\left\{x \in \mathscr{M}{ }_{+}: \tau(s(x))<\infty\right\}$ and $S(\mathscr{M})$ be the linear span of $S_{+}(\mathscr{M})$. Usually, we use S_{+} and S to represent $S_{+}(\mathscr{M})$ and $S(\mathscr{M})$ respectively.

An operator $x \in \mathscr{M}$ belongs to S if and only if there is an $e \in \mathscr{P}(\mathscr{M})$ satisfying $\tau(e)<\infty$ such that exe $=x$. $x \in S$ implies $|x|^{2} \in S_{+}$, and so $\tau\left(|x|^{2}\right)<\infty$. Moreover, S is a strongly dense ideal of \mathscr{M}, and $x \in S$ implies $x^{*} \in S$.

Now let

$$
\|x\|_{2}=\left[\tau\left(|x|^{2}\right)\right]^{\frac{1}{2}}, x \in S
$$

Then $\|\cdot\|_{2}$ is a norm on S. We denote the completion of $\left(S,\|\cdot\|_{2}\right)$ by $L_{2}(\mathscr{M}, \tau)$ (shorthand for $L_{2}(\mathscr{M})$), it is a Hilbert space, and we call it noncommutative L_{2} space.

In this paper, we classify the closed spaces of a noncommutative L_{2} space associated with a factor of type I. If $e \in \mathscr{P}(\mathscr{M}), e \mathscr{M} e$ is a von Neumann subalgebra of \mathscr{M}, then $L_{2}(e \mathscr{M} e)$ is a closed subspace of $L_{2}(\mathscr{M})$. However, for any closed subspace of $L_{2}(\mathscr{M})$, is there a projection $e \in \mathscr{P}(\mathscr{M})$ such that this subspace can be expressed by $L_{2}(e \mathscr{M} e)$?

2. Main result

In this section, we study the relationship between the projections of a factor \mathscr{M} of type I and the closed subspaces of the noncommutative L_{2} space $L_{2}(\mathscr{M})$.

Lemma 2.1. Let (\mathscr{M}, τ) be a noncommutative measure space, $e, f \in \mathscr{P}(\mathscr{M})$. If $e \sim f$, then e \mathscr{M} e is *-isomorphism to $f \mathscr{M} f$.

Proof. Since $e \sim f$, there is a partial isometry $u \in \mathscr{M}$ such that $u^{*} u=e$ and $u u^{*}=f$. Let

$$
\begin{aligned}
\varphi: e \mathscr{M} e & \rightarrow f \mathscr{M} f \\
\text { exe } & \mapsto f u x u^{*} f .
\end{aligned}
$$

We claim that φ is a *-isomorphism and left its proof to readers.
Lemma 2.2. If (\mathscr{M}, τ) and (\mathscr{N}, v) are noncommutative measure spaces and $\pi: \mathscr{M} \rightarrow \mathscr{N}$ is an isomorphism such that $v \circ \pi=\tau$, then π maps $S(\mathscr{M})$ onto $S(\mathscr{N})$.

Proof. For $x \in S(\mathscr{M})$, there is an $e \in \mathscr{P}(\mathscr{M})$ satisfying $\tau(e)<\infty$ such that $e x e=x$. Since π is an isomorphism,

$$
\pi(e) \pi(x) \pi(e)=\pi(e x e)=\pi(x) .
$$

Moreover, $\pi(e)$ is a projection in \mathscr{N} and

$$
v(\pi(e))=\tau(e)<\infty .
$$

Therefore, $x \in S(\mathscr{N})$, and π maps $S(\mathscr{M})$ to $S(\mathscr{N})$.
For any $y \in S(\mathscr{N}) \subseteq \mathscr{N}$, there exists an $f \in \mathscr{P}(\mathscr{N})$ satisfying $v(f)<\infty$ such that $f y f=y$ and there is an $x \in \mathscr{M}$ such that $\pi(x)=y$. Then

$$
\pi\left(\pi^{-1}(f) x \pi^{-1}(f)\right)=f \pi(x) f=f y f=y=\pi(x) .
$$

Since π is an injection, $\pi^{-1}(f) x \pi^{-1}(f)=x$. Besides, $\pi^{-1}(f)$ is a projection and $\tau\left(\pi^{-1}(f)\right)=v(f)<\infty$. Consequently, $x \in S(\mathscr{M})$, so π maps $S(\mathscr{M})$ onto $S(\mathscr{N})$.

Proposition 2.3. Let (\mathscr{M}, τ) be a noncommutative measure space, $e, f \in \mathscr{P}(\mathscr{M})$. If $e \sim f$, then $L_{2}(e \mathscr{M} e)$ is unitary isomorphic to $L_{2}(f \mathscr{M} f)$.
Proof. Let φ be the isomorphism from $e \mathscr{M} e$ to $f \mathscr{M} f$, then φ maps $S(e \mathscr{M} e)$ onto $S(f \mathscr{M} f)$. For any $x \in \mathscr{M}$,

$$
\begin{gathered}
\|\varphi(e x e)\|_{2}^{2}=\left\|f u x u^{*} f\right\|_{2}^{2}=\tau\left(f u x^{*} u^{*} f \cdot f u x u^{*} f\right) \\
=\tau\left(\text { uex }^{*} \text { exeu } u^{*}\right)=\tau\left(\text { ex }^{*} e x e u^{*} u\right)=\tau(\text { ex* } \text { exe })=\| \text { exe } \|_{2}^{2} .
\end{gathered}
$$

Since $e \mathscr{M} e$ is $\|\cdot\|_{2}-$ norm dense in $L_{2}(e \mathscr{M} e), L_{2}(e \mathscr{M} e)$ is unitary isomorphic to $L_{2}(f \mathscr{M} f)$.
Proposition 2.3 shows that $e \sim f \Rightarrow L_{2}(e \mathscr{M} e) \cong L_{2}(f \mathscr{M} f)$. Thus, it is natural to ask whether the inverse proposition is true.

As we have known, for $e \in \mathscr{P}(\mathscr{M}), L_{2}(e \mathscr{M} e) \subseteq L_{2}(\mathscr{M})$. However, the closed subspaces of $L_{2}(\mathscr{M})$ can not always expressed as $L_{2}(e \mathscr{M} e)$ for any $e \in \mathscr{P}(\mathscr{M})$. Indeed, let $\mathscr{M}=M_{n}(\mathbb{C})$ and τ be a normalized trace on \mathscr{M}, that is $\tau(I)=1$. Since all the norms are equivalent on a finite dimensional normed linear space, $L_{2}(\mathscr{M})=M_{n}(\mathbb{C})$. There are only $n+1$ projections in \mathscr{M} up to projection equivalent, but $L_{2}(\mathscr{M})$ has at least $n^{2}+1$ closed subspaces up to isomorphism. Thus, there must be some closed subspaces of $L_{2}(\mathscr{M})$ which can not be expressed as $L_{2}(e \mathscr{M} e)$ for any $e \in \mathscr{P}(\mathscr{M})$. Then we will ask that under which conditions the closed subspace of $L_{2}(\mathscr{M})$ can be expressed as $L_{2}(e \mathscr{M} e)$ for some $e \in \mathscr{P}(\mathscr{M})$.

In this paper, we answer these questions under the case of factor of type I_{n} and factor of type I_{∞}. To answer the two questions, we need the following definition.

Definition 2.4. Let (\mathscr{M}, τ) be a noncommutative measure space and E be the orthogonal projection from $L_{2}(\mathscr{M})$ onto its closed subspace \mathcal{L}. E is called a projection with bimodule property if $E\left(y_{1} x y_{2}\right)=y_{1} E(x) y_{2}$ and $E\left(x^{*}\right)=E(x)^{*}$ for any $x \in L_{2}(\mathscr{M}), y_{1}, y_{2} \in \mathcal{L}$.

First of all, we discuss the above two questions in the case of type I_{n}-factor.
Lemma 2.5. [11] If \mathcal{A} is a finite dimensional C^{*}-algebra, then \mathcal{A} can be decomposed into the $\operatorname{direct~sum~} \mathcal{A}=$ $\sum_{k=1}^{n} \oplus \mathcal{A}_{k}$, where each \mathcal{A}_{k} is isomorphic to the algebra of $n_{k} \times n_{k}$ matrices.
Theorem 2.6. Let $\mathscr{M}=M_{n}(\mathbb{C})$ and τ be a normalized trace on \mathscr{M}. If \mathcal{L} is a closed subspace of $L_{2}(\mathscr{M})$, then $E: L_{2}(\mathscr{M}) \rightarrow \mathcal{L}$ is a projection with bimodule property if and only if $\mathcal{L}=M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus \cdots \oplus M_{n_{k}}(\mathbb{C}) \oplus O_{l x l}(1 \leq$ $k \leq n, l \geq 0$ and $\left.\sum_{i=1}^{k} n_{i}+l=n\right)$. Furthermore, the decomposition is unique in the sense that if $\mathcal{L}_{1}=M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus$ $\cdots \oplus M_{n_{s}}(\mathbb{C})$ and $\mathcal{L}_{2}=M_{m_{1}}(\mathbb{C}) \oplus M_{m_{2}}(\mathbb{C}) \oplus \cdots \oplus M_{m_{t}}(\mathbb{C})$, then $\mathcal{L}_{1} \cong \mathcal{L}_{2} \Leftrightarrow s=t$ and there is a $\sigma \in S_{t}$ such that $n_{i}=m_{\sigma(i)}(1 \leq i \leq s)$, where S_{t} is the permutation group on $\{1,2, \cdots, t\}$.

Proof. If $\mathcal{L}=\left[\begin{array}{cccc}B_{11} & & & \\ & \ddots & & \\ & & B_{k k} & \\ & & & 0\end{array}\right]$ where $B_{i i} \in M_{n_{i}}(\mathbb{C}), 0$ is a null matrix of order $l, 1 \leq k \leq n, l \geq 0$ and $\sum_{i=1}^{k} n_{i}+l=n$. Then for $A \in M_{n}(\mathbb{C}), A$ can be written as the form $\left[A_{i j}\right]$ where $A_{i j} \in M_{n_{i} \times n_{j}}(\mathbb{C})(1 \leq i, j \leq$ $k+1, n_{k+1}=l$) such that

$$
E(A)=\left[\begin{array}{cccc}
A_{11} & & & \\
& \ddots & & \\
& & A_{k k} & \\
& & & 0
\end{array}\right]
$$

For any $A=\left[A_{i j}\right] \in M_{n}(\mathbb{C}), B \in \mathcal{L}$,

$$
E\left(A^{*}\right)=E(A)^{*},
$$

$$
E(A B)=E\left(\left[\begin{array}{cccc}
A_{11} & \cdots & A_{1 k} & A_{1 k+1} \\
\vdots & & \vdots & \vdots \\
A_{k 1} & \cdots & A_{k k} & A_{k k+1} \\
A_{k+11} & \cdots & A_{k+1 k} & A_{k+1 k+1}
\end{array}\right]\left[\begin{array}{cccc}
B_{11} & & & \\
& \ddots & & \\
& & B_{k k} & \\
& & & 0
\end{array}\right]\right)
$$

$$
\begin{aligned}
& =E\left(\left[\begin{array}{ccccc}
A_{11} B_{11} & A_{12} B_{22} & \cdots & A_{1 k} B_{k k} & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
A_{k 1} B_{11} & A_{k 2} B_{22} & \cdots & A_{k k} B_{k k} & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]\right) \\
& =E(A) B .
\end{aligned}
$$

Similarly, $E(B A)=B E(A)$. Thus, E is a projection with bimodule property.
Conversely, if $E: L_{2}(\mathscr{M}) \rightarrow \mathcal{L}$ is a projection with bimodule property, then $(\mathcal{L},\|\cdot\|)$ is a C^{*}-algebra. Indeed, for any $x, y \in \mathcal{L}, E(x)=x, E(y)=y$, then

$$
\begin{gathered}
x y=E(x) y=E(x y) \in \mathcal{L}, \\
x^{*}=E(x)^{*}=E\left(x^{*}\right) \in \mathcal{L}, \\
\|x y\| \leq\|x\| \cdot\|y\| \\
\left\|x^{*} x\right\|=\|x\|^{2} .
\end{gathered}
$$

Thus $(\mathcal{L},\|\cdot\|)$ is a C^{*}-algebra with $\operatorname{dim} \mathcal{L}<\infty$. Since all the norms are equivalent on a finite dimensional space, \mathcal{L} can be written as $M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus \cdots \oplus M_{n_{k}}(\mathbb{C}) \oplus O_{l \times l}$ for some $1 \leq k \leq n$ and $\sum_{i=1}^{k} n_{i}+l=n$.

Without loss of generality, we can assume $n_{1} \leq n_{2} \leq \cdots \leq n_{s}$ and $m_{1} \leq m_{2} \leq \cdots \leq m_{t}$.
$" \Leftarrow "$ If $s=t$ and $m_{i}=n_{i}(1 \leq i \leq s)$, then $\mathcal{L}_{1}=\mathcal{L}_{2}$.
$" \Rightarrow "$ If $\mathcal{L}_{1} \cong \mathcal{L}_{2}$, we can show $s=t$ and $m_{i}=n_{i}(1 \leq i \leq s)$ by induction.
Definition 2.7. If $\mathcal{L}=M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus \cdots \oplus M_{n_{s}}(\mathbb{C})$, where $n_{1} \leq n_{2} \leq \cdots \leq n_{s}$ and $\sum_{i=1}^{k} n_{i} \leq n$, we call \mathcal{L} a type $\left(n_{1}, n_{2}, \cdots, n_{s}\right)$ subspace of $M_{n}(\mathbb{C})$.

The answers of the two questions in the case of type I_{n}-factor is in the following.
Corollary 2.8. Suppose \mathscr{M} is a factor of type I_{m}, that is $\mathscr{M} \cong M_{m}(\mathbb{C}) \otimes i d_{\mathscr{H}}$ where \mathscr{H} is a finite dimensional Hilbert space.

1. For $e, f \in \mathscr{P}(\mathscr{M}), L_{2}(e \mathscr{M} e) \cong L_{2}(f \mathscr{M} f) \Leftrightarrow e \sim f$;
2. For a closed subspace \mathcal{L} of $L_{2}(\mathscr{M})$, there is an $e \in \mathscr{P}(\mathscr{M})\left(\right.$ that is $e=e_{0} \otimes$ id \mathscr{H} where $e_{0} \in \mathscr{P}\left(M_{m}(\mathbb{C})\right)$ such that $\mathcal{L} \cong L_{2}(e \mathscr{M} e) \Leftrightarrow \mathcal{L}=\mathcal{L}_{0} \otimes I_{\mathscr{H}}$ where \mathcal{L}_{0} is a type $\left(m_{1}\right)\left(m_{1} \leq m\right)$ subspace of $M_{m}(\mathbb{C})$.
In particular, if $\mathscr{M}=M_{n}(\mathbb{C})$, then for $e, f \in \mathscr{P}(\mathscr{M}), L_{2}(e \mathscr{M} e) \cong L_{2}(f \mathscr{M} f) \Leftrightarrow e \sim f ;$ for a closed subspace \mathcal{L} of $L_{2}(\mathscr{M})$, there is an $e \in \mathscr{P}(\mathscr{M})$ such that $\mathcal{L} \cong L_{2}(e \mathscr{M} e) \Leftrightarrow \mathcal{L}$ is a type $\left(n_{1}\right)\left(n_{1} \leq n\right)$ subspace of $L_{2}(\mathscr{M})$.
We now describe an example to indicate how to calculate the number of pairwise inequivalent subspaces of type $\left(n_{1}, n_{2}, \cdots, n_{s}\right)$.
Example 2.9. Let \mathcal{L} be a type $\left(n_{1}, n_{2}, \cdots, n_{s}\right)$ nonzero subspace of $M_{n}(\mathbb{C})$. We can show the following conclusion by induction.
3. If $s=1, \mathcal{L}$ is isomorphic to $L_{2}(e \mathscr{M} e)$ for some $e \in \mathscr{P}(\mathscr{M})$, the number of such subspaces is n in a sense of isometric $*$-isomorphism.
4. If $s=2, \mathcal{L}$ is isomorphic to $L_{2}(e \mathscr{M} e) \oplus L_{2}(f \mathscr{M} f)$ for some e, $f \in \mathscr{P}(\mathscr{M})$, the number of such subspaces up to isometric *-isomorphism is $\begin{cases}k^{2}, & \text { if } n=2 k ; \\ k(k+1), & \text { if } n=2 k+1 .\end{cases}$
5. If $s=3$, for a fixed m, the number of type $\left(m, n_{2}, n_{3}\right)$ subspaces up to isometric $*$-isomorphism is

$$
\left\{\begin{array}{cl}
k^{2}, & \text { if } n=2 k+3 m-2 \\
k(k+1), & \text { if } n=2 k+3 m-1
\end{array}\right.
$$

4. For anys >3, and fixed $n_{1}, n_{2}, \cdots, n_{s-2}$, the number of type $\left(n_{1}, n_{2}, \cdots, n_{s-2}, n_{s-1}, n_{s}\right)$ subspaces up to isometric

$$
* \text {-isomorphism is }\left\{\begin{array}{cc}
k^{2}, & \text { if } n=2 k+3 n_{s-2}+\sum_{i=1}^{s-3} n_{i}-2 ; \\
k(k+1), & \text { if } n=2 k+3 n_{s-2}+\sum_{i=1}^{s-3} n_{i}-1 .
\end{array}\right.
$$

Proof. 1. If $\mathcal{L}=M_{n_{1}}(\mathbb{C})$, let $e=e_{11}+\cdots+e_{n_{1} n_{1}}$ where $e_{i i}$ is a matrix unit. Then $\mathcal{L} \cong L_{2}(e \mathscr{M} e)$ and n_{1} may be $1,2, \cdots, n$. Therefore, the number of type $\left(n_{1}\right)$ subspaces is n.

If $\mathcal{L}=M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C})$, let $e=e_{11}+\cdots+e_{n_{1} n_{1}}, f=e_{\left(n_{1}+1\right)\left(n_{1}+1\right)}+\cdots+e_{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}\right)}$ where $e_{i i}$ is a matrix unit. Then $\mathcal{L} \cong L_{2}(e \mathscr{M} e) \oplus L_{2}(f \mathscr{M} f)$ and $\left(n_{1}, n_{2}\right)$ may be

$(1,1)$,	$(1,2)$,	\cdots,	$(1, n-5)$,	$(1, n-4)$,	$(1, n-3)$,
$(2,2)$,	$(2,3)$,	\cdots,	$(2, n-4)$,	$(2, n-3)$,	$(2, n-2)$,

$(k, k)($ if $n=2 k)$ or $(k, k),(k, k+1)($ if $n=2 k+1)$.
Therefore, the number of type $\left(n_{1}, n_{2}\right)$ subspaces is

$$
\begin{cases}(n-1)+(n-3)+\cdots+1=k^{2}, & \text { if } n=2 k \\ (n-1)+(n-3)+\cdots+2=k(k+1), & \text { if } n=2 k+1 .\end{cases}
$$

2. If $s=3, n_{1}=m, n=2 k+3 m-2, \mathcal{L}$ may be type

$$
\begin{array}{cccc}
(m, m, m), & (m, m, m+1), & \cdots, & (m, m, n-2 m), \\
(m, m+1, m+1), & (m, m+1, m+2), & \cdots, & (m, m+1, n-2 m-1), \\
\vdots & & & \\
(m, m+k-1, m+k-1) & &
\end{array}
$$

If $s=3, n_{1}=m, n=2 k+3 m-1, \mathcal{L}$ may be type

$$
\begin{array}{cccc}
(m, m, m), & (m, m, m+1), & \cdots, & (m, m, n-2 m) \\
(m, m+1, m+1), & (m, m+1, m+2), & \cdots, & (m, m+1, n-2 m-1), \\
\vdots & & & \\
(m, m+k-1, m+k-1), & (m, m+k-1, m+k) & &
\end{array}
$$

Therefore, the number of type $\left(m, n_{2}, n_{3}\right)$ subspaces is

$$
\begin{cases}(n-3 m+1)+(n-3 m-1)+\cdots+1=k^{2}, & \text { if } n=2 k+3 \times m-2 \\ (n-3 m+1)+(n-3 m-1)+\cdots+2=k(k+1), & \text { if } n=2 k+3 \times m-1\end{cases}
$$

3. If $s>3, n=2 k+3 n_{s-2}+\sum_{i=1}^{s-3} n_{i}-2$ for fixed $n_{1}, n_{2}, \cdots, n_{s-2}, \mathcal{L}$ may be type

$$
\begin{gathered}
\left(n_{1}, \cdots, n_{s-2}, n_{s-2}, n_{s-2}\right), \quad \cdots, \quad\left(n_{1}, \cdots, n_{s-2}, n_{s-2}, n-\sum_{i=1}^{s-2} n_{i}-n_{s-2}\right) \\
\left(n_{1}, \cdots, n_{s-2}, n_{s-2}, n_{s-2}+1\right), \quad \cdots, \quad\left(n_{1}, \cdots, n_{s-2}, n_{s-2}+1, n-\sum_{i=1}^{s-2} n_{i}-n_{s-2}-1\right),
\end{gathered}
$$

$\left(n_{1}, \cdots, n_{s-2}, n_{s-2}+k-1, n_{s-2}+k-1\right)$.
If $s>3, n=2 k+3 n_{s-2}+\sum_{i=1}^{s-3} n_{i}-1$ for fixed $n_{1}, n_{2}, \cdots, n_{s-2}, \mathcal{L}$ may be type

$$
\begin{aligned}
\left(n_{1}, \cdots, n_{s-2}, n_{s-2}, n_{s-2}\right), & \cdots, \quad\left(n_{1}, \cdots, n_{s-2}, n_{s-2}, n-\sum_{i=1}^{s-2} n_{i}-n_{s-2}\right) \\
\left(n_{1}, \cdots, n_{s-2}, n_{s-2}, n_{s-2}+1\right), & \cdots, \quad\left(n_{1}, \cdots, n_{s-2}, n_{s-2}+1, n-\sum_{i=1}^{s-2} n_{i}-n_{s-2}-1\right)
\end{aligned}
$$

$\left(n_{1}, \cdots, n_{s-2}, n_{s-2}+k-1, n_{s-2}+k-1\right),\left(n_{1}, \cdots, n_{s-2}, n_{s-2}+k-1, n_{s-2}+k\right)$.
Therefore, the number of type (m, n_{2}, n_{3}) subspaces is

$$
\begin{cases}\left(n-\sum_{i=1}^{s-2} n_{i}-n_{s-2}-n_{s-2}+1\right)+\cdots+1=k^{2}, & \text { if } n=2 k+3 n_{s-2}+\sum_{i=1}^{s-2} n_{i}-2 ; \\ \left(n-\sum_{i=1}^{s-2} n_{i}-n_{s-2}-n_{s-2}+1\right)+\cdots+2=k(k+1), & \text { if } n=2 k+3 n_{s-2}+\sum_{i=1}^{s-3} n_{i}-1 .\end{cases}
$$

Next, we discuss the case of type I_{∞}-factor.
Suppose that $\mathscr{M}=B(\mathscr{H})$ where \mathscr{H} is a separable infinite dimensional Hilbert space and $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ is an orthonormal basis of \mathscr{H}. We define the trace τ on \mathscr{M} to be $\tau(x)=\sum_{i=1}^{\infty}\left\langle x \xi_{i}, \xi_{i}\right\rangle$. Then $S(\mathscr{M})=F(\mathscr{H})$, which is the class of all finite rank operators and $L_{2}(\mathscr{M})=L^{2}(\mathscr{H})$, which is the class of all Hilbert-Schmidt operators on \mathscr{H}. Moreover, for $e \in \mathscr{P}(\mathscr{M}), L_{2}(e \mathscr{M} e)=L^{2}(e \mathscr{H})$.

In the following, we list several basic properties of $L^{2}(\mathscr{H})$ that we shall use, often without comment, in the sequel.

1. $\|x\| \leq\|x\|_{2}, \forall x \in L^{2}(\mathscr{H})$;
2. $L^{2}(\mathscr{H})$ is a self-adjoint ideal of $B(\mathscr{H})$ and a normed $*$-algebra;
3. $\|\xi \otimes \eta\|_{2}=\|\xi\|\| \| \eta=\|\xi \otimes \eta\|, \forall \xi, \eta \in \mathscr{H}$;
4. $F(\mathscr{H})$ is dense in $L^{2}(\mathscr{H})$ in the norm $\|\cdot\|_{2}$ and $F(\mathscr{H})$ is linearly spanned by the rank-one projections;

Lemma 2.10. Let $\mathscr{M}=B(\mathscr{H})$ with \mathscr{H} a separable infinite dimensional Hilbert space, e, $f \in \mathscr{P}(\mathscr{H})$. If $L^{2}(e \mathscr{H}) \cong$ $L^{2}(f \mathscr{H})$, then $e \sim f$.

Proof. If $L^{2}(e \mathscr{H}) \cong L^{2}(f \mathscr{H})$, since \mathscr{H} is separable, $\operatorname{dim}\left(L^{2}(e \mathscr{H})\right)=\operatorname{dim}\left(L^{2}(f \mathscr{H})\right)=n$ with $n=\infty$ possible. Let

$$
d: \mathscr{P}(\mathscr{M}) \rightarrow[0, \infty]
$$

be the dimension function. Then $d(e)=\operatorname{dim}(e \mathscr{H})$.

1. If $n=\infty$, then e, f are infinite projections. Therefore, $d(e)=d(f)=\infty$, that is $e \sim f$.
2. If $n<\infty$, then $\operatorname{dim}(e \mathscr{H})=\operatorname{dim}(f \mathscr{H})<\infty$. Therefore $d(e)=d(f)=\operatorname{dim}(e \mathscr{H})$, thus $e \sim f$.

Theorem 2.11. Let \mathscr{H} be a separable infinite dimensional Hilbert space, $e_{i}, f_{i} \in \mathscr{P}(\mathscr{H})$. If $\mathcal{L}_{1}=\sum_{i=1}^{n} \oplus L^{2}\left(e_{i} \mathscr{H}\right)$ with $e_{i} \perp e_{j}$ for $i \neq j, \mathcal{L}_{2}=\sum_{j=1}^{m} \oplus L^{2}\left(f_{j} \mathscr{H}\right)$ with $f_{i} \perp f_{j}$ for $i \neq j$. Then $\mathcal{L}_{1} \cong \mathcal{L}_{2} \Leftrightarrow m=n$ and there is a $\sigma \in S_{n}$ such that $e_{i} \sim f_{\sigma(i)}(1 \leq i \leq n)$ with $m, n=\infty$ possible.

Proof. We may suppose $n=\infty, e_{i} \lesssim e_{i+1}, f_{j} \precsim f_{i+1}$.
$" \Leftarrow "$ If $m=n=\infty$ and $e_{i} \sim f_{i}$, then $L^{2}\left(e_{i} \mathscr{H}\right) \cong L^{2}\left(f_{i} \mathscr{H}\right)$. Let φ_{i} be the isomorphic mapping from $L^{2}\left(e_{i} \mathscr{H}\right)$ onto $L^{2}\left(f_{i} \mathscr{H}\right)$ and $\varphi=\sum_{i=1}^{\infty} \oplus \varphi_{i}$, then φ is an isomorphism from \mathcal{L}_{1} onto \mathcal{L}_{2}.
$" \Rightarrow$ " If φ is the isomorphic mapping from \mathcal{L}_{1} onto \mathcal{L}_{2}. Let $\varphi_{i}=\left.\varphi\right|_{L^{2}\left(e_{i} \mathscr{H}\right)}$, then φ_{i} is an isomorphic mapping from $L^{2}\left(e_{i} \mathscr{H}\right)$ onto $L^{2}\left(f_{i} \mathscr{H}\right)$. Therefore, $e_{i} \sim f_{i}$.

Theorem 2.12. Let \mathscr{H} be a separable infinite dimensional Hilbert space and \mathcal{L} be a closed subspace of $L^{2}(\mathscr{H})$, then $E: L^{2}(\mathscr{H}) \rightarrow \mathcal{L}$ is an orthogonal projection with bimodule property if and only if there are $\left\{e_{i}\right\} \subset \mathscr{P}(\mathscr{M})$ satisfying $e_{i} \perp e_{j}$ for $i \neq j$ such that $\mathcal{L}=\sum_{i=1}^{n} \oplus L^{2}\left(e_{i} \mathscr{H}\right)$ with $n=\infty$ possible.

Proof. The proof of sufficiency can be divided into three steps.
Case a. $\mathcal{L}=L^{2}(e \mathscr{H})$ for some $e \in \mathscr{P}(\mathscr{H})$ and E is the orthogonal projection from $L^{2}(\mathscr{H})$ onto $L^{2}(e \mathscr{H})$ such that $E(x)=$ exe for all $x \in L^{2}(\mathscr{H})$. Then for any $x \in L^{2}(\mathscr{H}), y=$ eye $\in L^{2}(e \mathscr{H})$,

$$
\begin{gathered}
E\left(x^{*}\right)=\text { ex } x^{*} e(\text { exe })^{*}=E(x)^{*}, \\
E(x y)=\text { exye }=\text { exe } \cdot \text { eye }=E(x) y, \\
E(y x)=\text { eyxe }=\text { eye } \cdot \text { exe }=y E(x) .
\end{gathered}
$$

Hence, E is a projection with bimodule property.
Case b. $\mathcal{L}=\sum_{i=1}^{n} \oplus L^{2}\left(e_{i} \mathscr{H}\right)$ for some $e_{i} \in \mathscr{P}(\mathscr{M})$ such that $e_{i} \perp e_{j}$ when $i \neq j$. Let E be the orthogonal projection from $L^{2}(\mathscr{H})$ onto $\sum_{i=1}^{n} \oplus L^{2}\left(e_{i} \mathscr{H}\right)$ such that for any $x \in L^{2}(\mathscr{H}), E(x)=\left[\begin{array}{lll}e_{1} x e_{1} & & \\ & \ddots & \\ & & e_{n} x e_{n}\end{array}\right]$. The proof of bimodule property of E is similar to the proof of sufficiency of Theorem 2.7.

Case c. $\mathcal{L}=\sum_{i=1}^{\infty} \oplus L^{2}\left(e_{i} \mathscr{H}\right)$ for some $e_{i} \in \mathscr{P}(\mathscr{M})$ such that $e_{i} \perp e_{j}$ when $i \neq j$. For $x \in L^{2}(\mathscr{H})$, let $E(x)=$ $\sum_{i=1}^{\infty} \oplus e_{i} x e_{i}$, then E is the orthogonal projection from $L^{2}(\mathscr{H})$ onto \mathcal{L}. Indeed, for $x \in L^{2}(\mathscr{H}), e_{i} x e_{i} \in L^{2}\left(e_{i} \mathscr{H}\right)$. Let F_{i} be an orthonormal basis in $e_{i} \mathscr{H}$, then

$$
\left\|e_{i} x e_{i}\right\|_{2}^{2}=\sum_{\xi_{j}^{(i)} \in F_{i}}\left\langle e_{i} x e_{i} \xi_{j}^{(i)}, \xi_{j}^{(i)}\right\rangle=\sum_{\xi_{j}^{(i)} \in F_{i}}\left\langle x \xi_{j}^{(i)}, \xi_{j}^{(i)}\right\rangle
$$

The set $\left\{\xi_{j}^{(i)} \mid \xi_{j}^{(i)} \in F_{i}, i=1,2, \cdots\right\}$ is an orthonormal set in \mathscr{H}, it is contained in an orthonormal basis, denote this orthonormal basis by F. Then, $\sum_{i=1}^{\infty}\left\|e_{i} x e_{i}\right\|_{2}^{2} \leq \sum_{\xi \in F}\langle x \xi, \xi\rangle=\|x\|_{2}^{2}<\infty$. Therefore, $\sum_{i=1}^{\infty} \oplus e_{i} x e_{i} \in \mathcal{L}$. For any $y=\sum_{i=1}^{\infty} \oplus y_{i} \in \mathcal{L}$, where $y_{i} \in L^{2}\left(e_{i} \mathscr{H}\right)$, then $y_{i}=e_{i} y_{i} e_{i}$. Since $e_{i} \perp e_{j}$ for $i \neq j$,

$$
\begin{align*}
y & =\sum_{i=1}^{\infty} \oplus e_{i} y_{i} e_{i}=\left(\sum_{i=1}^{\infty} \oplus e_{i}\right) \cdot\left(\sum_{i=1}^{\infty} \oplus y_{i}\right) \cdot\left(\sum_{i=1}^{\infty} \oplus e_{i}\right) \\
& =\left(\sum_{i=1}^{\infty} \oplus e_{i}\right) y\left(\sum_{i=1}^{\infty} \oplus e_{i}\right)=\sum_{i=1}^{\infty} \oplus e_{i} y e_{i} . \tag{1}
\end{align*}
$$

For any $x \in L^{2}(\mathscr{H}), y=\sum_{i=1}^{\infty} \oplus e_{i} y e_{i} \in \mathcal{L}$,

$$
\begin{gathered}
E\left(x^{*}\right)=\sum_{i=1}^{\infty} \oplus e_{i} x^{*} e_{i}=\sum_{i=1}^{\infty} \oplus\left(e_{i} x e_{i}\right)^{*}=\left(\sum_{i=1}^{\infty} \oplus e_{i} x e_{i}\right)^{*}=E(x)^{*} . \\
E(x y)=\sum_{i=1}^{\infty} e_{i} x y e_{i}=\sum_{i=1}^{\infty} e_{i} x\left(\sum_{j=1}^{\infty} e_{j} y e_{j}\right) e_{i}=\sum_{i=1}^{\infty} e_{i} x e_{i} y e_{i} \\
E(x) y=\left(\sum_{i=1}^{\infty} e_{i} x e_{i}\right)\left(\sum_{j=1}^{\infty} e_{j} y e_{j}\right)=\sum_{i=1}^{\infty} e_{i} x e_{i} y e_{i} .
\end{gathered}
$$

Therefore, $E(x y)=E(x) y$. Similarly, we can get $E(y x)=y E(x)$.
"Necessity" If E is an orthogonal projection from $L^{2}(\mathscr{H})$ onto its closed subspace \mathcal{L}, then $\|E\|_{2} \leq 1$. For $\xi, \eta \in \mathscr{H},\|E(\xi \otimes \eta)\| \leq\|E(\xi \otimes \eta)\|_{2} \leq\|E\|_{2}\|\xi \otimes \eta\|_{2} \leq\|\xi \otimes \eta\|_{2}=\|\xi \otimes \eta\|$, then $\left.E\right|_{F(\mathscr{H})}$ is a projection with $\|E\| \leq 1$. Since $F(\mathscr{H})$ is dense in $K(\mathscr{H})$ in the norm $\|\cdot\|,\left.E\right|_{F(\mathscr{H})}$ has a unique norm topology extension (denoted \widetilde{E}) to $K(\mathscr{H})$ and $\|\widetilde{E}\| \leq 1$. Therefore, \widetilde{E} is a projection from $K(\mathscr{H})$ onto $\overline{\mathcal{L}}^{\|\cdot\|}$ with bimodule property. Hence, $\overline{\mathcal{L}}^{\|\cdot\|}$ is a C^{*}-subalgebra of $K(\mathscr{H})$. Then $\overline{\mathcal{L}}^{\|\cdot\|} \cong \sum_{\varphi \in P\left(\overline{\mathcal{L}}^{[\|\cdot\|}\right)} \oplus B\left(\mathscr{H}_{\varphi}\right)$, where $P\left(\overline{\mathcal{L}}^{\|\cdot\|}\right)$ is the set of extreme point of the state space on $\overline{\mathcal{L}}{ }^{\|\cdot\|}$. Since \mathscr{H} is separable, so is $K(\mathscr{H})$. Thus the number of φ in $P\left(\overline{\mathcal{L}}^{\|\cdot\|}\right)$ is countable. Therefore, $\overline{\mathcal{L}}^{\|\cdot\|} \cong \sum_{i=1}^{n} \oplus B\left(\mathscr{H}_{\varphi_{i}}\right)$ where $\varphi_{i} \in P\left(\overline{\mathcal{L}}^{\|\cdot\|}\right)$ with $n=\infty$ possible. Let Φ be the isometric *-isomorphism from $\overline{\mathcal{L}}^{\|\cdot\|}$ onto $\sum_{i=1}^{n} \oplus B\left(\mathscr{H}_{\varphi_{i}}\right)$ and I_{i} be the identity of $B\left(\mathscr{H}_{\varphi_{i}}\right)$. Set $e_{i}=\Phi^{-1}\left(I_{i}\right)$, then e_{i} is a projection in $B(\mathscr{H})$. We claim $\mathcal{L} \cong \sum_{i=1}^{n} \oplus \mathcal{L}^{2}\left(e_{i} \mathscr{H}\right)$.

Indeed, for any $x \in F(\mathscr{H}), E(x)=\sum_{i=1}^{n} \oplus e_{i} x e_{i}$. Since x is the linear combination of rank-one projections, we may suppose $x=\xi \otimes \xi$, where $\xi \in \mathscr{H}$ and $\|\xi\|=1$. Then $e_{i} x e_{i}=e_{i} \xi \otimes e_{i} \xi$ is a rank-one projection or 0 , that is $e_{i} x e_{i} \in F\left(e_{i} \mathscr{H}\right)$. Therefore, $E(F(\mathscr{H})) \subset\left(\sum_{i=1}^{n} \oplus F\left(e_{i} \mathscr{H}\right),\|\cdot\|_{2}\right) \subset \sum_{i=1}^{n} \oplus L^{2}\left(e_{i} \mathscr{H}\right)$. Hence, $\mathcal{L}=\overline{E(F(\mathscr{H}))}^{\|\cdot\|_{2}} \subset$ $\sum_{i=1}^{n} \oplus L^{2}\left(e_{i} \mathscr{H}\right)$.

Conversely, for any $x \in \sum_{i=1}^{n} \oplus L^{2}\left(e_{i} \mathscr{H}\right)$. If $n=1, x \in L^{2}\left(e_{1} \mathscr{H}\right)$, there is a sequence $\left\{x_{n}\right\} \subset F\left(e_{1} \mathscr{H}\right) \subset F(\mathscr{H})$, such that $E\left(x_{n}\right)=x_{n} \xrightarrow{\|\cdot\|_{2}} x$. Since E is $\|\cdot\|_{2}$-continuous, $x \in \mathcal{L}$. Therefore, $L^{2}\left(e_{1} \mathscr{H}\right) \subset \mathcal{L}$. If $n<\infty, x=\sum_{i=1}^{k} \oplus x_{i}$ where $x_{i} \in L^{2}\left(e_{i} \mathscr{H}\right)$ with $k<\infty$, then for any $1 \leq i \leq k$, there is a sequence $\left\{x_{i}^{(n)}\right\} \subset F\left(e_{i} \mathscr{H}\right) \subset F(\mathscr{H})$, such that
$E\left(x_{i}^{(n)}\right)=x_{i}^{(n)} \xrightarrow{\|\cdot\|_{2}} x_{i}$. Since $k<\infty$ and E is $\|\cdot\|_{2}$-continuous, $x \in \mathcal{L}$. Therefore, $\sum_{i=1}^{k} \oplus L^{2}\left(e_{i} \mathscr{H}\right) \subset \mathcal{L}$. If $n=\infty$, $\sum_{i=1}^{\infty} \oplus L^{2}\left(e_{i} \mathscr{H}\right)=\lim _{k \rightarrow \infty} \sum_{i=1}^{k} \oplus L^{2}\left(e_{i} \mathscr{H}\right)$. By the continuity of $E, \sum_{i=1}^{\infty} \oplus L^{2}\left(e_{i} \mathscr{H}\right) \subset \mathcal{L}$.

References

[1] N. P. Brown, N. Ozawa, C*-algebras and finite-dimensional approximations, American Mathmatical Society, 2008.
[2] J. B. Conway, A course in operator theory, American Mathmatical Society, 2000.
[3] R. G. Douglas, Banach algebra techniques in operator theory, Springer, Berlin, 1998.
[4] V. F. R. Jones, Subfactors and knots, American Mathmatical Society, 1991.
[5] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras(Volume I. Elementary Theory), Academic Press, San Diego, California, 1983.
[6] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras(Volume II: Advanced Theory), Academic Press. INC, London, 1986.
[7] B.R. Li, Introduction to operator algebras, World Scientific Publishing Co. Pte. Ltd., Singapore, 1992.
[8] G. J. Murphy, C*-algebras and operator theory, Academic Press, London, 1990.
[9] F. Murray, I. von Neumann, On rings of operators, Ann. Math. 37 (1936) 116-229.
[10] I. Segal, Irreducible representations of operator algebras, Bulletin of the American Mathematical Society 53 (2) (1947) 73-88.
[11] M. Takesaki, Theory of operator algebra I, Science Press, Beijing, 2002.
[12] L. Wang, On the properties of some sets of von Neumann algebras under perturbation. Sci China Math, 58 (8)(2015) $1707-1714$.
[13] Q. H. Xu, N. B. Turdebek, Z. Q. Chen, Introduction to operator algebras and noncommutative L^{p} spaces, Science Press, Beijing, 2010 (in Chinese).

[^0]: 2010 Mathematics Subject Classification. 46C07; 47L60, 47A67
 Keywords. noncommutative L_{2} space, bimoduler property, projection, factor of type I
 Received: 04 July 2017; Accepted: 27 September 2017
 Communicated by Dragan S. Djordjević
 Research supported by NSFC (11371222)
 Email addresses: shcc881111@163.com (C. Shen), jianglining@bit. edu. cn (L. Jiang), wxiaomin1509@163.com (X. Wei)

