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Abstract. In this paper random fuzzy fractional functional differential equations (RFFFDEs) with Caputo
generalized Hukuhara differentiability are introduced. We present existence and uniqueness results for
RFFFDEs using the idea of successive approximations. The behaviour of solutions when the data of
the equation are subjected to errors is discussed. Furthermore, the solution to random fuzzy fractional
functional initial value problem under Caputo-type fuzzy fractional derivatives by a modified fractional
Euler method (MFEM) is presented. The results are illustrated with examples.

1. Introduction

Fractional differential equations are used in modeling many physical and chemical processes and in
engineering; see the monographs of Podlubny [42] and Kilbas et al. [19] and the papers [12, 23] and
the references therein. Agarwal et al. [1] proposed the concept of solutions for fractional differential
equations with uncertainty and many other authors considered existence and uniqueness of solutions to
fuzzy fractional equations; we refer the reader to [4–6, 10, 25, 46, 47].Various approaches and methods,
based on Hukuhara differentiability or generalized Hukuhara differentiability were then considered to
investigate interval or fuzzy fractional differential equations in a number of papers in literature (see for
example [7]-[9], [14]-[17] and [25, 29, 30]).

Random fuzzy differential equations (RFDEs) consider the phenomena of randomness and also fuzzi-
ness. Puri and Ralescu introduced fuzzy set-valued random variables in [45], and gave the concept of
differentiability by the Hukuhara difference in [43] (the concept of a fuzzy random variable was proposed
by Kwakernaak [22] and used by Kruse and Meyer [21]). Two notions of measurability of fuzzy mappings
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appear in [20, 45] and the relations between different concepts of measurability for fuzzy random variables
were discussed in the papers of Colubi et al. [13], Terán Agraz [3], Puri and Ralescu [43]. In this paper, we
will use the definition of fuzzy random variables introduced by Puri and Ralescu [44]. In [31], the author
considered random fuzzy differential equations with the fuzzy derivative in the sense of Puri and Ralescu
[43] and Malinowski [32, 33] studied two kinds of solutions to RFDEs and under Lipschitz type conditions
he presented local and global existence and uniqueness results for RFDEs using the method of successive
approximations. In [35]-[37], RFDE was extended to stochastic fuzzy differential equations and for other
results on random fuzzy fractional equations we refer the reader to [18, 28, 34].

In this paper we initiate a study on random fuzzy fractional functional differential equations where
we use a concept of a Caputo-type fuzzy fractional derivative. They can be viewed as an extension of
random fuzzy differential equations and deterministic fractional functional differential equations and we
discuss the behaviour of solutions to RFFFDEs with generalized fuzzy Caputo derivatives. Our paper was
motivated partly by results of Bede and Stefanini [11], Agarwal et al. [1, 2], Arshad et al. [10], Lupulescu
[16, 17, 27], Allahviranloo et al. [5, 6, 46], Salahshour [47], Mazandarani et al. [29], Malinowski [33]. In this
paper our aim is to

- show the equivalence of the random fuzzy fractional functional differential equation and the random
fuzzy fractional functional integral equation under suitable conditions.

- prove the existence and uniqueness of solutions of fuzzy fractional integral and differential equations,
and to present the solutions’ behaviour which changes continuously with the initial conditions.

- discuss the modified fractional Euler method for solving random fuzzy functional differential equa-
tions of fractional order with a Caputo-type fuzzy fractional derivative.

In Section 2, we present basic notations of the Riemann-Liouville fractional integral and the Caputo frac-
tional derivative for fuzzy functions. In Section 3, we study existence and uniqueness of solutions to random
fuzzy fractional functional differential equations with Caputo generalized Hukuhara differentiability. The
solution to random fuzzy fractional functional initial value with a Caputo-type fuzzy fractional derivatives
by a modified fractional Euler method is also presented.

2. Preliminaries

In this section, we give some notations and properties related to the fuzzy set space, and summarize the
major results for integration and differentiation of fuzzy-set-valued mappings. We recall also the notations
of fuzzy random variables and fuzzy stochastic processes. Let Kc(Rd) denote the family of all nonempty,
compact and convex subsets of Rd. The addition and scalar multiplication in Kc(Rd) are defined as usual,
i.e., for A,B ∈ Kc(Rd) and λ ∈ R,

A + B = {a + b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A}.

The Hausdorff distance or Pompeiu-Hausdorff distance dH in Kc(Rd) is defined as follows:

dH(A,B) = max{sup
a∈A

inf
b∈B
‖a − b‖, sup

b∈B
inf
a∈A
‖a − b‖},

where A,B ∈ Kc(Rd), and ‖.‖ denotes usual Euclidean norm in Rd. It is known that Kc(Rd) is a complete,
separable and locally compact metric space with respect to dH. The basic definition of fuzzy numbers is
mentioned in [24]. Let E denote the set of fuzzy subsets of the real axis, if u : R → [0, 1], satisfying the
following properties:

(i) u is normal, that is, there exists z0 ∈ R such that u(z0) = 1;

(ii) u is fuzzy convex, that is, for 0 ≤ λ ≤ 1
u(λz1 + (1 − λ)z2) ≥ min{u(z1),u(z2)}, for any z1, z2 ∈ R;
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(iii) u is upper semicontinuous on R;

(iv) [u]0 = cl{z ∈ R : u(z) > 0} is compact, where cl denotes the closure in (R, | · |).

Then E is called the space of fuzzy numbers. For r ∈ (0, 1], denote [u]r = {z ∈ R |u(z) ≥ r} = [u(r),u(r)].
Then from (i) to (iv), it follows that the r−level set [u]r is a closed interval for all r ∈ [0, 1]. For addition and
scalar multiplication in fuzzy set space E, we have [u1 + u2]r = [u1]r + [u2]r, [λu1]r = λ[u1]r. The notation
[u]r = [u(r),u(r)]. We refer to u and u as the lower and upper branches of u, respectively. For u ∈ E, we
define the diameter of the r−level set of u as diam[u]r = u(r) − u(r). The Hausdorff distance between fuzzy
numbers is given by

D0[u1,u2] = sup
0≤r≤1
{|u1(r) − u2(r)|, |u1(r) − u2(r)|}.

The metric space (E,D0) is complete. The following properties of the metric D0 are valid (see [24]):
D0[u1 + u3,u2 + u3] = D0[u1,u2],D0[λu1, λu2] = |λ|D0[u1,u2],D0[u1,u2] ≤ D0[u1,u3] + D0[u3,u2], for all
u1,u2,u3 ∈ E and λ ∈ R. Let u1,u2 ∈ E. If there exists u3 ∈ E such that u1 = u2 + u3 then u3 is called the
H-difference of u1,u2. We denote the u by u1 	 u2. Let us remark that u1 	 u2 , u1 + (−1)u2.

Definition 2.1. [11] The generalized Hukuhara difference of two fuzzy numbers u1,u2 ∈ E (gH-difference
for short) is defined as follows

u1 	1H u2 = u3 ⇔

{
(i) u1 = u2 + u3,

or (ii) u2 = u1 + (−1)u3.

A fuzzy function x : [a, b] → E is called d-increasing (d-decreasing) on [a, b] if for every r ∈ [0, 1] the real
function t 7→ diam[x(t)]r is nondecreasing (nonincreasing) on [a, b]. If x is d-increasing or d-decreasing on
[a, b], then we say that d is d-monotone on [a, b].

Lemma 2.2. Let x : [a, b]→ E be a d -monotone fuzzy function and letω ∈ E be given. Also, let y : [a, b]→ E
be the fuzzy function defined by y(t) = ω 	1H x(t), t ∈ [a, b].

(a) If diam[x(t)]r
≤ diam[ω]r for every r ∈ [0, 1] and for all t ∈ [a, b], then y and x are differently

d-monotonic on [a, b].

(b) If diam[x(t)]r
≥ diam[ω]r for every r ∈ [0, 1] and for all t ∈ [a, b] , then y and x are equally d-monotonic

on [a, b].

Remark 2.3. Let x : [a, b] → E be a d-monotone fuzzy function and let y : [a, b] → E be the fuzzy function
defined by y(t) = x(t) 	1H x(a), t ∈ [a, b]. If x is d-monotone in [a, b], then y is d−increasing.

The generalized Hukuhara differentiability was introduced in [11].

Definition 2.4. Let t ∈ (a, b) and h be such that t + h ∈ (a, b), then the generalized Hukuhara derivative of a
fuzzy-valued function x : (a, b)→ E at t is defined as

D1Hx(t) = lim
h→0

x(t + h) 	1H x(t)
h

. (1)

The fuzzy gH-fractional Caputo differentiability of fuzzy-valued functions was introduced in [5, 29]. For
a detailed discussion on fractional derivatives and fuzzy fractional derivatives, we refer the reader to
[1, 5, 6, 42]. Let C([a, b],E) denote the set of continuous fuzzy-valued functions from [a, b] into E. Then
C([a, b],E) is a complete metric space with respect to the metric D∗0,where D∗0[x1, x2] = supa≤t≤b D0[x1(t), x2(t)].
For γ ∈ [0, 1), we introduce the space Cγ([a, b],E) of interval-valued functions x : (a, b] → E such that the
function (· − a)γx(·) ∈ C([a, b],E). The space Cγ([a, b],E) is a complete metric space with respect to the metric
Dγ

0 , where
Dγ

0 [x1, x2] = sup
a≤t≤b

tγD0[x1(t), x2(t)].
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In this paper, the space Cγ([a, b],E) is called the space of γ−continuous fuzzy functions. The space of all
Lebesgue integrable fuzzy valued functions on the bounded interval [a, b] is denoted by L([a, b],E). A
fuzzy function x : [a, b] → E is said to be absolutely continuous if, for each ε > 0, there exists δ > 0 such

that, for each family {(sk, tk); k = 1, 2, ...,n} of disjoint open intervals in [a, b] with
n∑

k=1
(tk − sk) < δ, we have

n∑
k=1

D0[x(tk), x(sk)] < ε (here D0 is the Hausdorff–Pompeiu distance between fuzzy numbers). Let AC([a, b],E)

denote the set of all absolutely continuous fuzzy functions from [a, b] into E. A fuzzy function x : [a, b]→ E
is absolutely continuous if and only if x(r, t) and x(r, t) are both absolutely continuous for every r ∈ [0, 1]
(see Proposition 4 in Lupulescu [27]).

Fuzzy-valued Riemann-Liouville fractional integral. Recall that if a real function ϕ ∈ L[a, b], then the
Riemann-Liouville fractional integral Iαa+ϕ of order α ∈ (0, 1] is defined by (see [19])

(
Iαa+ϕ

)
(t) =

1
Γ(α)

t∫
a

(t − s)α−1ϕ(s)ds, for t ≥ a.

The Riemann-Liouville derivative of order α ∈ (0, 1] for a real function ϕ ∈ AC[a, b] is defined by (see [19])(
Dα

a+ϕ
)

(t) =
d
dt

I1−α
a+ ϕ(t) =

1
Γ(1 − α)

d
dt

∫ t

a
(t − s)−αϕ(s)ds, t ≥ a.

The Caputo derivative of order α ∈ (0, 1] for a real function ϕ is defined by (see [19])(
CDα

a+ϕ
)

(t) =
1

Γ(1 − α)

∫ t

a
(t − s)−αϕ′(s)ds, t ≥ a.

Let x ∈ L([a, b],E). The Riemann-Liouville fractional integral of order α of the fuzzy-valued function x is
defined as follows:

(=αa+ x)(t) =
1

Γ(α)

t∫
a

(t − s)α−1x(s)ds, t ≥ a,

where Γ(α) is the well-known Gamma function. Since [x(t)]r = [x−r (t), x+
r (t)] and α ∈ (0, 1], then we can

denote the fuzzy-valued Riemann-Liouville integral of the fuzzy-valued function x, (=αa+ x)(t), based on
lower and upper functions, that is,

[
(=αa+ x)(t)

]r
=

[
1

Γ(α)

t∫
a

(t − s)α−1x−r (s)ds,
1

Γ(α)

t∫
a

(t − s)α−1x+
r (s)ds

]
, t ≥ a.

Fuzzy Riemann-Liouville fractional derivative. For a given fuzzy function x ∈ L([a, b],E) and α ∈ (0, 1],
we define the fuzzy function x1−α : [a, b]→ E by

x1−α(t) =
(
=

1−α
a+ x

)
(t) :=

t∫
a

(t − s)−α

Γ(1 − α)
x(s)ds, for t ∈ [a, b].

If the 1H-derivative D1Hx1−α(t) exists for t ∈ [a, b], then D1Hx1−α(t) is called the fuzzy Riemann-Liouville
fractional derivative (or Riemann-Liouville 1H-fractional derivative) of order α ∈ (0, 1]. The Riemann-Liouville
1H-fractional derivative of x will be denoted by RL

D
α
a+ x. Therefore,(

RL
D
α
a+ x

)
(t) := D1H

(
=

1−α
a+ x

)
(t), t ∈ [a, b].
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Lemma 2.5. [16, 17] Let x ∈ L([a, b],E) be a d-monotone fuzzy function such that (RL
D
α
a+ x)(t) exists for

t ∈ [a, b] and y(t) := x(t) 	1H x(a), t ∈ [a, b]. Then, =1−α
a+ y ∈ AC([a, b],E) and d

dt diam[
(
=

1−α
a+ y

)
(t)]r

≥ 0 for
t ∈ [a, b].

Proposition 2.6. [16] If x ∈ L([a, b],E) , then(
RL
D
α
a+=

α
a+ x

)
(t) = x(t), t ∈ [a, b]. (2)

Proposition 2.7. [16] Let x ∈ L([a, b],E) be such that x1−α ∈ AC([a, b],E). If either d
dt diam[x1−α(t)]r

≥ 0 for

t ∈ [a, b] or d
dt diam[x1−α(t)]r

≤ 0 for t ∈ [a, b], then the 1H-difference x(t) 	1H
(t−a)α−1

Γ(α) x1−α(a) exists for t ∈ [a, b],
and (

=
α
a+

RL
D
α
a+ x

)
(t) = x(t) 	1H

(t − a)α−1

Γ(α)
x1−α(a) for t ∈ [a, b]. (3)

Remark 2.8. [16] For 0 ≤ γ < 1, if x ∈ Cγ([a, b],E), then (2) holds for any t ∈ (a, b]. In particular, if
x ∈ C([a, b],E), then (2) holds for any t ∈ [a, b].

Fuzzy-valued Caputo fractional derivative. Let x ∈ L([a, b],E) be a fuzzy function such that the Riemann-
Liouville 1H-fractional derivative RL

D
α
a+ x, α ∈ (0, 1], exists on [a, b]. In this case we can define the fuzzy

Caputo fractional derivative of order α ∈ (0, 1] of x by(
C
D
α
a+ x

)
(t) :=

(
RL
D
α
a+

[
x(·) 	1H x(a)

])
(t), t ∈ [a, b].

We also notice that if x ∈ AC([a, b],E) is a d-monotone fuzzy function and α ∈ (0, 1], then

(
C
D
α
a+ x

)
(t) =

(
=

1−α
a+ D1Hx

)
(t) =

t∫
a

(t − s)−α

Γ(1 − α)
D1Hx(s)ds, t ∈ [a, b]. (4)

Furthermore, if t 7→ diam[x(t)]r is increasing on [a, b] or decreasing on [a, b] for every r ∈ [0, 1], then(
=
α
a+

C
D
α
a+ x

)
(t) = x(t) 	1H x(a), t ∈ [a, b].

Remark 2.9. Let x : [a, b]→ E be a fuzzy-valued function on [a, b].

(i) If x is d-increasing for all t ∈ [a, b] then [(C
1HD

α
a+ x)(t)]r =

[
CDα

a+ x(t, r), CDα
a+ x(t, r)

]
.

(ii) If x is d-decreasing for all t ∈ [a, b] then [(C
1HD

α
a+ x)(t)]r =

[
CDα

a+ x(t, r), CDα
a+ x(t, r)

]
.

Let (Ω,F ,P) be a complete probability space. A function x : Ω → E is called a fuzzy random vari-
able, if the set-valued mapping [x(·)]α : Ω → Kc(R) is a measurable multiplication for all α ∈ [0, 1], i.e.{
ω ∈ Ω| [x (ω)]α ∩ B , ∅

}
∈ F for every closed set B ⊂ R. A mapping x : [a, b] ×Ω→ E is said to be a fuzzy

stochastic process if x(·, ω) is a fuzzy set-valued function with any fixed ω ∈ Ω, and x(t, ·) is a fuzzy random
variable for any fixed t ∈ [a, b]. In [31], the x(·, ω) function is called a trajectory. A fuzzy stochastic process
x(t, ω) ∈ E is called continuous if for almost all ω ∈ Ω the trajectory x(·, ω) is a continuous function on [a, b]
with respect to the metric D0.

For convenience, from now on, the fact that there that exists Ω0 ⊂ Ω such that P(Ω0) = 1 and for every

ω ∈ Ω0 we have x(ω) = y(ω), where x, y are random elements, will be written as x(ω) P.1= y(ω). Similarly, for in-
equalities. Also if there exists Ω0 ⊂ Ω such thatP(Ω0) = 1 and for every fixedω ∈ Ω0 we have x(t, ω) = y(t, ω)

for every t ∈ [a, b], where x, y are stochastic processes, then we will write x(t, ω)
[a−σ,a+p],P.1

= y(t, ω) in short, or
x(t, ω) = y(t, ω) for every t ∈ [a, b] with P.1. Similarly, for inequality.
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3. Main results

In this section, we give existence and uniqueness theorems for a solution of a fuzzy fractional functional
integral equation and these results are used to investigate existence and uniqueness results for solutions of
fuzzy fractional functional differential equations.

For σ > 0, we denote by Cσ the space C([−σ, 0],E) equipped with the metric defined by

Dσ
[
x, y

]
= sup

t∈[−σ,0]
D0

[
x(t), y(t)

]
Define I = [a, b], J = [a − σ, a] ∪ I = [a − σ, b]. Then, for each t ∈ I we denote by xt the element of Cσ defined
by xt(s) = x(t + s) for s ∈ [−σ, 0].

We assume that f : Ω × I × Cσ → E satisfies the following hypotheses:
(A1) f·(t, ϕ) : Ω→ E is a fuzzy random variable for (t, ϕ) ∈ I × Cσ and fω(·, ϕ) : I → E is measurable for any
ϕ ∈ Cσ,
(A2) with P.1 the mapping fω(·, ·) : (a, b] × Cσ → E is a γ−continuous fuzzy mapping at every point
(t0, ϕ0) ∈ I × Cσ, i.e., there exists Ω0 ⊂ Ω with P(Ω0) = 1 such that for every ω ∈ Ω the following is true: for
every ε > 0 there exists δ > 0 such that for every t ∈ I and ϕ ∈ Cσ we have

max{|t − t0|,Dσ[ϕ,ϕ0]} < δ⇒ Dγ
0 [ fω(t, ϕ), fω(t0, ϕ0)] < ε.

Fuzzy fractional functional integral equation: Consider the following random fuzzy fractional functional
integral equation

x(t, ω) P.1= ϕ(t − a, ω) for t ∈ [a − σ, a]

x(t, ω) 	1H ϕ(0, ω) P.1=
1

Γ(α)

t∫
a

(t − s)α−1 fω(s, xs)ds, t ∈ I.
(1)

If x is a continuous fuzzy stochastic process such that diam[x(t, ω)]r
≥ diam[ϕ(0, ω)]r for all t ∈ [a, b], for

P−a.a. ω and for every r ∈ [0, 1], then (1) can be written as
x(t, ω) P.1= ϕ(t − a, ω) for t ∈ [a − σ, a]

x(t, ω) 	 ϕ(0, ω) P.1=
1

Γ(α)

t∫
a

(t − s)α−1 fω(s, xs)ds, t ∈ [a, b] .
(2)

If x is a continuous fuzzy stochastic process such that diam[x(t, ω)]r
≤ diam[ϕ(0, ω)]r for all t ∈ [a, b], for

P−a.a. ω and for every r ∈ [0, 1], then (1) can be written as
x(t, ω) P.1= ϕ(t − a, ω) for t ∈ [a − σ, a]

ϕ(0, ω) 	 x(t, ω) P.1=
(−1)
Γ(α)

t∫
a

(t − s)α−1 fω(s, xs)ds, t ∈ [a, b] .
(3)

Theorem 3.1. Let f : Ω × [a, b] × Cσ → E satisfies the conditions (A1)-(A2) and assume that there exist
positive constants L,M such that for every ψ, ξ ∈ Cσ

D0
[

fω(t, ξ), fω(t, ψ)
] [a,b],P.1
≤ LDσ[ξ, ψ], D0

[
fω(t, ξ), 0̂

] [a,b],P.1
≤ M.

Then, the following successive approximations given byx0(t, ω)
[a−σ,a],P.1

= ϕ(t − a, ω),

x0(t, ω)
[a,b],P.1

= ϕ(0, ω)
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and for n = 1, 2, ...
xn(t, ω)

[a−σ,a],P.1
= ϕ(t − a, ω),

xn(t, ω) 	1H ϕ(0, ω)
[a,b],P.1

=
1

Γ(α)

t∫
a

(t − s)α−1 fω(s, xn−1
s )ds

(4)

converge uniformly to a unique solution of the random fractional functional integral equation (1) on some
intervals [a,T] for some T ∈ (a, b].

Proof. Let ρ > 0 be a given real number, and let Bρ(x0) := {x ∈ E |D0[x, x0] ≤ ρ}. Choose t∗ > a such that

t∗ − a ≤
(ρΓ(1 + α)

M

)1/α
and put T := min{t∗, b}. Let B be a set of continuous fuzzy stochastic processes x such

that x(t, ω) = ϕ(t − a, ω) for (t, ω) ∈ [a − σ, a] ×Ω and x(t, ω)
[a,T],P.1
∈ Bρ(x0). Next, we consider the sequence of

continuous fuzzy stochastic processes {xn
}
∞

n=0 given by: x0(t, ω)
[a,T],P.1

:= x0, wherex0(t, ω)
[a−σ,a],P.1

= ϕ(t − a, ω),

x0(t, ω)
[a,T],P.1

= ϕ(0, ω)

and for n = 1, 2, ...
xn(t, ω)

[a−σ,a],P.1
= ϕ(t − a, ω),

xn(t, ω) 	1H ϕ(0, ω)
[a,T],P.1

=
1

Γ(α)

t∫
a

(t − s)α−1 fω(s, xn−1
s )ds.

(5)

For all n ≥ 0, it follows that xn(t, ω)
[a,T],P.1
∈ Bρ(x0) if and only if xn(t, ω)	1H ϕ(0, ω)

[a,T],P.1
∈ Bρ(0̂). If we suppose

that xn−1(t, ω)
[a,T],P.1
∈ B for a given n ≥ 2, then from

D0[xn(t, ω) 	1H ϕ(0, ω), 0̂]
[a,T],P.1
≤

1
Γ(α)

t∫
a

(t − s)α−1D0[ fω(s, xn−1
s ), 0̂]ds

[a,T],P.1
≤

M(t − a)α

Γ(1 + α)
≤ ρ

it follows that xn(t, ω)
[a,T],P.1
∈ B. Hence, by mathematical induction, we have that xn(t, ω)

[a,T],P.1
∈ B for all

n ≥ 1. For (t, ω) ∈ [a,T] ×Ω and n ≥ 1, let us denote fω(t, xn(t, ω)) by Fn
ω(t). Next, for any t1, t2 ∈ [a,T] with

t1 < t2, we have

Γ(α)D0[xn(t1, ω) 	1H ϕ(0, ω), xn(t2, ω) 	1H ϕ(0, ω)]

[a,T],P.1
= D0

[ t1∫
a

(t1 − s)α−1Fn−1
ω (s)ds,

t2∫
a

(t2 − s)α−1Fn−1
ω (s)ds

]
[a,T],P.1

= D0

[ t1∫
a

(t1 − s)α−1Fn−1
ω (s)ds,

t1∫
a

(t2 − s)α−1Fn−1
ω (s)ds +

t2∫
t1

(t2 − s)α−1Fn−1
ω (s)ds

]
.
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Since

diam
[
(t1 − s)α−1Fn−1

ω (s)
]r
− diam

[
(t2 − s)α−1Fn−1

ω (s)
]r

= ((t1 − s)α−1
− (t2 − s)α−1)diam[Fn−1

ω (s)]r P.1
≥ 0

for a ≤ s ≤ t1 ≤ t2, that is, the difference diam
[
(t1 − s)α−1Fn−1

ω (s)
]r
− diam

[
(t2 − s)α−1Fn−1

ω (s)
]r

has a constant
sign on [a,T] with P.1, then we have

t1∫
a

(t1 − s)α−1Fn−1
ω (s)ds 	1H

t1∫
a

(t2 − s)α−1Fn−1
ω (s)ds

[a,T],P.1
=

t1∫
a

[
(t1 − s)α−1Fn−1

ω (s) 	1H (t2 − s)α−1Fn−1
ω (s)

]
ds

[a,T],P.1
=

t1∫
a

[(t1 − s)α−1
− (t2 − s)α−1]Fn−1

ω (s)ds.

Next, we obtain that

Γ(α)D0[xn(t1, ω) 	1H ϕ(0, ω), xn(t2, ω) 	1H ϕ(0, ω)]

[a,T],P.1
= D0

[ t1∫
a

(t1 − s)α−1Fn−1
ω (s)ds 	1H

t1∫
a

(t2 − s)α−1Fn−1
ω (s)ds,

t2∫
t1

(t2 − s)α−1Fn−1
ω (s)ds

]
[a,T],P.1

= D0

[ t1∫
a

[(t1 − s)α−1
− (t2 − s)α−1]Fn−1

ω (s)ds,

t2∫
t1

(t2 − s)α−1Fn−1
ω (s)ds

]
[a,T],P.1
≤

t1∫
a

[(t1 − s)α−1
− (t2 − s)α−1]D0[Fn−1

ω (s), 0̂]ds +

t2∫
t1

(t2 − s)α−1D0[Fn−1
ω (s), 0̂]ds

[a,T],P.1
≤

M
α

[2(t2 − t1)α + (t1 − a)α − (t2 − a)α] ≤
2M
α

(t2 − t1)α.

Therefore, for any ε > 0 and any n ≥ 1, we have that

D0[xn(t1, ω) 	1H ϕ(0, ω), xn(t2, ω) 	1H ϕ(0, ω)] < ε,

provided that |t2 − t1| < δ0 :=
(εΓ(1 + α)

2M

)1/α
. It then follows that the functions xn(·, ω) 	1H ϕ(0, ω) are

continuous with P.1. Now, for n ≥ 0 and t ∈ [a − σ,T] the functions xn(t, ·) : Ω → E are fuzzy random
variables. Indeed, since ϕ ∈ Cσ is a fuzzy random variable, for every t ∈ [a − σ, a], [ϕ(t, ω)]r is a measurable
multifunction for every r ∈ [0, 1]. Thus xn(t, ·) is random variable for any t ∈ [a − σ, a]. Next, for every

t ∈ [a,T] and for n ≥ 0, r ∈ [0, 1] the mappingsω 7→
[ 1
Γ(α)

∫ t

a (t− s)α−1Fn
ω(s)ds

]r
is a measurable multifunction.

Let r ∈ [0, 1] be fixed. By virtue of the definition of fuzzy integral and a theorem of Nguyen [38], for every
t ∈ [a,T] we have[

1
Γ(α)

∫ t

a
(t − s)α−1Fn

ω(s)ds
]r

=
1

Γ(α)

∫ t

a
(t − s)α−1

[
Fn
ω(s)

]r
ds.
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As the integrand is a multifunction which is continuous in s and measurable in ω, the mapping ω 7→
1

Γ(α)

∫ t

a (t − s)α−1
[
Fn
ω(s)

]r
ds is a measurable multifunction for each r ∈ [0, 1]. Therefore, for every t ∈ [a,T],

the sequence {xn(t, ·)}∞n=0 is a sequence of fuzzy random variable. Consequently, {xn
}
∞

n=0 is a sequence of
fuzzy stochastic process.

Note that for (t, ω) ∈ [a,T] ×Ω

D0[x1(t, ω) 	1H ϕ(0, ω), x0(t, ω) 	1H ϕ(0, ω)]
[a,T],P.1
≤

1
Γ(α)

t∫
a

D0[F0
ω(s), 0̂]

(t − s)1−α ds

[a,T],P.1
≤

M(T − a)α

Γ(α + 1)

and

sup
ς∈[−σ,0]

D0[x1(t + ς, ω), x0(t + ς, ω)]
[a,T],P.1
≤

1
Γ(α)

sup
ς∈[−σ,0]

t+ς∫
a

(t + ς − s)α−1D0[ fω(s, x0
s ), 0̂]ds

[a,T],P.1
≤

1
Γ(α)

sup
θ∈[t−σ,t]

θ∫
a

(θ − s)α−1D0[ fω(s, x0
s ), 0̂]ds

[a,T],P.1
≤

M
Γ(α + 1)

sup
θ∈[t−σ,t]

(θ − a)α ≤
M(T − a)α

Γ(α + 1)
.

Moreover, for n ∈ {2, 3, 4, ...} and (t, ω) ∈ [a,T] ×Ω we obtain that

D0[x2(t, ω) 	1H ϕ(0, ω), x1(t, ω) 	1H ϕ(0, ω)]
[a,T],P.1
≤

1
Γ(α)

t∫
a

D0[F1
ω(s),F0

ω(s)]
(t − s)1−α ds

[a,T],P.1
≤

L
Γ(α)

t∫
a

D0[x1
s , x0

s ]
(t − s)1−α ds

[a,T],P.1
≤ ML

[ (T − a)α

Γ(α + 1)

]2
.

Further, if we assume that

max

D0[xn(t, ω), xn−1(t, ω)], sup
ς∈[−σ,0]

D0[xn(t + ς, ω), xn−1(t + ς, ω)]

 [a,T],P.1
≤

M
L

[ (T − a)αL
Γ(α + 1)

]n
,

then we have

D0[xn+1(t, ω) 	1H ϕ(0, ω), xn(t, ω) 	1H ϕ(0, ω)]

[a,T],P.1
≤

1
Γ(α)

t∫
a

L(t − s)α−1 M
L

[ (T − a)αL
Γ(α + 1)

]n
ds

≤
M
L

[ (T − a)αL
Γ(α + 1)

]n+1
. (6)

Hence, for n > m > 0 we have

supt∈[a,T] D0[xn(t, ω) 	1H ϕ(0, ω), xm(t, ω) 	1H ϕ(0, ω)]
P.1
≤

M
L

n∑
i=m+1

[ (T − a)αL
Γ(α + 1)

]i
.
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The convergence of the series
∞∑

i=1

[ (T − a)αL
Γ(α + 1)

]i
implies that for any ε > 0 we can find n0 ∈ N large enough

such that for n,m > n0

sup
t∈[a,T]

D0[xn(t, ω) 	1H ϕ(0, ω), xm(t, ω) 	1H ϕ(0, ω)]
P.1
≤ ε. (7)

As (E,D0) is a complete metric space and (7) holds, there exists Ω0 ⊂ Ω such that P(Ω0) = 1 and for every
ω ∈ Ω0 the sequence {xn(·, ω)} is uniformly convergent with P.1. For ω ∈ Ω0 let x̂(·, ω) denote its limit. Let
us define a mapping x : [a − σ,T] ×Ω→ E as

x(t, ω) =


ϕ(t − a, ω) for (t, ω) ∈ [a − σ, a] ×Ω0
x̂(t, ω) for (t, ω) ∈ [a,T] ×Ω0

0̂ for (t, ω) ∈ [a − σ,T] × (Ω\Ω0).

Since ϕ ∈ Cσ is a fuzzy random variable and supt∈[a,T] D0[xn(t, ω) 	1H ϕ(0, ω), x(t, ω) 	1H ϕ(0, ω)] P.1→ 0 as
n → ∞, we see that [x(t, ·)]r with r ∈ [0, 1] and t ∈ [a − σ,T] is a measurable multifunction. Therefore
x : [a − σ,T] ×Ω→ E is a continuous fuzzy stochastic process. In the sequel we show that x is a solution of
the random fuzzy fractional functional integral equation (1). For ε > 0, there is a n0 large enough such that
for every n ≥ n0 we obtain

sup
t∈[a,T]

D0

[
x(t, ω) 	1H ϕ(0, ω),

1
Γ(α)

t∫
a

(t − s)α−1 fω(s, xs)ds
]

P.1
≤ sup

t∈[a,T]
D0[xn(t, ω) 	1H ϕ(0, ω), x(t, ω) 	1H ϕ(0, ω)]

+ sup
t∈[a,T]

1
Γ(α)

t∫
a

(t − s)α−1D0[ fω(s, xn−1
s ), fω(s, xs)]ds

P.1
≤ sup

t∈[a,T]
D0[xn−1(t, ω), x(t, ω)] + sup

t∈[a,T]

L
Γ(α)

t∫
a

(t − s)α−1Dσ[xs(·, ω), xn−1
s (·, ω)]ds

P.1
= sup

t∈[a,T]
D0[xn−1(t, ω), x(t, ω)] + sup

t∈[a,T]

L
Γ(α)

t∫
a

(t − s)α−1 sup
ς∈[−σ,0]

D0[xs(ς, ω), xn−1
s (ς, ω)]ds

P.1
= sup

t∈[a,T]
D0[xn−1(t, ω), x(t, ω)] + sup

t∈[a,T]

L
Γ(α)

t∫
a

(t − s)α−1 sup
θ∈[s−σ,s]

D0[x(θ,ω), xn−1(θ,ω)]ds

P.1
→ 0 as n→∞ for any t ∈ [a,T],

because the sequence {xn(·, ω)} is uniformly convergent to x(·, ω). Therefore we get

D0

[
x(t, ω) 	1H ϕ(0, ω),

1
Γ(α)

t∫
a

(t − s)α−1 fω(s, xs)ds
] [a,T],P.1

= 0.

Hence (1) is satisfied. To prove the uniqueness, let z : [a − σ,T] × Ω → E be a second solution for (1) on
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[a − σ,T]. Then for every t ∈ [a,T] we have

D0[x(t, ω) 	1H ϕ(0, ω), z(t, ω) 	1H ϕ(0, ω)]
[a,T],P.1
≤

L
Γ(α)

t∫
a

(t − s)α−1Dσ[xs(·, ω), zs(·, ω)]ds

[a,T],P.1
≤

L
Γ(α)

t∫
a

(t − s)α−1 sup
θ∈[s−σ,s]

D0[x(θ,ω), z(θ,ω)]ds

=
L

Γ(α)

t∫
a

(t − s)α−1 sup
θ∈[s−σ,s]

D0[x(θ,ω) 	1H ϕ(0, ω), z(θ,ω) 	1H ϕ(0, ω)]ds.

If we let ψ(s, ω) = sup
θ∈[s−σ,s]

D0[x(θ,ω) 	1H ϕ(0, ω), z(θ,ω) 	1H ϕ(0, ω)] for any s ∈ [a,T], then we have

ψ(t, ω)
[a,T],P.1
≤

L
Γ(α)

t∫
a

(t − s)α−1ψ(s, ω)ds.

Applying Gronwall’s inequality we can infer that sup
t∈[a,T]

D0[x(t, ω) 	1H ϕ(0, ω), z(t, ω) 	1H ϕ(0, ω)] P.1= 0 which

leads us to the conclusion x(t, ω)
[a,T],P.1

= z(t, ω). This proves the uniqueness of the solution for (1) on the
interval [a,T].

Theorem 3.2. Let f : Ω × [a,T] × Cσ → E satisfy the assumptions of Theorem 3.1. If x(t, ω) and z(t, ω) are
solutions of (1) with x(t, ω) = ϕ(t − a, ω) and z(t, ω) = ξ(t − a, ω) for t ∈ [a − σ, a], then we have

D0[x(t, ω), z(t, ω)]
[a−σ,T],P.1
≤ Dσ[ϕ(t − a, ω), ξ(t − a, ω)] exp

{
L(T − a)α

Γ(α + 1)

}
.

Proof. Observe that for (t, ω) ∈ [a,T] ×Ω,

D0[x(t, ω) 	1H ϕ(0, ω), z(t, ω) 	1H ξ(0, ω)]
[a,T],P.1
≤

1
Γ(α)

t∫
a

(t − s)α−1D0

[
fω(s, xs), fω(s, zs)

]
ds

[a,T],P.1
≤

L
Γ(α)

t∫
a

(t − s)α−1 sup
θ∈[s−σ,s]

D0[x(θ,ω), z(θ,ω)]ds

or

D0[x(t, ω), z(t, ω)]
[a,T],P.1
≤ D0[ϕ(0, ω), ξ(0, ω)]

+
L

Γ(α)

t∫
a

(t − s)α−1 sup
θ∈[s−σ,s]

D0[x(θ,ω), z(θ,ω)]ds.

Putting ψ(s, ω) = sup
θ∈[s−σ,s]

D0[x(θ,ω), z(θ,ω)] for any s ∈ [a,T] and due to Gronwall’s inequality we obtain

D0[x(t, ω), z(t, ω)]
[a,T],P.1
≤ D0[ϕ(0, ω), ξ(0, ω)] exp

{
L(T − a)α

Γ(α + 1)

}
.
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Therefore we get the inequality

D0[x(t, ω), z(t, ω)]
[a−σ,T],P.1
≤ Dσ[ϕ(t − a, ω), ξ(t − a, ω)] exp

{
L(T − a)α

Γ(α + 1)

}
.

The proof is complete.

Remark 3.3. With the assumptions of Theorem 3.2, the comparison between any two solutions of (1) can
be obtained by using the generalized Gronwall inequality which can be used in a fractional differential
equation. Indeed, if x(t, ω) and z(t, ω) are solutions of (11) with x(t, ω) = ϕ(t, ω) and z(t, ω) = ξ(t, ω) for
t ∈ [a − σ, a], then we have

D0[x(t, ω), z(t, ω)]
[a−σ,T],P.1
≤ Dσ[ϕ(t, ω), ξ(t, ω)] +

t∫
a

( ∞∑
k=1

Lk

Γ(kα)
(t − s)kα−1Dσ[ϕ, ξ]

)
ds.

In the sequel, we want to show that the solutions of (1) depend continuous on the initial condition and the
right-hand side of equation. Let us again consider the equation (1) of the form


x(t, ω) P.1= ϕ(t − a, ω) for t ∈ [a − σ, a]

x(t, ω) 	1H ϕ(0, ω) P.1=
1

Γ(α)

t∫
a

(t − s)α−1 fω(s, xs)ds, for t ∈ [a, b]
(8)

and a problem with another initial value and another right-hand side, i.e.,


xε(t, ω) P.1= ϕε(t − a, ω) for t ∈ [a − σ, a]

xε(t, ω) 	1H ϕε(0, ω) P.1=
1

Γ(α)

t∫
a

(t − s)α−1 f εω(s, xεs )ds, for t ∈ [a, b],
(9)

where f , f ε : Ω × [a, b] × Cσ → E satisfy, such as in Theorem 3.1, conditions (A1)-(A2) and a Lipschitz
condition with positive constants L and Lε, respectively, and also a bounded condition holds with positive
constants M and Mε, respectively.

Theorem 3.4. Let f , f ε : Ω× [a, b]×Cσ → E satisfy the assumptions of Theorem 3.1. Assume also that there
exists constant ε∗ such that D0[ fω(t, ξt), f εω(t, ξt)] ≤ ε∗ with P.1 for every t ∈ [a, b].
Suppose that the solutions x, xε : [a − σ, b] ×Ω→ E to problems (8) and (9), respectively, do exist. Then

D0[x(t, ω), xε(t, ω)]
[a−σ,b],P.1
≤

[
Dσ[ϕ,ϕε] +

ε∗(b − a)α

Γ(α + 1)

]
exp

{
Lε(b − a)α

Γ(α + 1)

}
. (10)

Proof. Let x(t, ω), xε(t, ω) denote the solutions to problems (8) and (9), respectively. For t ∈ [a, b] we get
ω ∈ Ω

D0[ fω(t, xt), f εω(t, xεt )]
[a,b],P.1
≤ D0[ fω(t, xt), f εω(t, xt)] + D0[ f εω(t, xt), f εω(t, xεt )]
≤ ε∗ + LεDσ[xt, xεt ].
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Therefore, we obtain

D0[x(t, ω) 	1H ϕ(0, ω),xε(t, ω) 	1H ϕε(0, ω)]

[a,a+p],P.1
≤

1
Γ(α)

t∫
a

(
ε∗ + LεDσ[xs(·, ω), xεs (·, ω)]

)
(t − s)1−α ds

[a,a+p],P.1
≤

ε∗(b − a)α

Γ(α + 1)
+

Lε

Γ(α)

t∫
a

sup
θ∈[s−σ,s]

D0[x(θ,ω), xε(θ,ω)]

(t − s)1−α ds

or

D0[x(t, ω), xε(t, ω)]
[a,a+p],P.1
≤ D0[ϕ(0, ω), ϕε(0, ω)] +

ε∗(b − a)α

Γ(α + 1)

+
Lε

Γ(α)

t∫
a

sup
θ∈[s−σ,s]

D0[x(θ,ω), xε(θ,ω)]

(t − s)1−α ds

Thus from Gronwall’s lemma we get

D0[x(t, ω), xε(t, ω)]
[a,b],P.1
≤

[
D0[ϕ(0, ω), ϕε(0, ω)] +

ε∗(b − a)α

Γ(α + 1)

]
exp

{
Lε(b − a)α

Γ(α + 1)

}
.

Consequently, we have

D0[x(t, ω), xε(t, ω)]
[a−σ,b],P.1
≤

[
Dσ[ϕ,ϕε] +

ε∗(b − a)α

Γ(α + 1)

]
exp

{
Lε(b − a)α

Γ(α + 1)

}
.

The proof is complete.

Remark 3.5. From the estimate (10), it is easy to see that if Dσ[ϕ,ϕε]
[a−σ,b],P.1
→ 0 and D0[ fω(t, xt), f εω(t, xt)]→ 0

for all t ∈ [a, b] with P.1, then sup
t∈[a−σ,b]

D0[x(t, ω), xε(t, ω)] P.1→ 0.

Fuzzy fractional functional differential equation: Consider the following random fuzzy fractional func-
tional differential equation (RFFFDE) of order α ∈ (0, 1) with the initial condition:

C
D
α
a+ x(t, ω)

[a,b],P.1
= fω(t, xt),

x(t, ω)
[a−σ,a],P.1

= ϕ(t − a, ω),
(11)

where C
D
α
a+ is the Caputo’s generalized Hukuhara derivative, f : Ω × [a, b] × Cσ → E is a fuzzy stochastic

function. A function x : [a− σ, b]×Ω→ E is said to be a solution of (11) if x is a continuous fuzzy stochastic

process, x(t, ω)
[a−σ,a],P.1

= ϕ(t − a, ω) and C
D
α
a+ x(t, ω)

[a,b],P.1
= fω(t, xt), t ∈ [a, b]. A solution x of (11) is said to be

d−monotone on [a, b] if it is d−increasing or d−decreasing on [a, b] for P−a.a. ω.

Remark 3.6. Let us suppose that x is a d−monotone continuous fuzzy stochastic process on [a, b] and satisfies
(1). Since x is d−monotone on [a, b], then by Remark 2.3 it follows that x(t, ω)	1H ϕ(0, ω) is d−increasing on
[a, b] with P−a.a. ω. Hence, from (1) it follows that the fuzzy functions t→ =αa+ fω(t, xt) must be d−increasing
on [a, b] with P−a.a. ω. Therefore, the d-monotone fuzzy stochastic processes satisfying (1) must be sought
in the set of all d-monotone continuous fuzzy stochastic processes x for which the function t 7→ =αa+ f (t, xt)
is d-increasing on [a, b] for P−a.a. ω .
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The following lemma shows the equivalence between a fractional fuzzy differential equation and an frac-
tional fuzzy integral equation.

Lemma 3.7. Let the function f satisfy (A1) and (A2) . Then a d−monotone fuzzy stochastic process x is
a solution of initial value problem (11), if and only if x satisfies (1) and the function t 7→ =αa+ fω(t, xt) is
d-increasing on [a, b] for P−a.a. ω.

Proof. Let a d-monotone continuous fuzzy stochastic process x be a solution of the initial value problem
(11) and let y(t, ω) := x(t, ω) 	1H x(a, ω), (t, ω) ∈ [a, b] × Ω, Fω(t) := fω(t, xt), t ∈ [a, b]. As x is d-monotone
on [a, b], then by Remark 2.3 it follows that t 7→ y(t, ω) is d-increasing on [a, b] for P−a.a. ω. From (11) and(

C
D
α
a+ x

)
(t, ω) :=

(
RL
D
α
a+ y

)
(t, ω) = D1H

(
=

1−α
a+ y

)
(t, ω), y1−α(a, ω) :=

(
=

1−α
a+ y

)
(a, ω) = 0̂, t ∈ [a, b] for P−a.a. ω, by

Lemma 2.5, we get d
dt diam[=1−α

a+ y(t, ω)]r
≥ 0 for all t ∈ [a, b] and for P−a.a. ω. Hence, by Proposition 2.7, we

have that(
=
α
a+

C
D
α
a+ x

)
(t, ω)

[a,b],P.1
=

(
=
α
a+

RL
D
α
a+ [x(·, ω) 	1H x(a, ω)]

)
(t, ω)

[a,b],P.1
=

(
=
α
a+

RL
D
α
a+ y

)
(t, ω)

[a,b],P.1
= y(t, ω) 	1H

(t − a)α−1

Γ(α)
y1−α(a, ω)

[a,b],P.1
= y(t, ω).

Since Fω satisfies (A2) and from
(

C
D
α
a+ x

)
(t, ω)

[a,b],P.1
= Fω(t), it follows that(

=
α
a+

C
D
α
a+ x

)
(t, ω)

[a,b],P.1
=

(
=
α
a+Fω

)
(t), and thus y(t, ω)

[a,b],P.1
=

(
=
α
a+Fω

)
(t). Therefore, we obtain that

y(t, ω)
[a,b],P.1

=

t∫
a

(t − s)α−1

Γ(α)
Fω(s)ds,

that is, x satisfies (1). Since t 7→ y(t, ω) := x(t, ω) 	1H ϕ(0, ω) is d-increasing on [a, b] for P−a.a. ω, it follows
that t 7→ (=αa+Fω)(t) is also d-increasing on [a, b] for P−a.a. ω. Conversely, suppose that x is a d-monotone
continuous fuzzy stochastic process satisfying (1) and such that t 7→ (=αa+Fω)(t) is d-increasing on [a, b]
for P−a.a. ω. Since Fω satisfies (A2), the function t 7→ (=αa+Fω)(t) is continuous on [a, b] with P.1 and

(=αa+Fω)(a) P.1= 0̂. Then y(a, ω) P.1= 0̂, and thus x(a, ω) P.1= ϕ(0, ω). Further, since t 7→ (=αa+Fω)(t) is d-increasing

on [a, b] for P−a.a. ω, then applying RL
D
α
a+ in (1) we have that

(
RL
D
α
a+ y

)
(t, ω)

[a,b],P.1
= (RL

D
α
a+=

α
a+Fω)(t). From

Proposition 2.6 it follows that
(

RL
D
α
a+ y

)
(t, ω)

[a,b],P.1
= Fω(t), and thus

(
C
D
α
a+ x

)
(t, ω)

[a,b],P.1
= fω(t, xt), that is, (11)

holds.

Corollary 3.8. If a d−monotone fuzzy stochastic process x is a solution of (1) such that the function t 7→
=
α
a+ fω(t, xt) is d-increasing on [a, b] for P−a.a. ω, then x is a d−monotone solution of (11).

Remark 3.9. Observe that:

(i) if a continuous fuzzy stochastic process x is a unique d−monotone solution of (1) on [a, b], then the
function y(t, ω) := x(t, ω)	1H ϕ(0, ω) is d−increasing on [a, b] for P−a.a. ω. Further, the function y may
create two solutions of (1): a unique d−increasing solution of (1) and a unique d−decreasing solution
of (1) on [a, b] for P−a.a. ω.

(ii) if a continuous fuzzy stochastic process x is a d−monotone solution of (11) on [a, b], then x is a solution
of (1) on [a, b], but the converse is not true if the function t 7→ =αa+ fω(t, xt) is not d-increasing on [a, b]
for P−a.a. ω.
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4. Numerical illustration

In the sequel, we consider a population of species. Recall the framework of the population growth model
in the classical situation where every quantity is precisely described. Under simplified conditions such
as a constant environment (and with no migration), it can be shown that the change in population size z
through time t (the time horizon is from zero to b > 0) will depend on the difference between individual
birth rate r and death rate m, and given by:

z′(t) = (r −m)z(t), z(0) = z0, (12)

where r,m are the constants which describe an instantaneous birth rate (births per individual per time period
t) and an instantaneous death rate (deaths per individual per time period t), respectively. The symbol z0
denotes the initial number of individuals and z denotes the current population size. For convenience, let
us denote λ = r −m. It is reasonable to take λ < 0 in the case of a population when decreasing, and a > 0 if
the number of individuals of the population is increasing. By solving the differential equation (12), we get
a formula to estimate a population size at any time z(t) = z0eλt. The above considerations correspond to the
perfect knowledge of the parameters of the system and the precise description of the state of the system at
each instant t.

Remark 4.1. In the classical population models (12), it is considered that the birth rate changes immediately
as soon as a change in the number of individuals is produced. However, the members of the population must
reach a certain degree of development to give birth to new individuals and this suggests an introduction of
a delay term into the system.

Remark 4.2. In modelling of real-world problems (for example in the classical population models (12)) only
partial information of the system may be known or there may be uncertainty in the parameters used in
the model or some measurements may be imprecise. In such situation, random fuzzy differential equation
(RFDE), random fuzzy functional differential equation (RFFDE) and stochastic fuzzy differential equations
(SFDE) are natural ways to model dynamic systems subject to uncertainties. Several authors have discussed
the theory of RFDE, RFFDE and SFDE (see [31]-[33], [41], [35]-[37]).

In the sequel, we present some examples being are simple illustrations of the theory of RFFFDE and we
solve them using two types of d−monotone. We consider again the following RFFFDE described by

C
D
α
0+ x(t, ω)

[0,b],P.1
= fω(t, x(t − σ,ω)),

x(t, ω)
[−σ,0],P.1

= ϕ(t, ω),
(13)

where σ > 0, b > 0 are such that b = l.σ for given l ∈ N∗, f : Ω × [0, b] × Cσ → E, α ∈ (0, 1) is the order of the
differential equation, ϕ(t, ω) is the initial value. We observe that Theorem 2.9 gives us a useful procedure
to solve the RFFFDE (13). Let us denote the r−levels (r ∈ [0, 1]) of x and ϕ as

[x(t, ω)]r = [x(t, ω, r), x(t, ω, r)], t ∈ [0, b], [ϕ(t, ω)]r = [ϕ(t, ω, r), ϕ(t, ω, r)], t ∈ [−σ, 0],

respectively. Obviously, x(·, ·, r), x(·, ·, r) : [0, b] × Ω → R. By using Zadeh’s extension principle, we obtain
[ fω(t, x(t − σ,ω))]r = [ f

ω
(t,u1,u2, r), fω(t,u1,u1, r)], where

f
ω

(t,u1,u2, r) = f
ω

(t, x(t − σ,ω, r), x(t − σ,ω, r), r),

fω(t,u1,u2, r) = fω(t, x(t − σ,ω, r), x(t − σ,ω, r), r),

for r ∈ [0, 1]. In this equation (13) we shall solve it by two types of d−monotone. Consequently, based on
the types of monotone, we have the following two cases.
Case 1. If x is d−increasing for P−a.a. ω, then
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(C
D
α
0+ x)(t, ω)

]r
=

[
CDα

0+ x(t, ω, r), CDα
0+ x(t, ω, r)

]
and (13) is translated into the following random fractional

functional differential system:
CDα

0+ x(t, ω, r) P.1= f
ω

(t, x(t − σ,ω, r), x(t − σ,ω, r), r), t ∈ [0, b]

CDα
0+ x(t, ω, r) P.1= fω(t, x(t − σ,ω, r), x(t − σ,ω, r), r), t ∈ [0, b]

x(t, ω, r) P.1= ϕ(t, ω, r), x(t, ω, r) P.1= ϕ(t, ω, r), t ∈ [−σ, 0].

(14)

Case 2. If x is d−decreasing for P−a.a. ω, then[
(C
D
α
0+ x)(t, ω)

]r
=

[
CDα

0+ x(t, ω, r), CDα
0+ x(t, ω, r)

]
and (13) is translated into the following fractional functional

differential system:
CDα

0+ x(t, ω, r) P.1= f
ω

(t, x(t − σ,ω, r), x(t − σ,ω, r), r), t ∈ [0, b]

CDα
0+ x(t, ω, r) P.1= fω(t, x(t − σ,ω, r), x(t − σ,ω, r), r), t ∈ [0, b]

x(t, ω, r) P.1= ϕ(t, ω, r), x(t, ω, r) P.1= ϕ(t, ω, r), t ∈ [−σ, 0].

(15)

Now, we consider an example for the population model with two kinds of uncertainties (i.e., fuzziness
and randomness simultaneously) in the following form of random fuzzy fractional functional differential
equations.

Example 4.3. Let Ω = (0, 1),F−Borel δ−field of subsets of Ω,P−Lebesgue measure on (Ω,F ). Let us
consider the random fuzzy fractional functional differential equation as follows:(C

D
α
0+ x)(t, ω) P.1= λx(t − 1, ω), 1 ≥ t > 0

x(t, ω) P.1= ω(1 − t, 2 − t, 3 − t), t ∈ [−1, 0]
(16)

and its associated integral equation
x(t, ω) P.1= ω(1 − t, 2 − t, 3 − t), t ∈ [−1, 0]

x(t, ω) 	1H x(0, ω) P.1=
λ

Γ(α)

t∫
a

(t − s)α−1x(s − 1, ω)ds, for t ∈ [0, 1],
(17)

where x ∈ B3(x0) = {x ∈ Cσ : Dσ[x, x0] ≤ 3}, λ ∈ [−1, 1]\{0}.

For problem (17), we check the validity of the hypotheses in Theorem 3.1. Indeed, it can be checked that
f : Ω × [0, 1] × B3(x0)→ E in problem (17) is a continuous mapping and satisfies the conditions of Theorem
3.1. In particular

- for (t, ξ) ∈ [0, 1] × B3(x0)

D0[ fω(t, ξ), 0̂] = |λ|Dσ[ξ, 0̂]
[0,1],P.1
≤ Dσ[ξ, 0̂]

[0,1],P.1
≤ 6,

- for (t, ω) ∈ [0, 1] ×Ω, ξ, ψ ∈ B3(x0)

D0[ fω(t, ξ), fω(t, ψ)]
[0,1],P.1
≤ |λ|Dσ[ξ, ψ].
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Hence we can easilyy show that f satisfies the assumptions of Theorem 3.1. Based on the types of monotone,
we solve problem (17) in two cases.
Case 1. Consider λ ∈ (0, 1] and x is d−increasing for P−a.a. ω. For t ∈ [0, 1] the sequence of successive
approximations

x0(t, ω)
[0,1],P.1

:= (ω, 2ω, 3ω) and xn(t, ω)
[0,1],P.1

:= x0(t, ω) +
λ

Γ(α)

t∫
0

(t − s)α−1xn−1(s − 1, ω)ds

is well defined. Also, by recursion we obtain that xn(t, ω) ∈ B3(x0) for t ∈ [0, 1] with P.1. Therefore, by
Theorem 3.1, there exists a unique d−increasing solution to the problem (17). Using (14) and after some
manipulations, we obtain systems of random fractional functional integral equations

x(t, ω, r) P.1= λIα0+ x(t − 1, ω, r) + ϕ(0, ω, r), 1 ≥ t > 0,

x(t, ω, r) P.1= λIα0+ x(t − 1, r) + ϕ(0, ω, r), 1 ≥ t > 0,

x(t, ω, r)
[−1,0],P.1

= ϕ(t, ω, r)
[−1,0],P.1

= ω(1 + r − t),

x(t, ω, r)
[−1,0],P.1

= ϕ(t, ω, r)
[−1,0],P.1

= ω(3 − r − t).

(18)

By solving (18), we obtain the exact solution as follows:

[x(t, ω)]r =

[
ω(1 + r) +

λω(2 + r)tα

Γ(α + 1)
−

λtα+1

Γ(α + 2)
, ω(3 − r) +

λω(4 − r)tα

Γ(α + 1)
−

λtα+1

Γ(α + 2)

]
,

where t ∈ [0, 1]. This solution is shown in Figure 1.
Case 2. Consider λ ∈ [−1, 0) and x is d−decreasing forP−a.a. ω. For t ∈ [0,T] the the sequence of successive
approximations

x0(t, ω)
[0,1],P.1

:= (ω, 2ω, 3ω) and xn(t, ω)
[0,1],P.1

:= x0(t, ω) 	
(−λ)
Γ(α)

t∫
0

(t − s)α−1xn−1(s − 1, ω)ds

is well defined. Indeed, firstly observe that for (t, ξ) ∈ [0, 1] × S(x0, 3) we have

diam[ fω(t, ξ)]r [0,1],P.1
= |λ|diam[ξ]r [0,1],P.1

= 8|λ|.

Note that

diam[ϕ(0)]r [0,1],P.1
= 2ω(1 − r) ≥

1
Γ(α)

t∫
0

|λ|(t − s)α−1diam[ξs]rds =
|λ|

Γ(α + 1)
8tα,

which implies that the Hukuhara differences

x0(t, ω) 	
(−λ)
Γ(α)

t∫
0

(t − s)α−1xn−1(s − 1, ω)ds

exist in the case t ∈ [0,T] for P−a.a. ω, where T P.1= min
{

1,
[2ω(1 − r)Γ(α + 1)

8|λ|

] 1
α

}
. Also, by recursion we

obtain that xn(t, ω) ∈ B3(x0) for t ∈ [0,T] with P.1. Thus, by Theorem 3.1, there exists a unique d−decreasing
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solution (defined on interval [0,T]) to the problem (17). Using (15) and after some manipulations, we obtain
systems of random fractional functional integral equations

x(t, ω, r) P.1= λIα0+ x(t − 1, ω, r) + ϕ(0, ω), T ≥ t > 0,

x(t, ω, r) P.1= λIα0+ x(t − 1, ω, r) + ϕ(0, ω), T ≥ t > 0,

x(t, ω, r)
[−1,0],P.1

= ϕ(t, ω, r)
[−1,0],P.1

= ω(1 + r − t),

x(t, ω, r)
[−1,0],P.1

= ϕ(t, ω, r)
[−1,0],P.1

= ω(3 − r − t).

(19)

By solving (19), we obtain the exact solution as follows:

[x(t, ω)]r =

[
ω(1 + r) +

λω(2 + r)tα

Γ(α + 1)
−

λtα+1

Γ(α + 2)
, ω(3 − r) +

λω(4 − r)tα

Γ(α + 1)
−

λtα+1

Γ(α + 2)

]
,

where t ∈ [0,T], λ ∈ [−1, 0). The graph of the solution is drawn in Figure 2.
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Figure 1: Solution of Example 4.3, Case 1. (λ = 0.5, α = 0.5, ω = 0.5)
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Figure 2: Solution of Example 4.3, Case 2. (λ = −0.5, α = 0.5, ω = π/10)
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Remark 4.4. In Example 4.3, we solved explicitly and obtained exact solutions of the random fuzzy frac-
tional functional differential equation. However, in general it is not easy to derive the analytical solutions
to most RFFFDEs. Therefore, it is vital to develop some reliable and efficient techniques to solve random
fuzzy functional fractional differential equations. Then it will be possible to simulate trajectory of solutions.
Mazandarani and Kamyad [29] proposed the modified fractional Euler method (MFEM) for solving fuzzy
fractional initial value problem under Caputo type fuzzy fractional derivatives of order α ∈ (0, 1). In [14],
the author proposed the modified Adams-Bashforth-Moulton method (MABMM) for solving fuzzy delay
differential equations of fractional order with Caputo-type fuzzy fractional derivative. We notice that with
the help of MFEM and MABMM one can approximate the solutions of RFFFDEs.

In the sequel the modified fractional Euler method for solving random fuzzy functional differential equation
of fractional order under the Caputo-type fuzzy fractional derivative will be investigated. The MFEM based
on a generalized Taylor’s formula [39] and a modified trapezoidal rule [40] is used for solving random fuzzy
functional fractional differential equation of order α ∈ (0, 1).We now give a generalization of the trapezoidal
rule to approximation the fractional integral Iα0+1(t) of order α > 0.

Theorem 4.5. [40] Suppose that the interval [0, b] is subdivided into N subintervals [t j, t j+1] of equal width

h =
b
N

by using the nodes t j = jh, for j = 0, 1, ...,N. The modified trapezoidal rule

T(1, h, α) =
(
(N − 1)α+1

− (N − α − 1)Nα
) hα1(0)
Γ(α + 2)

+
hα1(b)

Γ(α + 2)

+

N−1∑
j=1

((
N − j + 1

)α+1
− 2

(
N − j

)α+1 +
(
N − j − 1

)α+1
) hα1

(
t j

)
Γ (α + 2)

is an approximation to the fractional integral

Iα0+1(b) = T(1, h, α) −O(h2).

t\r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000

0.1 1.166 1.280 1.394 1.508 1.621 1.735 1.849 1.963 2.077 2.190 2.304
0.2 1.261 1.384 1.508 1.631 1.754 1.877 2.000 2.123 2.247 2.370 2.493
0.3 1.346 1.478 1.609 1.741 1.872 2.004 2.136 2.267 2.399 2.530 2.662
0.4 1.424 1.563 1.702 1.841 1.981 2.120 2.259 2.398 2.538 2.677 2.816
0.5 1.495 1.641 1.788 1.934 2.080 2.226 2.373 2.519 2.665 2.811 2.958
0.6 1.561 1.714 1.867 2.019 2.172 2.325 2.478 2.630 2.783 2.936 3.089
0.7 1.623 1.781 1.940 2.099 2.258 2.416 2.575 2.734 2.893 3.051 3.210
0.8 1.680 1.844 2.008 2.172 2.337 2.501 2.665 2.830 2.994 3.158 3.322
0.9 1.733 1.902 2.071 2.241 2.410 2.580 2.749 2.918 3.088 3.257 3.426
1 1.782 1.956 2.130 2.304 2.479 2.653 2.827 3.001 3.175 3.349 3.523

Table 1: The approximation solution to (25) in Case 1 (ω = 0.5, α = 0.75) - x(t, ω, r)
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t\r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 3.000 2.900 2.800 2.700 2.600 2.500 2.400 2.300 2.200 2.100 2.000

0.1 3.499 3.385 3.271 3.157 3.043 2.929 2.816 2.702 2.588 2.474 2.304
0.2 3.783 3.660 3.537 3.413 3.290 3.167 3.044 2.921 2.797 2.674 2.493
0.3 4.038 3.906 3.775 3.643 3.511 3.380 3.248 3.117 2.985 2.853 2.662
0.4 4.271 4.131 3.992 3.852 3.713 3.574 3.435 3.295 3.156 3.017 2.816
0.5 4.485 4.338 4.192 4.046 3.899 3.753 3.607 3.461 3.314 3.168 2.958
0.6 4.683 4.530 4.378 4.225 4.072 3.919 3.766 3.614 3.461 3.308 3.089
0.7 4.868 4.709 4.550 4.391 4.232 4.074 3.915 3.756 3.597 3.439 3.210
0.8 5.038 4.874 4.710 4.546 4.381 4.217 4.053 3.888 3.724 3.560 3.322
0.9 5.198 5.028 4.859 4.689 4.520 4.351 4.181 4.012 3.843 3.673 3.426
1 5.346 5.172 4.998 4.824 4.650 4.476 4.302 4.128 3.954 3.780 3.523

Table 2: The approximation solution to (25) in Case 1 (ω = 0.5, α = 0.75) - x(t, ω, r)

After some manipulations, the initial value problems (14) and (15) can be equivalent to the following
random fractional integral equations

x(t, ω, r) P.1= Iα0+ f
ω

(t, x(t − σ,ω, r), x(t − σ,ω, r), r) + ϕ(0, ω, r), t ∈ [0, b]

x(t, ω, r) P.1= Iα0+ fω(t, x(t − σ,ω, r), x(t − σ,ω, r), r) + ϕ(0, ω, r), t ∈ [0, b]

x(t, ω, r) P.1= ϕ(t, ω, r), x(t, ω, r) P.1= ϕ(t, ω, r), t ∈ [−σ, 0].

(20)

for Case 1, and
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Figure 3: The approximation (i)-solution of Example 4.6 (α = 0.75, ω = 0.5)
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Figure 4: The approximation (ii)-solution of Example 4.6 (α = 0.75, ω = 0.5 )


x(t, ω, r) P.1= Iα0+ fω(t, x(t − σ,ω, r), x(t − σ,ω, r), r) + ϕ(0, ω, r), t ∈ [0, b]

x(t, ω, r) P.1= Iα0+ f
ω

(t, x(t − σ,ω, r), x(t − σ,ω, r), r) + ϕ(0, ω, r), t ∈ [0, b]

x(t, ω, r) P.1= ϕ(t, ω, r), x(t, ω, r) P.1= ϕ(t, ω, r), t ∈ [−σ, 0].

(21)

for Case 2.
Consider a uniform grid {tn = nh : n = −k,−k + 1, ...,−1, 0, 1, ...,N} where k and N are integers such that
h = T/N and h = σ/k. Now the key problem is to establish an approximation to the delayed terms
x(t − σ,ω, r) and x(t − σ,ω, r) with any fixed ω ∈ Ω, respectively. Since the establishment is similar for
the two terms, we only establish it for the case of the delayed term x(t − σ,ω, r). Let ω ∈ Ω be fixed. Let
x(t j, ω, r) = ϕ(t j, ω, r), j = −k,−k + 1, ...,−1, 0. Therefore, x(t − σ,ω, r) can be approximated by

x(t j − σ,ω, r) ≈

x j−k(ω, r), if j = 0, 1, ...,N,

ϕ
j
(ω, r) if j = −k,−k + 1, ...,−1, 0.

(22)

Thus, we have the following relations:

for j = 1, ....,N x(t j − σ,ω, r)→ x j−k(ω, r)
for j = −k,−k + 1, ..., 0 x(t j, ω, r)→ ϕ

j
(ω, r).
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t\r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000

0.1 1.499 1.585 1.671 1.758 1.844 1.930 2.016 2.102 2.189 2.275 2.361
0.2 1.783 1.860 1.937 2.014 2.091 2.167 2.244 2.321 2.398 2.475 2.551
0.3 2.038 2.107 2.175 2.243 2.312 2.380 2.449 2.517 2.585 2.654 2.722
0.4 2.271 2.331 2.392 2.453 2.514 2.574 2.635 2.696 2.757 2.817 2.878
0.5 2.485 2.539 2.592 2.646 2.700 2.754 2.807 2.861 2.915 2.969 3.022
0.6 2.684 2.731 2.778 2.825 2.872 2.920 2.967 3.014 3.061 3.109 3.156
0.7 2.868 2.909 2.950 2.991 3.033 3.074 3.115 3.156 3.198 3.239 3.280
0.8 3.039 3.075 3.110 3.146 3.182 3.217 3.253 3.289 3.325 3.360 3.396
0.9 3.198 3.229 3.259 3.290 3.321 3.351 3.382 3.412 3.443 3.474 3.504
1 3.347 3.373 3.398 3.424 3.450 3.476 3.502 3.528 3.554 3.508 3.606

Table 3: The approximation solution to (25) in Case 2 (ω = 0.5, α = 0.75) - x(t, ω, r)

t\r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 3.000 2.900 2.800 2.700 2.600 2.500 2.400 2.300 2.200 2.100 2.000

0.1 3.166 3.080 2.993 2.907 2.821 2.735 2.649 2.562 2.476 2.390 2.361
0.2 3.261 3.184 3.107 3.030 2.953 2.877 2.800 2.723 2.646 2.569 2.551
0.3 3.346 3.277 3.209 3.140 3.072 3.004 2.935 2.867 2.798 2.730 2.722
0.4 3.423 3.362 3.302 3.241 3.180 3.119 3.059 2.998 2.937 2.876 2.878
0.5 3.495 3.441 3.387 3.333 3.280 3.226 3.172 3.118 3.065 3.011 3.022
0.6 3.561 3.513 3.466 3.419 3.372 3.325 3.277 3.230 3.183 3.136 3.156
0.7 3.622 3.581 3.540 3.498 3.457 3.416 3.375 3.333 3.292 3.251 3.280
0.8 3.679 3.643 3.608 3.572 3.536 3.501 3.465 3.429 3.393 3.358 3.396
0.9 3.732 3.702 3.671 3.640 3.610 3.579 3.548 3.518 3.487 3.457 3.504
1.0 3.782 3.756 3.730 3.704 3.678 3.652 3.626 3.600 3.574 3.548 3.606

Table 4: The approximation solution to (25) in Case 2 (ω = 0.5, α = 0.75) - x(t, ω, r)

Using the modified trapezoidal rule in Theorem 4.5, the numerical scheme for (20), (21) can be depicted
as:



xn(ω, r) P.1= ϕ(0, ω, r) +
hα

Γ(α + 2)
f
ω

(tn, r, xn−k(ω, r), xn−k(ω, r))

+
hα

Γ(α + 2)

n−1∑
j=0

a j,n f
ω

(t j, r, x j−k(ω, r), x j−k(ω, r))

xn(ω, r) P.1= ϕ(0, ω, r) +
hα

Γ(α + 2)
fω(tn, r, xn−k(ω, r), xn−k(ω, r))

+
hα

Γ(α + 2)

n−1∑
j=0

a j,n fω(t j, r, x j−k(ω, r), x j−k(ω, r))

a j,n =

(n − 1)α+1
− (n − α − 1)nα, j = 0

(n − j + 1)α+1 + (n − j − 1)α+1
− 2(n − j)α+1, j ∈ [1,n − 1]

(23)
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for Case 1, and

xn(ω, r) P.1= ϕ(0, ω, r) +
hα

Γ(α + 2)
fω(tn, r, xn−k(ω, r), xn−k(ω, r))

+
hα

Γ(α + 2)

n−1∑
j=0

a j,n fω(t j, r, x j−k(ω, r), x j−k(ω, r))

xn(ω, r) P.1= ϕ(0, ω, r) +
hα

Γ(α + 2)
f
ω

(tn, r, xn−k(ω, r), xn−k(ω, r))

+
hα

Γ(α + 2)

n−1∑
j=0

a j,n f
ω

(t j, r, x j−k(ω, r), x j−k(ω, r))

a j,n =

(n − 1)α+1
− (n − α − 1)nα, j = 0

(n − j + 1)α+1 + (n − j − 1)α+1
− 2(n − j)α+1, j ∈ [1,n − 1]

(24)

for Case 2.

Example 4.6. Let Ω = (0, 1),F−Borel δ−field of subsets of Ω,P−Lebesgue measure on (Ω,F ). Consider the
following random fuzzy fractional functional initial value problem

(C
1HD

α
0+ x)(t, ω) P.1=

ω(4 − t)
4

x(t − 1, ω) + ω
(

cos(t), 2 cos(t), 3 cos(t)
)
, t ∈ [0, 1],

x(t, ω) = ϕ(t, ω) P.1= (
2ω

1 − t
,

4ω
1 − t

,
6ω

1 − t
), t ∈ [−1, 0] .

(25)

Since the exact solution cannot be found analytically, we use the numerical method proposed in this study.
Case 1. Consider x is d−increasing for P−a.a. ω. Using the modified fractional Euler method (23), the
approximation solution [x(t, ω)]r = [x(t, ω, r), x(t, ω, r)], t ∈ [0, 1] to (25) is shown in Figure 3 and Tables 1, 2.
Case 2. Consider x is d−decreasing for P−a.a. ω. Using the modified fractional Euler method (24), the
approximation solution [x(t, ω)]r = [x(t, ω, r), x(t, ω, r)], t ∈ [0, 1] to (25) is shown in Figure 4 and Tables 3,4.
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