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Abstract. In the paper minimization of a Lagrange type cost functional over the feasible set of solutions
of higher order differential inclusions with endpoint constraints is studied. Our aim is to derive sufficient
conditions of optimality for m th-order convex and non-convex differential inclusions. The sufficient
conditions of optimality containing the Euler-Lagrange and Hamiltonian type inclusions as a result of
endpoint constraints are accompanied by so-called ”endpoint” conditions. Here the basic apparatus of
locally adjoint mappings is suggested. An application from the calculus of variations is presented and
the corresponding Euler-Poisson equation is derived. Moreover, some higher order linear optimal control
problems with quadratic cost functional are considered and the corresponding Weierstrass-Pontryagin
maximum principle is constructed. Also at the end of the paper some characteristic features of the obtained
result are illustrated by example with second order linear differential inclusions.

1. Introduction

There is a great number of papers dealing with optimal control theory of ordinary and partial differential
inclusions (see [1]-[7],[9],[10]-[12],[17],[18],[21],[22] and their references) and has numerous applications in
both science and engineering. The problems accompanied with the higher order ordinary differential
inclusions are more complicated due to the higher order derivatives. In fact, the difficulty is rather to
construct adjoint Euler-Lagrange inclusions and the endpoint conditions. A convenient procedure for
eliminating this complication in optimal control theory involving higher order derivatives in general is a
formal reduction of these problems by substitution to the system of first order differential inclusions or
equations.

That’s why optimization of higher order differential inclusions (HODIs) has not been studied in the
literature and there have been quite a few number of papers devoted mainly to existence and viability
problems for second order differential inclusions (see, for example [3],[8] and their references).

In the paper [3], a class of boundary value problems of nonlinear nth-order differential equations and
inclusions with nonlocal and integral boundary conditions is studied. New existence results are obtained
by means of some fixed point theorems. Examples are given for the illustration of the results.
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In the paper [8], is proved a theorem on the existence of solutions for a second order differential
inclusion governed by the Clarke subdifferential of a Lipschitzian function and by a mixed semicontinuous
perturbation.

Optimization of higher order differential inclusions was first developed by Mahmudov [13], [15].
The paper[13] is devoted to a second order polyhedral optimization described by ordinary discrete and

DFIs. The stated second order discrete problem is reduced to the polyhedral minimization problem with
polyhedral geometric constraints and in terms of the polyhedral Euler-Lagrange inclusions, necessary and
sufficient conditions of optimality are derived. Derivation of the sufficient conditions for the second order
polyhedral DFIs is based on the discrete-approximation method.

The paper [15] is mainly concerned with the necessary and sufficient conditions of optimality for
Cauchy problem (with fixed initial and free endpoint constraints) of arbitrary higher order discrete and
third-order differential inclusions. Applying optimality conditions of problems with geometric constraints,
for third-order discrete inclusions optimality conditions are formulated.

In the paper [6], two kinds of system of fuzzy differential inclusions are introduced and studied. An
existence of the solutions for one system of fuzzy differential inclusions is proved by using continuous
selection theorem. An existence of the solutions for another system of fuzzy differential inclusions is also
proved by employing the fixed point theorem in the generalized metric space. The results presented in
this paper improve and extend some known results concerned with the multivalued Cauchy problem and
fuzzy differential inclusions.

In the paper [1], the fractional optimal control problem for differential system is considered. The
fractional time derivative is considered in Riemann-Liouville sense. Constraints on controls are imposed.
Necessary and sufficient optimality conditions for the fractional Dirichlet and Neumann problems with the
quadratic performance functional are derived. Some examples are analyzed in details.

In our present paper, we discuss a special kind of optimization problem with HODIs and endpoint
constraints. In fact, the difficulty in the problems with HODIs is rather to construct the Euler-Lagrange type
higher order adjoint inclusions and the suitable endpoint conditions. Obviously, if m = 1 Mahmudov’s and
Euler-Lagrange adjoint inclusions coincide. The paper is organized as follows:

In Section 2 we review the necessary facts and supplementary results from the monograph of Mah-
mudov [17] and papers [14], [16]; Hamiltonian function and argmaximum sets of a set-valued mapping,
together with the locally adjoint mapping (LAM) are introduced and for problem with HODIs and endpoint
constraints (PH) governed by set-valued mapping are formulated. The book [17] presents basic concepts
and principles of mathematical programming in terms of set-valued analysis and develops a comprehen-
sive optimality theory of problems described by ordinary and partial differential inclusions of parabolic,
hyperbolic and elliptic types.

In Section 3 we consider the optimality problem (PH) for m th-order differential inclusions with endpoint
constraints. Construction of convex and nonsmooth analysis are used for the higher order Euler-Lagrange
and Hamiltonian inclusions and endpoint conditions at the endpoints t = 0 and t = 1. For a closed set-valued
mapping F the higher order Euler-Lagrange conditions can be rewritten in term of Hamiltonian function
in much more convenient form. The general connection between argmaximum set and subdifferential of
Hamiltonian plays an important role. We point out that the main difficulty to apply the techniques of [15]
is essentially due to the generality of the Lagrange’s cost functional and endpoint constraints. Derivation
of optimality conditions, which are based on associated discrete-approximate problems with higher order
difference operators is omitted.

In Section 4 we are able to use the results in Section 3 to get Euler-Poisson equation for variation
of calculus theory. Finally, is considered the higher order ”linear” optimal control problem, where the
integrand in the Lagrange type functional is some quadratic form with a symmetric positively semidefinite
matrix. For this problem are established higher order Euler-Lagrange type adjont differential equation, the
endpoint conditions and Weierstrass-Pontryagin maximum principle. Apparently, by using the functional
analysis approach in the convex problems, necessity of these conditions for optimality can be justified.
Proving necessary conditions is, however, subject of separate discussion and, hence, omitted.
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2. Notations and preliminaries

Let 〈x, y〉 be an inner product of elements x, y ∈ Rn. Let suppose that F : (Rn)m ⇒ Rn is a set-valued
mapping from (Rn)m = Rn

× ... ×Rn︸         ︷︷         ︸
m

into the set of subsets ofRn. Then a set-valued mapping F : (Rn)m ⇒ Rn

is convex if its 1phF = {(x, v, vm) : vm ∈ F(x, v)}, v = (v1, ..., vm−1), x, vi ∈ Rn, i = 1, 2, ...,m is a convex subset
of (Rn)m+1. It is convex-valued if F(x, v) is a convex set for each (x, v) ∈ domF = {(x, v) : F(x, v) , ∅}. A
set-valued mapping F : (Rn)m ⇒ Rn is said to be upper semicontinuous at (x0, v0) if for any neighbourhood
U of zero in Rn there exists a neighborhood V of zero in (Rn)m such that

F(x, v) ⊆ F(x0, v0) + U, ∀(x, v) ∈ (x0, v0) + V.

Hamiltonian function and argmaximum set for a set-valued mapping F is defined as follows

HF(x, v, v∗m) = sup
vm

{
〈vm, v∗m〉 : vm ∈ F(x, v)

}
, v∗m ∈ R

n,

F(x, v; v∗m) =
{
vm ∈ F(x, v) : 〈vm, v∗m〉 = HF(x, v, v∗m)

}
,

respectively. For a convex F we set HF(x, v, v∗m) = −∞ if F(x, v) = ∅. In other terms, HF(x, v, v∗m) is the
support function to the set F(x, v), evaluated at v∗m.

For the reader’s convenience let us mention the following definition from the book of Mahmudov [17].

Definition 2.1. A convex cone KA(z0), z = (x, v1, v2) is called the cone of tangent directions at a point z0 =
(x0, v0

1, v
0
2) ∈ A(A ⊂ R(m+1)n) if from z = (x, v1, v2) ∈ KA(z0) it follows that z is a tangent vector to the set A, i.e., there

exists a function ϕ : R1
→ R(m+1)n satisfying z0 + λz + ϕ(λ) ∈ A for sufficiently small λ > 0, where λ−1ϕ(λ)→ 0,

as λ ↓ 0. The closure of A is denoted by clA.

It should be pointed out that the cone KA(z0) is not uniquely defined . In any case the wider a cone of
tangent directions we have the essentially necessary condition for a minimum.

It is known [17] that for convex sets, for sets described by equality and inequality constraints with
differentiability property, etc., the cone of tangent directions can be computed easily. Clearly, for a convex
set A at a point z0 = (x0, v0

1, v
0
2) ∈ A we have ϕ(λ) ≡ 0 and the cone of tangent directions is defined as follows

KA(z0) =
{
(x, v1, v2) : x = α(x − x0), v1 = α(v1 − v0

1), v2 = α(v2 − v0
2), (x, v1, v2) ∈ A, α > 0

}
.

If I is a finite index set, fi, i ∈ I are continuously differentiable functions and the gradient vectors
f ′i (z0), i ∈ I are linearly independent, then by Proposition 3.7 [17] a cone of tangent directions KA(z0), z0 ∈ A
to the set A = {z : fi(z) = 0, i ∈ I} is computed by the formula KA(z0) =

{
z : 〈z, f ′i (z0)〉 = 0, i ∈ I

}
.

In general, for a mapping F a set-valued mapping F∗ : Rn ⇒
(
Rn

)m
defined by

F∗
(
v∗m; (x0, v0, v0

m)
)

:=
{
(x∗, v∗) : (x∗, v∗,−v∗m) ∈ K∗

1phF(x0, v0, v0
m)

}
is called a locally adjoint set-valued mapping (LAM) to F at a point (x0, v0, v0

m) ∈ 1phF, where K∗
1phF(x0, v0, v0

m)
is the dual to a cone of tangent vectors K1phF(x0, v0, v0

m). In what follows another way to define LAMs in the
”non-convex” case is the next one

F∗
(
v∗m; (x0, v0, v0

m)
)

:=
{
(x∗, v∗) : HF(x, v,−v∗m) −HF(x0, v0, v0

m)

≤ 〈x∗, x − x0
〉 + 〈v∗, v − v0

〉,∀(x, v) ∈
(
Rn

)m}
, v0

m ∈ F(x0, v0; v∗m),



E. Mahmudov / Filomat 32:7 (2018), 2367–2382 2370

which is called the LAM to non-convex mapping F at a point (x0, v0, v0
m) ∈ 1phF. The main advantage

of this definition is its simplicity. Clearly, for the convex mapping F the Hamiltonian function HF(·, v∗m) is
concave and by Theorem 2.1 [17] the latter definition of LAM coincide with the previous definition of LAM,
that is

F∗
(
v∗m; (x0, v0, v0

m)
)

:= ∂(x,v)HF(x0, v0, v∗m), v0
m ∈ F(x0, v0, v∗m),

where by convention ∂(x,v)HF(x0, v0, v∗m) = −∂(x,v)

[
HF(x0, v0, v∗m)

]
In Section 3 we are concerned with the optimal control problem for HODIs (m th- order) with endpoint

constraints:

minimize J[x(·)] =

∫ 1

0
L(x(t), x′(t)..., x(m−1)(t), t)dt) (1)

(PH)
dmx(t)

dtm ∈ F(x(t), x′(t) , ... , x(m−1)(t), t) , a.e. t ∈ [0, 1], (2)

x(0) ∈M0, x′(0) ∈M1 , ... , x(m−1)(0) ∈Mm−1, (3)

x(1) ∈ Q0 , x′(1) ∈ Q1 , ... , x(m−1)(1) ∈ Qm−1.

Here F(·, t) :
(
Rn

)m
⇒ Rn is a set-valued mapping, L(·, t) :

(
Rn

)m
→ R1, is continuous with respect to

the first m components and Mk,Qk ⊂ R
n, k = 0, 1, ...,m − 1 are nonempty subsets. The problem is to find a

trajectory x̃(t) of the generalized boundary value problem (1)-(3) for the m th -order differential inclusions
satisfying (2) almost everywhere (a.e.) on [0, 1] and the endpoint conditions (3) on [0, 1] that minimizes the
Lagrange type cost functional J[x(·)]. We label this problem as (PH). A feasible solution x(·) is absolutely
continuous function on a time interval [t0, t1] together with the higher order derivatives until m − 1, and
xm(·) ≡ dmx(·)

dtm ∈ Ln
1([0, 1]). Note that such class of functions is a Banach space, equipped with the different

equivalent norms.
The method of discrete-approximation of (PH) with higher order differential inclusions has been very

effective in the investigation of optimality conditions. Thus the basic idea is to replace the continuous
problem (PH) by the discrete-approximation problem:

minimize Jδ[x(·)] =
∑

t=mδ,...,1−mδ

δL
(
x(t − (m − 1)δ),∆x(t − (m − 1)δ), ...,∆m−1x(t − (m − 1)δ), t

)
,

∆mx(t) ∈ F
(
x(t),∆x(t), ...,∆m−1x(t), t

)
, t = 0, δ, 2δ ..., 1 − δ, (4)

x(0) ∈M0, ∆x(0) ∈M1 , ... , ∆m−1x(0) ∈Mm−1,

x(1) ∈ Q0 , ∆x(1) ∈ Q1 , ... , ∆(m−1)x(1) ∈ Qm−1,

where m th-order difference operator is defined as follows

∆mx(t) =
1
δm

m∑
k=0

(−1)k
(
m
k

)
x(t + (m − k))δ,

(
m
k

)
=

m!
k!(m − k)!

, t = 0, δ, ..., 1 − δ. (5)

In our studies the general approach to optimization of HODIs is the investigation of the corresponding
discrete-approximate problem via set-valued mappings. This analysis reveals the hidden relationship
between optimal control methods with HODIs and discrete-approximate problem (4), (5); in the problem
(PH) we apply a generalized discrete-approximate Euler-Lagrange transformation formulas for the Cauchy
problem [17], however, a major difficulty consists in minimization of the approximated Lagrange functional
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Jδ[x(·)] in its general form and in checking the endpoint conditions connected with the endpoint constraints
x(0) ∈ M0, ∆x(0) ∈ M1, ...,∆m−1x(0) ∈ Mm−1; x(1) ∈ Q0,∆x(1) ∈ Q1, ...,∆m−1x(1) ∈ Qm−1. Then by passing to
the limit in necessary and sufficient conditions of optimality for problem (4), (5) as δ→ 0 (at least formally),
we can establish the sufficient conditions of optimality for continuous problem (PH). But in the present
paper to avoid a long calculations connected with the discretization method, establishment of optimality
and endpoint conditions at the endpoints t = 0 and t = 1 for the discrete-approximate problem (4), (5) are
omitted. In the next section are studied sufficient conditions of optimality for problem (PH).

3. Sufficient conditions of optimality for (PH).

In this section we introduce the basic notions and notation to be used in the rest of the paper. At
first consider a convex optimization problem, where F(·, t) : (Rn)m ⇒ Rn is a convex set-valued mapping,
L(·, t) : (Rn)m

→ R1 is continuous and convex with respect to the first m components and Mk,Qk ⊂ R
n, k =

0, 1, ...,m − 1 are convex subsets.
As a result of approximation method described at the end of Section 2 we establish so-called the m

th-order Euler-Lagrange differential inclusion for the convex optimization problem (PH):

(i)
(
(−1)m dmx∗(t)

dtm +
dη∗m−1(t)

dt , η∗m−1(t) +
dη∗m−2(t)

dt , ..., η∗2(t) +
dη∗1(t)

dt , η∗1(t)
)

∈ F∗
(
x∗(t); (x̃(t), x̃′(t), ..., x̃(m)(t)), t

)
− ∂(x,v)L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)
, a.e. t ∈ [0, 1].

It is important to note a subtlety in our definition of endpoint conditions in the convex optimization
problem at the endpoints t = 0 and t = 1,

(ii) η∗k(0) + (−1)k+1 dkx∗(0)
dtk ∈ K∗Mm−k−1

(
dm−k−1x̃(0)

dtm−k−1

)
, k = 0, 1, ...,m − 1

(
η∗0(0) = 0

)
,

(iii) −η∗k(1) + (−1)k+1 dkx∗(1)
dtk ∈ K∗Qm−k−1

(
dm−k−1x̃(1)

dtm−k−1

)
, k = 0, 1, ...,m − 1

(
η∗0(1) = 0

)
,

where K∗N(x0) is the dual to a cone of tangent vectors KN(x0), x0 ∈ N.
We refer the reader to [17], [18] for a review of notation and terminology for first order ordinary

differential inclusions.
Later on we suppose that x∗(t), t ∈ [0, 1] is absolutely continuous function with the higher order deriva-

tives until m−1 and dmx∗(·)
dtm ∈ Ln

1

(
[0, 1]

)
. In addition, let η∗k(t), k = 1, ...,m−1, t ∈ [0, 1] be absolutely continuous

and
dη∗k(·)

dt ∈ Ln
1

(
[0, 1]

)
, k = 1, ...,m − 1.

Besides, in terms of argmaximum set we shall offer a condition providing that the LAM F∗ is nonempty
at a given point:

(iv)
dmx̃(t)

dtm ∈ F
(
x̃(t), x̃′(t) , ... , x̃(m−1)(t); x∗(t), t

)
, a.e. t ∈ [0, 1],

It turns out that the following theorem is true.

Theorem 3.1. Let L(·, t) :
(
Rn

)m
→ R1 be continuous convex function, F(·, t) :

(
Rn

)m
⇒ Rn be a convex set-valued

mapping and Mk,Qk ⊂ R
n, k = 0, 1, ...,m − 1 be convex subsets. Then for the optimality of the trajectory x̃(t) in

the convex optimization problem (PH) it is sufficient that there exists a collection of absolutely continuous functions
η∗k(·), k = 1, ...,m − 1 and an absolutely continuous function x∗(·) with the higher order derivatives until m − 1
satisfying a.e. the m th-order Euler-Lagrange differential inclusion (i), (iv), endpoint conditions (ii) and (iii) at the
endpoints t = 0, t = 1.
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Proo f . Obviously, by Theorem 2.1 [17] the LAM F∗(v∗m; (x, v), t) = ∂(x,v)HF(x, v, v∗m, t), vm ∈ F(x, v; v∗m, t), v =
(v1, ..., vm−1). On the other hand in the sense of convex analysis by convention convention −∂(x,v)L(x, v, t) =
∂(x,v)(−L(x, v, t)), (x, v) ∈ domL(·, t). Then taking into account the Moreau-Rockafellar theorem [17], [18], [20]
from the condition (i) in term of Hamiltonian function we obtain the m th-order adjoint differential inclusion

(
(−1)m dmx∗(t)

dtm +
dη∗m−1(t)

dt
, η∗m−1(t) +

dη∗m−2(t)
dt

, ..., η∗2(t) +
dη∗1(t)

dt
, η∗1(t)

)
∈ ∂(x,v)

[
HF

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), x∗(t), t

)
− L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)]
.

By using of the classical subdifferential definition, we rewrite the last relation in the form

HF

(
x(t), x′(t), ..., x(m−1)(t), x∗(t), t

)
−HF

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), x∗(t), t

)
−L

(
x(t), x′(t), ..., x(m−1)(t), t

)
+ L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)
≤

〈
(−1)m dmx∗(t)

dtm +
dη∗m−1(t)

dt
, x(t) − x̃(t)

〉
+

〈
η∗m−1(t) +

dη∗m−2(t)
dt

, x′(t) − x̃′(t)
〉

(6)

+
〈
η∗m−2(t) +

dη∗m−3(t)
dt

, x′′(t) − x̃′′(t)
〉

+ ... +
〈
η∗2(t) +

dη∗1(t)
dt

, x(m−2)(t) − x̃(m−2)(t)
〉

+
〈
η∗1(t), x(m−1)(t) − x̃(m−1)(t)

〉
,

where we denote by x(·) the feasible solution of the problem (PH).
It follows from the definition of Hamiltonian function, (6), condition (iv), and the product rule from

differentiation that

〈dmx(t)
dtm , x∗(t)

〉
−

〈dmx̃(t)
dtm , x∗(t)

〉
− L

(
x(t), x′(t), ..., x(m−1)(t), t

)
+L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)
≤

〈
(−1)m dmx∗(t)

dtm , x(t) − x̃(t)
〉

+
d
dt

〈
η∗m−1(t), x(t) − x̃(t)

〉
+

d
dt

〈
η∗m−2(t), x′(t) − x̃′(t)

〉
+ ... +

d
dt

〈
η∗1(t), x(m−2)(t) − x̃(m−2)(t)

〉
.

Now let us rewrite this inequality as follows

L
(
x(t), x′(t), ..., x(m−1)(t), t

)
− L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)
≥

〈dm
(
x(t) − x̃(t)

)
dtm , x∗(t)

〉
+

〈
(−1)m+1 dmx∗(t)

dtm , x(t) − x̃(t)
〉

−

m−1∑
k=1

d
dt

〈
η∗k(t),

dm−k−1(x(t) − x̃(t))
dtm−k−1

〉
(7)

Integrating the relation (7) implies
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∫ 1

0

[
L
(
x(t), x′(t), ..., x(m−1)(t), t

)
− L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)]
dt

≥

∫ 1

0

[〈dm
(
x(t) − x̃(t)

)
dtm , x∗(t)

〉
+

〈
(−1)m+1 dmx∗(t)

dtm , x(t) − x̃(t)
〉]

dt

−

m−1∑
k=1

〈
η∗k(t),

dm−k−1(x(t) − x̃(t))
dtm−k−1

〉∣∣∣∣∣∣
t=1

t=0

=

∫ 1

0

[〈dm
(
x(t) − x̃(t)

)
dtm , x∗(t)

〉

+

〈
(−1)m+1 dmx∗(t)

dtm , x(t) − x̃(t)
〉]

dt +

m−1∑
k=1

〈
η∗k(0),

dm−k−1(x(0) − x̃(0))
dtm−k−1

〉

−

m−1∑
k=1

〈
η∗k(1),

dm−k−1(x(1) − x̃(1))
dtm−k−1

〉
(8)

Let us denote

A(t) =

〈dm
(
x(t) − x̃(t)

)
dtm , x∗(t)

〉
+

〈
(−1)m+1 dmx∗(t)

dtm , x(t) − x̃(t)
〉

(9)

and transform the integral of A(t). Consequently in this way, repeating the techniques from [21] by
analogy it can be shown the following remarkable integral representation of A(t) (see(9)):

∫ 1

0
A(t)dt =

m−1∑
k=0

〈dm−k−1
(
x(0) − x̃(0)

)
dtm−k−1

, (−1)k+1 dkx∗(0)
dtk

〉

−

m−1∑
k=0

〈dm−k−1
(
x(1) − x̃(1)

)
dtm−k−1

, (−1)k+1 dkx∗(1)
dtk

〉
. (10)

Therefore, substitution (10) into (8) implies

∫ 1

0

[
L
(
x(t), x′(t), ..., x(m−1)(t), t

)
− L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)]
dt

≥

m−1∑
k=0

〈dm−k−1
(
x(0) − x̃(0)

)
dtm−k−1

, (−1)k+1 dkx∗(0)
dtk

〉
−

m−1∑
k=0

〈dm−k−1
(
x(1) − x̃(1)

)
dtm−k−1

, (−1)k+1 dkx∗(1)
dtk

〉

+

m−1∑
k=1

〈
η∗k(0),

dm−k−1
(
x(0) − x̃(0)

)
dtm−k−1

〉
−

m−1∑
k=1

〈
η∗k(1),

dm−k−1
(
x(1) − x̃(1)

)
dtm−k−1

〉

Therefore, we have
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∫ 1

0

[
L
(
x(t), x′(t), ..., x(m−1)(t), t

)
− L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)]
dt

≥

m−1∑
k=0

〈
η∗k(0) + (−1)k+1 dkx∗(0)

dtk
,

dm−k−1
(
x(0) − x̃(0)

)
dtm−k−1

〉

−

m−1∑
k=0

〈
η∗k(1) + (−1)k+1 dkx∗(1)

dtk
,

dm−k−1
(
x(1) − x̃(1)

)
dtm−k−1

,

〉
,
(
η∗0(0) = η∗0(1) = 0

)
. (11)

But by the endpoint conditions (ii), (iii) at the endpoints t = 0 and t = 1

〈
η∗k(0) + (−1)k+1 dkx∗(0)

dtk
,

dm−k−1
(
x(0) − x̃(0)

)
dtm−k−1

〉
≥ 0, ∀x(k)(0) ∈Mk, k = 0, 1, ...,m − 1

−

〈
η∗k(1) + (−1)k+1 dkx∗(1)

dtk
,

dm−k−1
(
x(1) − x̃(1)

)
dtm−k−1

〉
≥ 0, ∀x(k)(1) ∈ Qk, k = 0, 1, ...,m − 1. (12)

Now taking into account (12), (13) in (11) for all feasible trajectories we have∫ 1

0

[
L
(
x(t), x′(t), ..., x(m−1)(t), t

)
− L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)]
dt ≥ 0,

that is, J[x(t)] ≥ J[x̃(t)],∀x(t), t ∈ [0, 1] and x̃(t), t ∈ [0, 1] is optimal. �
Notice that for a convex and closed set-valued mapping F (1phF is closed) the conditions (i), (iv) of

Theorem 3.1 can be replaced by subdifferential of Hamiltonian function with respect to (x, v), v = (v1, ..., vm−1)
and v∗m, respectively. To this end we need the following auxiliary theorem, which is proved under the
”pointwise” closedness of F (F(x, v) is closed set for each (x, v)). Evidently, this assumption is weaker than
the usual closedness of F (1phF is closed).

Theorem 3.2. Let F : (Rn)m ⇒ Rn be convex set-valued mapping and F(x, v), be closed set for each (x, v) ∈ domF
and HF(x, v, v∗m) = supvm

{〈vm, v∗m〉 : vm ∈ F(x, v)}, v∗m ∈ Rn. Then

∂v∗m HF(x, v, v̄∗m) = F(x, v; v̄∗m), where F(x, v; v̄∗m) = {vm ∈ F(x, v) : 〈vm, v̄∗m〉 = HF(x, v, v̄∗m)}.

In particular, if v̄∗m = 0, then ∂v∗m HF(x, v, 0) = F(x, v).

Proo f . If vm ∈ F(x, v; v∗m) or, equivalently, if vm ∈ F(x, v) and 〈vm, v̄∗m〉 = HF(x, v, v̄∗m), then

HF(x, v, v∗m) −HF(x, v, v̄∗m) ≥ 〈vm, v∗m〉 − 〈vm, v̄∗m〉

or

HF(x, v, v∗m) −HF(x, v, v̄∗m) ≥ 〈vm, v∗m − v̄∗m〉,

that is vm ∈ ∂v∗m HF(x, v, v̄∗m). Suppose now that v̄m ∈ ∂v∗m HF(x, v, v̄∗m). At first, we prove that v̄m ∈ F(x, v).
On the contrary, let v̄m < F(x, v). Then by separation theorems of convex sets (see, for example [17]) there is
a vector u such that

sup
vm

{
〈vm,u〉 : vm ∈ F(x, v)

}
< 〈v̄m,u〉. (13)

On the other hand, since v̄m ∈ ∂v∗m HF(x, v, v̄∗m) and the supremum of difference no less than the difference
of supremum’s, it follows that
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supvm

{
〈vm, v∗m − v̄∗m〉 : vm ∈ F(x, v)

}
≥ HF(x, v, v∗m) −HF(x, v, v̄∗m) ≥ 〈v̄m, v∗m − v̄∗m〉.

Recalling that v∗m is an arbitrary vector, by setting in this inequality v∗m = v̄∗m + u, we have

supvm

{
〈vm,u〉 : vm ∈ F(x, v)

}
≥ 〈v̄m,u〉,

which contradicts the inequality (13). It follows that v̄m ∈ F(x, v). Now let us rewrite the condition
v̄m ∈ ∂v∗m HF(x, v, v̄∗m) as follows

HF(x, v, v∗m) − 〈v∗m, v̄∗m〉 ≥ HF(x, v, v̄∗m) − 〈v̄∗m, v̄∗m〉.

By setting here v∗m = 0 , we have immediately 〈v̄∗m, v̄∗m〉 ≥ HF(x, v, v̄∗m). On the other hand, v̄m ∈ F(x, v)
implies that 〈v̄∗m, v̄∗m〉 ≤ HF(x, v, v̄∗m). As consequence, from the last two inequalities it follows that 〈v̄∗m, v̄∗m〉 =
HF(x, v, v̄∗m). This equality together with v̄m ∈ F(x, v) means that v̄m ∈ F(x, v; v̄∗m). In particular, if v̄∗m) = 0,
then HF(x, v, 0) = 〈vm, 0〉 = 0 for all vm ∈ F(x, v) and so ∂v∗m HF(x, v, 0) = F(x, v). �

Below we prove that the 1phF of an upper semi-continuous set-valued mapping (not necessarily convex)
with closed values is closed.

Lemma 3.3. Let F : (Rn)m ⇒ Rn be an upper semi-continuous set-valued mapping and F(x, v), be closed set for each
(x, v) ∈ domF. Then 1phF is closed.

Proo f . We proceed by a contradiction argument; suppose that (xk, vk, vk
m) ∈ 1phF is a convergent sequences

and (xk, vk, vk
m)→ (x0, v0, v0

m) but v0
m < F(x0, v0). Then there exists an open set Λ containing F(x0, v0) such that

v0
m < clΛ Recalling that the set-valued mapping F is upper semi-continuous it follows that there exists a

positive integer k0 such that vk
m ∈ Λ for ∀k > k0. Therefore v0

m ∈ clΛ , a contradiction. �
Below for a closed set-valued mapping F in term of Hamiltonian function the conditions (i), (iv) of

Theorem 3.1 are given in more convenient form.

Corollary 3.4. For a closed set-valued mapping F(·, t) : (Rn)m ⇒ Rn the conditions (i), (iv) of Theorem 3.1 can be
rewritten in term of Hamiltonian function in much more convenient form:(

(−1)m dmx∗(t)
dtm +

dη∗m−1(t)
dt

, η∗m−1(t) +
dη∗m−2(t)

dt
, ..., η∗2(t) +

dη∗1(t)
dt

, η∗1(t)
)

∈ ∂(x,v)HF

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), x∗(t), t

)
− ∂(x,v)L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)
dmx̃(t)

dtm ∈ ∂v∗m HF

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), x∗(t), t

)
, a.e. t ∈ [0, 1].

Proo f . By Theorem 2.1 [17] and Theorem 3.2 we can write

F∗
(
v∗m; (x, v1, ..., vm), t

)
= ∂(x,v)HF(x, v1, ..., vm−1, v∗m, t),

F(x, v1, ..., vm−1; v∗m, t) = ∂v∗m HF(x, v1, ..., vm−1, v∗m, t).

Then the assertions of corollary are equivalent with the conditions (i), (iv) of Theorem 3.1. �

Corollary 3.5. Suppose that in the problem (PH) the conditions
F
(
x(t), x′(t), ..., x(m−1)(t), t

)
≡ F

(
x(t), t

)
, L

(
x(t), x′(t), ..., x(m−1)(t), t

)
≡ L

(
x(t), t

)
, t ∈ [0, 1] are satisfied. Then the

conditions (i)-(iii) of Theorem 3.1 can be simplified as follows

(−1)m dmx∗(t)
dtm ∈ F∗

(
x∗(t); (x̃(t), x̃(m)(t)), t

)
− ∂xL

(
x̃(t), t

)
, a.e. t ∈ [0, 1],

(−1)k+1 dkx∗(0)
dtk

∈ K∗Mm−k−1

(
dm−k−1x̃(0)

dtm−k−1

)
,

(−1)k dkx∗(1)
dtk

∈ K∗Qm−k−1

(
dm−k−1x̃(1)

dtm−k−1

)
, k = 0, 1, ...,m − 1.
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Proo f . Indeed, since in the present case F(x, v1, ..., vm−1, t) ≡ F(x, t) we have v∗ = (v∗1, ..., v
∗

m−1) = 0, which
implies that in the left hand side of the Euler-Lagrange inclusion (i) the last m − 1 components identically
is equal to zero:

η∗m−1(t) +
dη∗m−2(t)

dt ≡ 0, ..., η∗2(t) +
dη∗1(t)

dt ≡ 0, η∗1(t) ≡ 0.

Consequently, by sequentially substitution, it follows that η∗m−1(t) ≡ 0 and so the second term in the first

component in (i) is equal to zero, that is
dη∗m−1(t)

dt ≡ 0 identically. Now taking into account that in the endpoint
conditions (ii), (iii) η∗k(0) = η∗k(1) = 0 , we have the desired result. The proof of corollary is completed �

We can state the following theorem concerning optimization of (PH) in the non-convex case.

Theorem 3.6. Let (1)-(3) be nonconvex problem, that is L(·, t) :
(
Rn

)
m → R1 be non-convex function, F(·, t) :(

Rn
)
m ⇒ Rn be a non-convex set-valued mapping and Mk,Qk ⊂ R

n, k = 0, 1, ...,m − 1 be non-convex subsets.

Moreover, let KMk

(
x̃(k)(0)

)
and KQk

(
x̃(k)(1)

)
(k = 0, 1, ...,m − 1) be the cones of tangent directions. Then for the

optimality of the trajectory x̃(t), t ∈ [0, 1] in the problem (4)-(6) it is sufficient that there exists a collection of
absolutely continuous functions {x∗(t), η∗k(t), k = 1, ...,m − 1}, t ∈ [0, 1] satisfying the conditions:

(a)
(
(−1)m dmx∗(t)

dtm +
dη∗m−1(t)

dt + x∗(t), η∗m−1(t) +
dη∗m−2(t)

dt +
dx∗(t)

dt , ..., η
∗

2(t)

+
dη∗1(t)

dt +
dm−2x∗(t)

dtm−2 , η∗1(t) +
dm−1x∗(t)

dtm−1

)
∈ F∗

(
x∗(t); (x̃(t), x̃′(t), ..., x̃(m)(t)), t

)
, a.e. t ∈ [0, 1].

(b) η∗k(0) + (−1)k+1 dkx∗(0)
dtk ∈ K∗Mm−k−1

(
x̃(m−k−1)(0)

)
, k = 0, 1, ...,m − 1,

−η∗k(1) − (−1)k+1 dkx∗(1)
dtk ∈ K∗Qm−k−1

(
x̃(m−k−1)(1)

)
, k = 0, 1, ...,m − 1,

(c) L
(
x, v1, ..., vm−1, t

)
− L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)
≥

〈
x∗(t), x − x̃(t)

〉
+

∑m−1
k=1

〈
dkx∗(t)

dtk , vk − x̃(k)(t)
〉
, ∀(x, v) ∈

(
Rn

)m
, v = (v1, ...vm−1),

(d)
〈

dmx̃(t)
dtm , x∗(t)

〉
= HF

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), x∗(t), t

)
, a.e. t ∈ [0, 1].

Proo f . We proceed by analogy with the preceding derivation in the proof of Theorem 3.1:

HF

(
x(t), x′(t), ..., x(m−1)(t), x∗(t), t

)
−HF

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), x∗(t), t

)
≤

〈
(−1)m dmx∗(t)

dtm +
dη∗m−1(t)

dt
+ x∗(t), x(t) − x̃(t)

〉
+

〈
η∗m−1(t) +

dη∗m−2(t)
dt

+
dx∗(t)

dt
, x′(t) − x̃′(t)

〉
+... +

〈
η∗2(t) +

dη∗1(t)
dt

+
dm−2x∗(t)

dtm−2 , x(m−2)(t) − x̃(m−2)(t)
〉

+

〈
η∗1(t) +

dm−1x∗(t)
dtm−1 , x(m−1)(t) − x̃(m−1)(t)

〉
,

whereas
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〈
dmx(t)

dtm , x∗(t)
〉
−

〈
dmx̃(t)

dtm , x∗(t)
〉
≤

〈
(−1)m dmx∗(t)

dtm +
dη∗m−1(t)

dt
+ x∗(t), x(t) − x̃(t)

〉
+

〈
η∗m−1(t) +

dη∗m−2(t)
dt

+
dx∗(t)

dt
, x′(t) − x̃′(t)

〉
+ ... +

〈
η∗1(t) +

dm−1x∗(t)
dtm−1 , x(m−1)(t) − x̃(m−1)(t)

〉
,

+

〈
η∗2(t) +

dη∗1(t)
dt

+
dm−2x∗(t)

dtm−2 , x(m−2)(t) − x̃(m−2)(t)
〉
.

Moreover, observe that for non-convex L(·, t) by the condition (c) for all feasible trajectories x(·) the
following inequality is satisfied

L
(
x(t), x′(t), ..., x(m−1)(t), t

)
− L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)
≥

〈
x∗(t), x(t) − x̃(t)

〉
+

m−1∑
k=1

〈
dkx∗(t)

dtk
, x(k)(t) − x̃(k)(t)

〉
.

Therefore, the relation (7) is justified. In what follows the proof of the second part runs similarly. �

Let us denote ∂L
∂x(k) =

∂L
(

x̃(t),x̃′(t),...,x̃(m−1)(t),t
)

∂x(k) , k = 0, ...,m − 1 and require that

L
(
x, v1, ..., vm−1, t

)
− L

(
x̃(t), x̃′(t), ..., x̃m−1(t), t

)
≥

〈
∂L
∂x
, x − x̃(t)

〉
m−1∑
k=1

〈
∂L
∂x(k)

, vk − x̃(k)(t)
〉
, ∀(x, v) ∈

(
Rn

)m
, v = (v1, ..., vm−1). (14)

On the other hand, suppose that the following Euler-Lagrange inclusion is satisfied:

(
(−1)m dmx∗(t)

dtm +
dη∗m−1(t)

dt
+
∂L
∂x
, η∗m−1(t) +

dη∗m−2(t)
dt

+
∂L
∂x′

, ..., η∗2(t)

+
dη∗1(t)

dt
+

∂L
∂x(m−2)

, η∗1(t) +
∂L

∂x(m−1)

)
∈ F∗

(
x∗(t); (x̃(t), x̃′(t), ..., x̃(m)(t), t

)
. (15)

Corollary 3.7. Under the conditions (14), (15) and conditions (b), (d) of Theorem 3.6 the result of Theorem 3.6
remains true.

Proo f . The formulated corollary can be proved similarly to previous theorems, and so its proof omitted. �

4. Applications of higher order optimization for (PH) to calculus of variations

Now we apply Theorem 3.6 to get Euler-Poisson (see, for example [9]) sufficient conditions of optimality
for the calculus of variations. Let us consider the Variational problem of a functional with a single function,
but containing its higher order derivatives. Accordingly, boundary value problem for the calculus of
variations is this:
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minimize J[x(·)] =

∫ 1

0
L(x(t), x′(t)..., x(m−1)(t), t)dt)

(PL) x(0) = x0
0, x′(0) = x0

1, ..., x(m−1)(0) = x0
m−1,

x(1) = x1
0, x′(1) = x1

1, ..., x(m−1)(1) = x1
m−1,

where the Lagrangian L is a real-valued function with continuous first partial derivatives, x(·) ∈
Cm−1

(
[0, 1]

)
and x0

k , x1
k , k = 0, 1, ...,m − 1 are fixed vectors. In the presented case domF(·, t) ≡

(
Rn

)m

and F(·, t) ≡ Rn. It follows that K1phF(x, v, vm) =
(
Rn

)m+1
and K∗

1phF(x, v, vm) ≡ {0, 0, 0} . Therefore

F∗
(
v∗m; (x, v, vm)

)
=

(0, 0) ∈
(
Rn

)m
, if v∗m = 0,

∅ , if v∗m , 0.

Then, obviously, F∗ ≡ {(0, 0)} so that x∗ = v∗m = 0 ∈ Rn, v∗ = 0 ∈
(
Rn

)m−1
. It means that x∗(k)(t) ≡ 0, k =

0, ...,m, t ∈ [0, 1].
Therefore, it follows from (15) that

dη∗m−1(t)
dt

+
∂L
∂x

= 0, η∗m−1(t) +
dη∗m−2(t)

dt
+
∂L
∂x′

= 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

η∗2(t) +
dη∗1(t)

dt
+

∂L
∂x(m−2)

= 0, η∗1(t) +
∂L

∂x(m−1)
= 0, . (16)

Now, beginning from the last relation by sequential substitution in (16) we derive the Euler-Poisson
equation for the problem (PL):

∂L
∂x
−

d
dt

(
∂L
∂x′

)
+

d2

dt2

(
∂L
∂x′′

)
− ... + (−1)m−1 dm−1

dtm−1

(
∂L

∂x(m−1)

)
= 0. (17)

At least we remark that for the problem of calculus of variations (PL) the endpoint condition (b) of
Theorem 3.6 is superfluous. Indeed, for problem (PL)

Mk =
{
x0

k

}
, Qk =

{
x1

k

}
, k = 0, 1, ...,m − 1

and so

KMk

(
x̃(k)(0)

)
= {0} and KQk

(
x̃(k)(1)

)
= {0}, k = 0, 1, ...,m − 1.

Consequently

K∗Mk

(
x̃(k)(0)

)
= Rn K∗Qk

(
x̃(k)(1)

)
= Rn, k = 0, 1, ...,m − 1. (18)

Therefore, the endpoint conditions at the endpoints t = 0 and t = 1 for problem (PL) is unnecessary.
It is well known that in calculus of variations for optimality of the trajectory x̃(t) the Euler-Poisson

equation (17) is necessary condition. Thus, we can formulate the following corollary.
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Corollary 4.1. Let the Lagrangian L be a real-valued function with continuous first partial derivatives such that the
inequality (14) holds. Then for x̃(t), t ∈ [0, 1] to be optimal solution in calculus of variations (PL) it is necessary and
sufficient that the Euler- Poisson equation is satisfied:

m∑
k=1

(−1)k−1 dk−1

dtk−1

(
∂L

∂x(k−1)

)
= 0.

This equation is an ordinary differential equation of order 2(m−1) and requires 2(m−1) boundary conditions.

Remark 4.2. In fact, in the proof of Corollary 4.1 it was shown that for the problem (PH) with higher order differential
inclusions, where Mk = {x0

k}, Qk = {x1
k}, k = 0, 1, ...,m − 1 by virtue of relations (18) the endpoint conditions at the

endpoints t = 0 and t = 1 are unnecessary. Nevertheless, in this particular case, since the equality relations

dm−k−1
(
x(0) − x̃(0)

)
dtm−k−1

=
dm−k−1

(
x(1) − x̃(1)

)
dtm−k−1

= 0

hold it follows that the right hand side of the basic inequality (11) is equal to zero and so

∫ 1

0

[
L
(
x(t), x′(t), ..., x(m−1)(t), t

)
− L

(
x̃(t), x̃′(t), ..., x̃(m−1)(t), t

)]
dt ≥ 0

for all feasible solutions x(t), t ∈ [0, 1], that is, x̃(t) is optimal. �

Now, let us consider optimization of the following higher order ”linear” differential inclusion with
initial value problem, labelled by (PHIV):

minimize J[x(·)] =

∫ 1

0
L0(x(t))dt

(PHIV)
dmx(t)

dtm ∈ F
(
x(t), x′(t), x′′(t), ..., x(m−1)(t)

)
, a.e. t ∈ [0, 1],

x(0) = x0
0, x′(0) = x1

0, x′′(0) = x2
0, ..., x(m−1)(0) = xm−1

0 ,

F
(
x, v1, ..., vm−1

)
≡ A0x +

m−1∑
k=1

Akvk + BU.

Here the integrand L0(x) is equal to the quadratic form L0(x) = 1
2 〈x,Qx〉 + 〈b, x〉, where Q is a symmetric

nonnegative semidefinite n × n matrix and b, xk
0, k = 0, ...,m − 1, are fixed points; xk

0 ∈ R
n. Obviously, this

function is convex and by Theorem 3.1 ∂(x,v)L(x, v1, ..., vm−1, t) ≡
{
∂xL0(x)×(0, ..., 0)︸  ︷︷  ︸

m

}
, where ∂xL0(x) = {Qx+b}.

Moreover, Ai, i = 0, ...,m − 1 and B are n × n and n × r matrices, respectively, U is a convex closed subset
of Rr. In fact, the problem is to find a controlling parameter ũ(t) ∈ U for initial value problem with higher
order ”linear” differential inclusions and free endpoint constraints such that the arc x̃(t) corresponding to it
minimizes J[x(·)].

We will apply the Theorem 3.1. Since Mk = {xk
0}, k = 0, ...,m − 1, by the first formula of (18) it follows

that the endpoint condition (ii) of Theorem 3.1 at the point t = 0 is superfluous. On the other hand in the
problem (PHIV) Qk ≡ R

n, k = 0, ...,m − 1 and KQk

(
x̃(k)(1)

)
≡ Rn. Then K∗Qk

(
x̃(k)(1)

)
= {0}. Consequently, the

endpoint condition (iii) of Theorem 3.1 at the point t = 1 is transformed into equalities
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η∗k(1) + (−1)k+1 dkx∗(1)
dtk

= 0
(
η∗0(1) = 0

)
, k = 0, 1, ...,m − 1. (19)

To formulate of m th-order adjoint Euler-Lagrange differential inclusion for the convex optimization
problem (PHIV) we should compute F∗

(
v∗m; (x, v, vm)

)
. Taking into account that F

(
x, v1, ..., vm−1

)
≡ A0x +∑m−1

k=1 Akvk + BU it can be easily computed that

HF(x, v, v∗m) = sup
vm

{
〈vm, v∗m〉 : vm ∈ F(x, v)

}
= sup

u

{〈
A0x +

m−1∑
k=1

Akvk + BU, v∗m
〉

: u ∈ U
}

= 〈x,A∗0v∗m〉 +
m−1∑
k=1

〈
vk,A∗kv∗m

〉
+ sup

u

{
〈Bu, v∗m〉 : u ∈ U

}
,

where A∗ is the adjoint (transposed) matrix of A.
Then if ṽm = A0x̃ +

∑m−1
k=1 Akṽk + Bũ, ũ ∈ U one has

F∗
(
v∗m; (x̃, ṽ, ṽm)

)
=


(
A∗0v∗m,A∗1v∗m, ...,A∗m−1v∗m

)
, −B∗v∗m ∈ K∗U(ũ),

∅ , −B∗v∗m < K∗U(ũ).
(20)

Thus, using (20) and the relation ∂xL0(x) = {Qx + b} by the condition (i) of Theorem 3.1 we have the
following system of Euler-Lagrange’s type linear adjoint equations:

(−1)m dmx∗(t)
dtm +

dη∗m−1(t)
dt

= A∗0x∗(t) −Qx − b,

η∗m−1(t) +
dη∗m−2(t)

dt
= A∗1x∗(t),

· · · · · · · · · · · · · · · · · · · · · · · · · · ·· (21)

η∗2(t) +
dη∗1(t)

dt
= A∗m−2x∗(t),

η∗1(t) = A∗m−1x∗(t).

By sequential substitution, we find that

η∗1(t) = A∗m−1x∗(t), η∗2(t) = A∗m−2x∗(t) − A∗m−1
dx∗(t)

dt
,

η∗3(t) = A∗m−3x∗(t) − A∗m−2
dx∗(t)

dt
+ A∗m−1

d2x∗(t)
dt2 , (22)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··

η∗m−1(t) = A∗1x∗(t) − A∗2
dx∗(t)

dt
+ A∗3

d2x∗(t)
dt2 − ... − (−1)m−1A∗m−1

dm−2x∗(t)
dtm−2 .

Then taking into account the relations (22) in (19) we can easily see that

s∑
k=1

[
(−1)s−kA∗m−k

ds−kx∗(1)
dts−k

+ (−1)s+1 dsx∗(1)
dts

]
= 0 (x∗(1) = 0), s = 1, 2, ...,m − 1. (23)
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In turn by substituting the expression for η∗k(t), k = 1, ...,m−1 into the first equation in (21) we can define
the following Euler-Lagrange type adjoint differential inclusion (equation);

(−1)m dmx∗(t)
dtm =

m−1∑
k=0

(−1)kA∗k
dkx∗(t)

dtk
−Qx − b. (24)

On the other hand, the Weierstrass-Pontryagin maximum principle [17]-[19] of theorem is an immediate
consequence of the conditions (iv) of Theorem 3.1 and formula (20):

〈
Bũ(t), x∗(t)

〉
= sup

u∈U

〈
Bu, x∗(t)

〉
. (25)

Finally, we can formulate the obtained result as follows.

Theorem 4.3. The arc x̃(t) corresponding to the controlling parameter ũ(t) minimizes the quadratic cost functional
in the higher order linear optimal control problem (PHIV) with initial value problem and free endpoint constraints, if
there exists an absolutely continuous function x∗(t) satisfying the higher order adjoint differential equation (24), the
endpoint condition (23) and Weierstrass-Pontryagin maximum principle (25).

Note that for m = 2 in problem (PHIV), we have the following second order linear problem:

minimize J0[x(·)] subject to d2x(t)
dt2 ∈ F

(
x(t), x′(t)

)
, a.e. t ∈ [0, 1], x(0) = x0

0, x′(0) = x1
0,

where F(x, v1) ≡ A0x+A1v1 +BU. Then we can verify easily that the conditions (23), (24) can be simplified
as follows:

d2x∗(t)
dt2 = A∗0x∗(t) − A∗1

dx∗(t)
dt −Qx − b; dx∗(1)

dt = 0, x∗(1) = 0. �
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