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Approximation of Functions by Favard-Szász-Mirakyan
Operators of Max-Product Type in Weighted Spaces

Adrian Holhoşa
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Abstract. In this paper we study the uniform approximation of functions by Favard-Szász-Mirakyan
operators of max-product type in some exponential weighted spaces. We estimate the rate of approximation
in terms of a suitable modulus of continuity.

1. Introduction

The study of approximation of functions in weighted spaces has been intensified in the last period of
time. Approximation results and estimates of the rate of convergence using positive linear operators were
given. For example, for the positive linear operators defined by

Sn( f , x) = e−nx
∞∑

k=0

(nx)k

k!
f
(

k
n

)
, x ∈ [0,∞), n ≥ 1 (1)

introduced and studied independently by G. Mirakyan (also spelled Mirakjan) [1], J. Favard [2] and O.
Szász [3], we can obtain pointwise convergence for functions of order eαx ln x and uniform convergence for
functions of order eαxβ , with β ∈ (0, 1/2] (see [4]). In [5, 6], the weighted approximation of functions with
the maximal weight w(x) = eα

√
x is considered. There are many studies for weighted approximation of

functions by modified or generalized Szász-Mirakyan operators. For example in [7–9] approximation with
polynomial weights is considered, in [10–12] approximation in exponential weighted spaces is studied, and
in [13, 14] general weights are used for approximation.

However, recently (see [15]), some nonlinear operators of max-product type were studied and the
conclusion is that they have the same order of approximation as in the case of positive linear operators and
even better for some subclasses of functions. For the operators defined by (1), the corresponding nonlinear
operators of max-product type are

Fn( f , x) =

∨
∞

k=0
(nx)k

k! f
(

k
n

)
∨
∞

k=0
(nx)k

k!

, x ∈ [0,∞), (2)
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where
∨

denotes the supremum. These operators were studied in [16, 17] for the class of continuous and
bounded functions defined on [0,∞). For a truncated version of these operators see the article [18]. For
unbounded functions such a study has not yet been done.

In this paper we show that the operators Fn can be used for uniform approximation with the weight
w(x) = eαϕ(x), where ϕ(x) =

√
x and we estimate the rate of convergence of the these operators to the identity

operator.
To present the results which we have obtained, we introduce some general notations. It seems that every

sequence of positive linear operators can be used for uniform approximation of functions for a maximal
class of weights w(x) = eαϕ(x), which is related to the given operators (see [6, 19]) through a functionϕ : I→ J,
defined on a noncompact interval I ⊂ R. This function ϕ is continuous and strictly increasing. The interval
J ⊂ R is just ϕ(I). We denote for α ≥ 0 the space of continuous functions

Cϕ,α =

 f ∈ C(I), there exists M > 0 such that

∣∣∣ f (x)
∣∣∣

eαϕ(x)
≤M, for every x ∈ I

 .
This space can be endowed with the norm∥∥∥ f

∥∥∥
ϕ,α
= sup

x∈I
e−αϕ(x)

| f (x)|.

In the following section we introduce a new weighted modulus of continuity. This modulus is suitable
for the uniform approximation of unbounded functions using operators of max-product type. But this
new modulus can also be used for the approximation of functions using positive linear operators. In the
last section, in Theorem 3.9 and 3.13, we give the main approximation results for the operators Fn and Sn,
estimating the rate of convergence in terms of this new weighted modulus.

2. A new weighted modulus of continuity

Let δ ≥ 0 be a real number strictly less than the length of the interval ϕ(I). For f ∈ Cϕ,α we introduce the
following modulus of continuity

ωϕ,α( f , δ) = sup
x,t∈I

|ϕ(t)−ϕ(x)|≤δ

∣∣∣ f (t) − f (x)
∣∣∣

max
(
eαϕ(t), eαϕ(x)) ,

where the supremum is taken for all x ∈ I and t ∈ I such that

ϕ(t) ∈ (ϕ(x) − δ, ϕ(x) + δ) ∩ ϕ(I).

For α = 0 we get

ωϕ,0( f , δ) = sup
x,t∈I

|ϕ(t)−ϕ(x)|≤δ

∣∣∣ f (t) − f (x)
∣∣∣ = ω (

f ◦ ϕ−1, δ
)

a modulus introduced in [20] (see also [6]). For α = 0 and ϕ(x) = x we get the usual modulus of continuity
ω( f , δ).

In the following, we give the main properties of this new modulus of continuity.

Lemma 2.1. For δ ∈ [0, len1th(ϕ(I)) and f ∈ Cϕ,α the quantity ωϕ,α( f , δ) is finite.

Proof. For f ∈ Cϕ,α we have
∣∣∣ f (x)

∣∣∣ ≤ ∥∥∥ f
∥∥∥
ϕ,α

eαϕ(x) and∣∣∣ f (t) − f (x)
∣∣∣ ≤ ∣∣∣ f (t)

∣∣∣ + ∣∣∣ f (x)
∣∣∣ ≤ ∥∥∥ f

∥∥∥
ϕ,α

(
eαϕ(t) + eαϕ(x)

)
.

Because eαϕ(t) + eαϕ(x)
≤ 2 max

(
eαϕ(t), eαϕ(x)

)
we obtain ωϕ,α( f , δ) ≤ 2

∥∥∥ f
∥∥∥
ϕ,α

.
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Lemma 2.2. If f ∈ Cϕ,α is a function such that e−αx
· f (ϕ−1(x)) is uniformly continuous on ϕ(I) then

lim
δ↘0

ωϕ,α( f , δ) = 0.

Proof. Let w(x) = eαϕ(x). If ϕ(t) ≥ ϕ(x) we consider the inequality

| f (t) − f (x)| ≤ |w(t) − w(x)| ·
| f (x)|
w(x)

+ w(t) ·
∣∣∣∣∣ f (t)
w(t)

−
f (x)
w(x)

∣∣∣∣∣
and if ϕ(t) < ϕ(x) we consider

| f (t) − f (x)| ≤ |w(t) − w(x)| ·
| f (t)|
w(t)

+ w(x) ·
∣∣∣∣∣ f (t)
w(t)

−
f (x)
w(x)

∣∣∣∣∣ .
In both cases we obtain

ωϕ,α( f , δ) ≤
(
1 − e−αδ

) ∥∥∥ f
∥∥∥
ϕ,α
+ ω

(
f
w
◦ ϕ−1, δ

)
. (3)

Because
( f

w ◦ ϕ
−1

)
(x) = e−αx

· f (ϕ−1(x)) is supposed to be uniformly continuous, we have, from the well-

known property of the usual modulus of continuity, that limδ↘0 ω
( f

w ◦ ϕ
−1, δ

)
= 0. This fact and (3) prove

that limδ↘0 ωϕ,α( f , δ) = 0.

Lemma 2.3. We have

ωϕ,α( f ,nδ) ≤ n · ωϕ,α( f , δ), for every n ≥ 0,n ∈ Z.

Proof. For n = 0 we have equality. Let us consider t, x ∈ I with the property that 0 ≤ ϕ(t) − ϕ(x) ≤ nδ, n ≥ 1.
Because ϕ is continuous and strictly increasing there exist the points x = x0 < x1 < · · · < xn = t such that

ϕ(xk) − ϕ(xk−1) =
ϕ(t) − ϕ(x)

n
≤ δ.

Thus,∣∣∣ f (t) − f (x)
∣∣∣ ≤ n∑

k=1

∣∣∣ f (xk) − f (xk−1)
∣∣∣ = n∑

k=1

e−αϕ(xk)
∣∣∣ f (xk) − f (xk−1)

∣∣∣ · eαϕ(xk)

≤ ωϕ,α( f , δ)
n∑

k=1

eαϕ(xk)
≤ ωϕ,α( f , δ) · neαϕ(t).

Remark 2.4. We have ωϕ,α( f , λδ) ≤ (1 + λ) · ωϕ,α( f , δ), for every real numbers λ, δ ≥ 0. This is true because of the
previous lemma:

ωϕ,α( f , λδ) ≤ ωϕ,α( f , (1 + bλc)δ) ≤ (1 + bλc)ωϕ,α( f , δ) ≤ (1 + λ) · ωϕ,α( f , δ).

Lemma 2.5. For every t, x ∈ I and δ > 0 we have∣∣∣ f (t) − f (x)
∣∣∣ ≤ max

(
eαϕ(t), eαϕ(x)

) 1 +

∣∣∣ϕ(t) − ϕ(x)
∣∣∣

δ

ωϕ,α( f , δ). (4)

Proof. From the definition of the modulus we get∣∣∣ f (t) − f (x)
∣∣∣ ≤ max

(
eαϕ(t), eαϕ(x)

)
ωϕ,α( f ,

∣∣∣ϕ(t) − ϕ(x)
∣∣∣ .

By Remark 2.4 we obtain

ωϕ,α( f ,
∣∣∣ϕ(t) − ϕ(x)

∣∣∣ = ωϕ,α  f ,

∣∣∣ϕ(t) − ϕ(x)
∣∣∣

δ
δ

 ≤ 1 +

∣∣∣ϕ(t) − ϕ(x)
∣∣∣

δ

ωϕ,α( f , δ).
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3. Weighted approximation by Favard-Szász-Mirakjan operators

In order to obtain some estimates of the rate of approximation of functions by operators (2) and (1) let
us prove first some auxiliary results.

Lemma 3.1. For α ≥ 0 and n ∈N consider the intervals

I0 =
[
0, e−

α
√

n
)

and Ik =
[
ke−

α
√

n

(√
k−
√

k−1
)
, (k + 1)e−

α
√

n

(√
k+1−

√
k
))
, k ≥ 1.

The intervals are nonempty, disjoint and their union is the positive half line.

Proof. We have

`k = (k + 1)e−
α
√

n

(√
k+1−

√
k
)
− ke−

α
√

n

(√
k−
√

k−1
)
= e−

α
√

n

(√
k+1−

√
k
) [

1 + k
(
1 − e−

α
√

n

(
2
√

k−
√

k+1−
√

k−1
))]
.

Because

2
√

k −
√

k + 1 −
√

k − 1 =
2

(
√

k − 1 +
√

k)(
√

k − 1 +
√

k + 1)(
√

k +
√

k + 1)
> 0,

we obtain `k > 0.

Lemma 3.2. If nx ∈ I j then
∨
∞

k=0
(nx)k

k! eα
√

k
n =

(nx) j

j! eα
√

j
n .

Proof. The proof is similar with the proof of Lemma 3.3 from [17]. Let us denote ak =
(nx)k

k! eα
√

k
n . We have

0 ≤ ak+1 ≤ ak, if and only if nx ∈
[
0, (k + 1)e−

α
√

n

(√
k+1−

√
k
))
.

By taking k = 0, 1, . . . we get

a1 ≤ a0, if and only if nx ∈
[
0, e−

α
√

n
)

a2 ≤ a1, if and only if nx ∈
[
0, 2e−

α
√

n (
√

2−1)
)

a3 ≤ a2, if and only if nx ∈
[
0, 3e−

α
√

n (
√

3−
√

2)
)

and so on. From all these inequalities, we obtain

if nx ∈ I0 then ak ≤ a0, for all k = 0, 1, . . .
if nx ∈ I1 then ak ≤ a1, for all k = 0, 1, . . .
if nx ∈ I2 then ak ≤ a2, for all k = 0, 1, . . .

and so on. In general, if nx ∈ I j, then ak ≤ a j, for all k = 0, 1, . . . , which proves the lemma.

Lemma 3.3. For every x ≥ 0 we have Fn(eα
√

t, x) ≤ e
α2
n · eα

√
x.

Proof. Suppose nx ∈ I j. By Lemma 3.2 we have

Fn(eα
√

t, x) =

∨
∞

k=0
(nx)k

k! eα
√

k
n∨

∞

k=0
(nx)k

k!

=

(nx) j

j! eα
√

j
n∨

∞

k=0
(nx)k

k!

.
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Let m = bnxc. From Lemma 3.3 in [17] or from Lemma 3.2 for α = 0 we have

∞∨
k=0

(nx)k

k!
=

(nx)m

m!
.

Because m ≤ nx < ( j + 1)e
−

α
√

n

(√
j+1−
√

j
)
< j + 1 we have m ≤ j. Using the inequality 1 − e−x

≤ x we also
have

j − nx ≤ j − je
−

α
√

n

(√
j−
√

j−1
)
= j

(
1 − e

−
α
√

n

(√
j−
√

j−1
))
≤

jα
√

n

(√
j −

√
j − 1

)
=

jα
√

n
(√

j +
√

j − 1
) ≤ α√

j
√

n
.

Because nx < bnxc + 1 = m + 1 we finally obtain

e−α
√

x
· Fn(eα

√
t, x) = e−α

√
x
·

(nx) j

j! eα
√

j
n

(nx)m

m!

=
m!(nx) j

j!(nx)m e
α
√

n

(√
j−
√

nx
)
≤

( nx
m + 1

) j−m
e

α( j−nx)
√

n(
√

j+
√

nx) ≤ e
α2√ j

n(
√

j+
√

nx) ≤ e
α2
n .

Remark 3.4. We have Fn

(
max

(
eα
√

t, eα
√

x
)
, x

)
≤ e

α2
n · eα

√
x, for every x ≥ 0. Indeed,

Fn

(
max

(
eα
√

t, eα
√

x
)
, x

)
= max

(
Fn

(
eα
√

t, x
)
,Fn

(
eα
√

x, x
))
≤ max

(
e
α2
n eα

√
x, eα

√
x
)
= e

α2
n · eα

√
x.

Remark 3.5. For ϕ(x) =
√

x, for every function f belonging to Cϕ,α the functions Fn f also belong to Cϕ,α. Indeed,∣∣∣Fn( f , x)
∣∣∣ ≤ Fn(| f |, x) ≤ Fn

(∥∥∥ f
∥∥∥
ϕ,α

eα
√

t, x
)
=

∥∥∥ f
∥∥∥
ϕ,α

Fn(eα
√

t, x) ≤
∥∥∥ f

∥∥∥
ϕ,α

e
α2
n · eα

√
x.

Lemma 3.6. For every x ≥ 0 and n ∈N the following inequality holds true∨
k≤nx

(nx)k

k!

(√
nx −

√
k
)

∨
∞

k=0
(nx)k

k!

≤ 1.

Proof. We have already remarked that
∨
∞

k=0
(nx)k

k! =
(nx)m

m! , with m = bnxc. If m = 0, the inequality to be proved
is
√

nx ≤ 1, which is true because nx ∈ [0, 1). Consider the case m = 1. The inequality to be proved is true,
because

max
(√

nx,nx(
√

nx − 1)
)

nx
= max

(
1
√

nx
,
√

nx − 1
)
≤ max(1,

√

2 − 1) ≤ 1.

In what follows we consider m ≥ 2. Let us denote bk =
(nx)k

k!

(√
nx −

√
k
)
. First, we observe that

b0∨
∞

k=0
(nx)k

k!

=
m!
√

nx
(nx)m =

2
nx
· · ·

m
nx
·

1
√

nx
≤ 1.

It remains to evaluate the maximum of bk, for k ≥ 1. We have

bk =
(nx)k

k!

(√
nx −

√

k
)
=

(nx)k

k!
·

nx − k
√

nx +
√

k
≤

(nx)k

k!
nx − k
√

nx + 1
.
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Let us denote ck =
(nx)k

k!
nx−k
√

nx+1
. We have

ck

ck−1
=

nx
k
·

nx − k
nx − k + 1

≤ 1

if and only if nx(nx− k) ≤ k(nx− k)+ k which is equivalent to (nx− k)2
≤ k. So, for every integer k ≤ nx with

the property nx ≤ k +
√

k we have bk ≤ bk−1.
In particular, by taking k = 2, 3, . . . we have

c2 ≤ c1 if and only if nx ∈ [2, 2 +
√

2)

c3 ≤ c2 if and only if nx ∈ [2, 3 +
√

3)
c4 ≤ c3 if and only if nx ∈ [2, 6)

and so on. Let us denote Jk =
[
k +
√

k, k + 1 +
√

k + 1
)
, for k = 1, 2, . . . . We deduce that if nx ∈ J j then ck ≤ c j,

for every k ≥ 1. We obtain∨
1≤k≤nx

bk

(nx)m

m!

≤

∨
1≤k≤nx

ck

(nx)m

m!

=

(nx) j

j!

(nx)m

m!

·
nx − j
√

nx + 1
≤

nx − j
√

nx + 1
≤

√
j + 1 + 1√

j +
√

j + 1
≤ 1.

Lemma 3.7. For every x ≥ 0 and for every α ≥ 0 and n ∈N, such that n ≥ α2 the following inequality holds true∨
k>nx

(nx)k

k! eα
√

k
n

(√
k −
√

nx
)

∨
∞

k=0
(nx)k

k!

≤ e
2α
√

n · eα
√

x.

Proof. We have
∨
∞

k=0
(nx)k

k! =
(nx)m

m! , with m = bnxc. For m = 0 we have

∨
k>nx

(nx)k

k! eα
√

k
n

(√
k −
√

nx
)

∨
∞

k=0
(nx)k

k!

<
∨
k≥1

e
α
√

k
√

n ·
√

k
k!

≤ e
2α
√

n ,

because for k ≥ 2 the sequence dk =
e
α(
√

k−2)
√

n ·
√

k
k! is decreasing and we have dk ≤ max(d2, d1) < 1.

Consider the case m ≥ 1. Using the inequality

√

k −
√

nx =
k − nx
√

k +
√

nx
≤

k − nx
2
√

nx

and denoting dk =
(nx)k

k! e
α
√

n
·

k−nx
2
√

nx ·
k−nx
2
√

nx
, it remains to prove that∨

k>nx dk
(nx)m

m!

≤ e
2α
√

n .

The inequality dk+1
dk
≥ 1 is true if and only if k > nx is an integer such that nxe

α
2n
√

x (k+ 1− nx) ≥ (k+ 1)(k− nx),
which is equivalent to

k2 + k
[
1 − nx

(
1 + e

α
2n
√

x
)]
+ n2x2e

α
2n
√

x − nx
(
1 + e

α
2n
√

x
)
≤ 0.
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So, dk+1 ≥ dk if and only if k ∈ [k1, k2], where

k1 =
−1 + nx

(
1 + e

α
2n
√

x
)
−

√[
1 + nx

(
e

α
2n
√

x − 1
)]2
+ 4nx

2

k2 =
−1 + nx

(
1 + e

α
2n
√

x
)
+

√[
1 + nx

(
e

α
2n
√

x − 1
)]2
+ 4nx

2

Because k1 < nx < k2 we deduce that
∨

k>nx dk = d j, where j = bk2c + 1. Because the function f : [1,∞)→ R
defined by

f (t) =
1 + t

(
e

α
2
√

nt − 1
)

2
√

t

is decreasing, we have that f (nx) ≤ f (m) ≤ f (1) = 1
2 e

α
2
√

n . Using this inequality and the fact that 1(t) =
t+
√

t2+1
2 ≤

1
2 + t, we obtain

j − nx

2
√

nx
=
bk2c + 1 − nx

2
√

nx
≤

k2 + 1 − nx
2
√

nx
= 1

(
f (nx)

)
≤

1
2
+

1
2

e
α

2
√

n .

We finally obtain∨
k>nx dk
(nx)m

m!

≤ e
α
√

n
j−nx

2
√

nx ·
j − nx

2
√

nx
≤ e

α
2
√

n
(1+e

α
2
√

n )
·

1 + e
α

2
√

n

2
≤ e

2α
√

n .

Lemma 3.8. For every x, α ≥ 0 and n ≥ α2 we have

Fn

(
max

(
eα
√

t, eα
√

x
) ∣∣∣√t −

√
x
∣∣∣ , x) ≤ 1

√
n

e
2α
√

n · eα
√

x.

Proof. We have

Fn

(
max

(
eα
√

t, eα
√

x
) ∣∣∣√t −

√
x
∣∣∣ , x) = max (An,Bn) ,

where

An =

∨
k>nx

(nx)k

k! eα
√

k
n

(√
k
n −
√

x
)

∨
∞

k=0
(nx)k

k!

,

Bn =

∨
k≤nx

(nx)k

k! eα
√

x
(
√

x −
√

k
n

)
∨
∞

k=0
(nx)k

k!

.

By Lemma 3.7 we have An ≤
1
√

n
e

2α
√

n · eα
√

x and by Lemma 3.6, Bn ≤
1
√

n
eα
√

x.

Theorem 3.9. For ϕ(x) =
√

x, for every f ∈ Cϕ,α the estimation of the error of uniform approximation by Fn is given
by ∥∥∥Fn f − f

∥∥∥
ϕ,α
≤

(
e
α2
n + e

2α
√

n

)
· ωϕ,α

(
f ,

1
√

n

)
,

for every n ∈N, n ≥ α2.
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Proof. Because Fn(1, x) = 1, using [17, Lemma 2.1] and (4) we obtain

∣∣∣Fn( f , x) − f (x)
∣∣∣ ≤ Fn(

∣∣∣ f (t) − f (x)
∣∣∣ , x) ≤ Fn

max
(
eα
√

t, eα
√

x
) 1 +

∣∣∣√t −
√

x
∣∣∣

δn

 , x
 · ωϕ,α( f , δn)

≤

(
Cn(x) +

Dn(x)
δn

)
ωϕ,α( f , δn),

where

Cn(x) = Fn

(
max

(
eα
√

t, eα
√

x
)
, x

)
Dn(x) = Fn

(
max

(
eα
√

t, eα
√

x
) ∣∣∣√t −

√
x
∣∣∣ , x) .

Using Remark 3.4 and Lemma 3.8 and choosing δn =
1
√

n
we get

e−α
√

x
∣∣∣Fn( f , x) − f (x)

∣∣∣ ≤ (
e
α2
n + e

2α
√

n

)
ωϕ,α

(
f ,

1
√

n

)
,

which proves the theorem.

For the particular case α = 0 we obtain

Corollary 3.10. The Favard-Szász-Mirakjan operators of max-product type Fn have the property that
∥∥∥Fn f − f

∥∥∥→ 0
if f (t2) is uniformly continuous on [0,∞). Moreover,

∣∣∣Fn( f , x) − f (x)
∣∣∣ ≤ 2 · ω

(
f (t2),

1
√

n

)
, for every n ∈N and x ∈ [0,∞).

Remark 3.11. Corollary 3.10 extends the result of [17, Theorem 4.1] to some unbounded functions. For example, the
function f (x) =

√
x is unbounded and has the property that f (t2) is uniformly continuous on [0,∞), so the square

root function can be uniformly approximated on [0,∞). Theorem 3.9 extends the result to unbounded functions of
order O(eα

√
x).

Remark 3.12. Let us observe that for some classes of functions the order of approximation is better that 1
√

n
. Using

the proofs of Lemma 4.2, Lemma 4.3, Corollary 4.4 from [17] we deduce that the estimate∣∣∣Fn( f , x) − f (x)
∣∣∣ ≤ M

n
, n ≥ 1,

is true for a positive, increasing, concave and Lipschitz function f , which is not necessarily bounded. For example, if
f is an increasing concave polygonal line, the order of approximation by linear Favard-Szász-Mirakjan operators Sn
is 1
√

n
(see [17, Remark 2, p. 66]) and by max-product Favard-Szász-Mirakjan operators Fn is 1

n , which is essentially
better.

Theorem 3.13. For ϕ(x) =
√

x, for every f ∈ Cϕ,α we have

∥∥∥Sn f − f
∥∥∥
ϕ,α
≤ Cα · ωϕ,α

(
f ,

1
√

n

)
,

for every n ∈N, where Cα > 0 is a constant depending only on α.
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Proof. From [6, Lemma 3.1] we have Sn(eα
√

t, x) ≤ Mα · eα
√

x, where Mα > 0 is a constant depending only on
α. From (4) we obtain

∣∣∣Sn( f , x) − f (x)
∣∣∣ ≤ Sn(

∣∣∣ f (t) − f (x)
∣∣∣ , x) ≤ Sn

(eα√t + eα
√

x
) 1 +

∣∣∣√t −
√

x
∣∣∣

δn

 , x
 · ωϕ,α( f , δn)

≤

(
Cn(x) +

Dn(x)
δn

)
ωϕ,α( f , δn),

where

Cn(x) = Sn

(
eα
√

t + eα
√

x, x
)
≤ (Mα + 1) · eα

√
x

Dn(x) = Sn

((
eα
√

t + eα
√

x
) ∣∣∣√t −

√
x
∣∣∣ , x) = Sn

(
eα
√

t
∣∣∣√t −

√
x
∣∣∣ , x) + eα

√
xSn

(∣∣∣√t −
√

x
∣∣∣ , x) .

Using the Cauchy-Schwarz inequality for positive linear operators |Sn( f · 1, x)| ≤
√

Sn( f 2, x) ·
√

Sn(12, x) and

the estimation Sn

(∣∣∣√t −
√

x
∣∣∣2 , x) ≤ 1

n (see the proof of Corollary 3.2 from [6]) we obtain

Dn(x) ≤
√

Sn

(
e2α
√

t, x
)
·

√
Sn

(∣∣∣√t −
√

x
∣∣∣2 , x) + eα

√
x

√
Sn

(∣∣∣√t −
√

x
∣∣∣2 , x)

≤

√
M2α · e2α

√
x ·

1
√

n
+ eα

√
x
·

1
√

n
=

(√
M2α + 1

)
· eα
√

x
·

1
√

n
.

Choosing δn =
1
√

n
and Cα = 2 +Mα +

√
M2α we get

e−α
√

x
∣∣∣Sn( f , x) − f (x)

∣∣∣ ≤ Cα · ωϕ,α

(
f ,

1
√

n

)
,

which proves the theorem.
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[6] A. Holhoş, Uniform weighted approximation by positive linear operators, Stud. Univ. Babeş-Bolyai Math. 56 no. 3 (2011) 135–146.
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