Filomat 32:7 (2018), 2635–2649 https://doi.org/10.2298/FIL1807635E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Oscillatory Behaviour of Higher-Order Nonlinear Neutral Delay Dynamic Equations on Time Scales

M. M. A. El-sheikh^a, M. H. Abdalla^b, A. M. Hassan^b

^a Department of Mathematics, Faculty of Science, Menoufia University, Shebeen EL-Koom, Egypt ^b Department of Mathematics, Faculty of Science, Benha University, Benha-Kalubia 13518, Egypt

Abstract. In this paper, new sufficient conditions are established for the oscillation of solutions of the higher order dynamic equations

 $\left[r(t)(z^{\Delta n-1}(t))^{\alpha}\right]^{\Delta}+q(t)f(x(\delta(t)))=0,\quad\text{for }t\in[t_0,\infty)_{\mathbb{T}},$

where $z(t) := x(t) + p(t)x(\tau(t))$, $n \ge 2$ is an even integer and $\alpha \ge 1$ is a quotient of odd positive integers. Under less restrictive assumptions for the neutral coefficient, we employ new comparison theorems and Generalized Riccati technique.

1. Introduction

In this paper, we introduce new sufficient conditions for the oscillation of solutions to the nonlinear neutral delay dynamic equation

$$\left[r(t)(z^{\Delta n-1}(t))^{\alpha}\right]^{\Delta} + q(t)f(x(\delta(t))) = 0, \quad \text{for } t \in [t_0, \infty)_{\mathbb{T}},\tag{1}$$

where $z(t) := x(t) + p(t)x(\tau(t))$ and $\alpha \ge 1$ is a quotient of odd positive integers. We assume that the following conditions hold.

(H₁) $r \in C_{rd}([t_0, \infty)_{\mathbb{T}}, \mathbb{R}), r(t) > 0, r^{\Delta}(t) > 0;$

 $(\mathrm{H}_{2}) \ \tau, \delta \in \mathrm{C}^{1}_{rd}([t_{0}, \infty)_{\mathbb{T}}, \mathbb{T}), \ \tau^{\Delta}(t) \geq \tau_{0} > 0, \ \delta^{\sigma}(t) \leq t \ \delta^{\Delta}(t) > 0, \ \tau \circ \delta = \delta \circ \tau, \ \lim_{t \to \infty} \tau(t) = \infty, \ \lim_{t \to \infty} \delta(t) = \infty;$

(H₃) $p, q \in C^1_{rd}([t_0, \infty)_T, \mathbb{R}), 0 \le p(t) \le p_0 < \infty$, and q(t) > 0, where $p_0 > 0$ is a constant;

(H₄) $f \in C(\mathbb{T}, \mathbb{T}), xf(x) > 0$ for all $x \neq 0$, and there exists a positive constant k such that $\frac{f(x)}{x} \ge k$ for all $x \neq 0$.

²⁰¹⁰ Mathematics Subject Classification. Primary 34C10, 34K11.

Keywords. Oscillation, Higher order, Nonlinear dynamic equations, Riccati technique, Taylors formula.

Received: 09 July 2017; Revised: 03 April 2018; Accepted: 26 June 2018

Communicated by Jelena Manojlović

Research supported by Benha Univeristy, Egypt

Email addresses: msheikh_1999@yahoo.com (M.M.A. El-sheikh), m_h_aballa36@yahoo.com (M.H. Abdalla),

 $[\]texttt{ahmed.mohamed@fsc.bu.edu.eg} (A.M. Hassan)$

Throughout this paper, we will consider the following two cases:

$$\int_{t_0}^{\infty} r^{-\frac{1}{\alpha}}(s) \Delta s = \infty, \tag{2}$$

and

$$\zeta(t) = \int_{t}^{\infty} r^{-\frac{1}{\alpha}}(s) \Delta s < \infty.$$
(3)

The theory of time scales was introduced by Hilger [11] in 1988 to unify continuous and discrete analysis. A *time scale*, which inherits standard topology on \mathbb{R} , is a nonempty closed subset of reals. Here, and throughout this paper, a time scale will be denoted by the symbol \mathbb{T} , and the intervals with a subscript \mathbb{T} are used to denote the intersection of the usual interval with \mathbb{T} . For $t \in \mathbb{T}$, the *forward jump operator* is defined as $\sigma : \mathbb{T} \to \mathbb{T}$ by $\sigma(t) := \inf(t, \infty)_{\mathbb{T}}$, while the *backward jump operator* $\rho : \mathbb{T} \to \mathbb{T}$ is defined by $\rho(t) := \sup(-\infty, t)_{\mathbb{T}}$, and the *graininess function* $\mu : \mathbb{T} \to \mathbb{R}^+$ is defined as $\mu(t) := \sigma(t) - t$. A point $t \in \mathbb{T}$ is called *right-dense* if $\sigma(t) = t$ and/or equivalently $\mu(t) = 0$ holds; otherwise, it is called *right-scattered*. Similarly *left-dense* and *left-scattered points* are defined with respect to the backward jump operator.

The set of all such *rd*-continuous functions is denoted by $C_{rd}(\mathbb{T}, \mathbb{R})$. The set of functions $f : \mathbb{T} \to \mathbb{R}$ which are differentiable and whose derivative is an *rd*-continuous function is denoted by $C^1_{rd}(\mathbb{T}, \mathbb{R})$. The Delta derivative of a function $f : \mathbb{T} \to \mathbb{R}$ is defined by

$$f^{\Delta}(t) = \begin{cases} \frac{f^{\sigma}(t) - f(t)}{\mu(t)}, & \mu(t) > 0\\ \\ \lim_{s \to t} \frac{f(t) - f(s)}{t - s}, & \mu(t) = 0 \end{cases}$$

The derivative of the product of two differentiable functions f and g is defined by

$$(fg)^{\Delta}(t) = f^{\Delta}(t)g(t) + f(\sigma(t))g^{\Delta}(t).$$

and the derivative of the quotient of two differentiable functions f and $g \neq 0$: is given by

$$\left(\frac{f}{g}\right)^{\Delta}(t) = \frac{g(t)f^{\Delta}(t) - f(t)g^{\Delta}(t)}{g(\sigma(t))g(t)}$$

F is called an antiderivative of a function *f* defined on \mathbb{T} if $F^{\Delta} = f$ holds on \mathbb{T}^k . In this case integration of *f* is defined by

$$\int_{s}^{t} f(\tau) \Delta \tau = F(t) - F(s), \quad \text{where } s, t \in \mathbb{T}.$$

An antiderivative of 0 is 1 and the antiderivative of 1 is t; however it is not possible to find a polynomial that is an antiderivative of t. The role of t^2 is therefore played in the time scales calculus by

$$\int_0^t \sigma(\tau) \Delta \tau \quad and \quad \int_0^t \tau \Delta \tau.$$

In general, the functions

$$g_0(t,s) \equiv 1$$
, and $g_{k+1}(t,s) = \int_s^t g_k(\sigma(\tau),s)\Delta\tau$, $k \ge 0$,

and

$$h_0(t,s) \equiv 1$$
, and $h_{k+1}(t,s) = \int_s^t h_k(\tau,s) \Delta \tau$, $k \ge 0$,

may be considered as the polynomials on \mathbb{T} . The relationship between g_k and h_k is

$$g_k(t,s) = (-1)^k h_k(t,s)$$
 for all $k \in \mathbb{N}$.

The following is the dynamic generalization of the well-known Taylor's formula.

Lemma 1.1. Let $n \in \mathbb{N}$, $s \in \mathbb{T}$, and $f \in C^n_{rd}(\mathbb{T}, \mathbb{R})$. Then,

$$f(t) = \sum_{k=0}^{n-1} h_k(t,s) f^{\Delta k}(s) + \int_s^t h_{n-1}(t,\sigma(\eta)) f^{\Delta n}(\eta) \Delta \eta \text{ for } t \in \mathbb{T}.$$

By a solution of (1), we mean a nontrivial function $x \in C_{rd}([T_x, \infty)_{\mathbb{T}}, \mathbb{R})$, where $T_x \in [t_0, \infty)_{\mathbb{T}}$, which has the property that $[r(t)(z^{\Delta n-1}(t))^{\alpha}] \in C^1_{rd}([T_x, \infty)_{\mathbb{T}}, \mathbb{R})$ and satisfies (1) identically on $[T_x, \infty)_{\mathbb{T}}$. A solution xof (1) is said to be oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is nonoscillatory. Equation (1) is called oscillatory if all its solutions oscillate.

In recent years considerable researchs has been completed on oscillatory theory, see [1, 4, 9, 12, 16–18, 21, 22, 24].

For instance, in 2015 Karpuz [13] studied the qualitative behavior of solutions to the higher-order delay dynamic equations of the form

$$\left[x(t) + A(t)x(\alpha(t))\right]^{\Delta n} + B(t)x(\beta(t)) = 0, \quad \text{for } t \in [t_0, \infty)_{\mathbb{T}},$$

where $n \in \mathbb{N}$, $A \in C_{rd}([t_0, \infty)_{\mathbb{T}}, \mathbb{R})$, and $\alpha(t), \beta(t) \leq t$ for all $t \in [t_0, \infty)_{\mathbb{T}}$.

Chen [8] established sufficient conditions for the oscillation and asymptotic behavior of solutions of the nth-order nonlinear neutral delay dynamic equations

$$\{a(t)\psi(x(t))[|(x(t) + p(t)x(\tau(t)))^{\Delta n-1}|^{\alpha-1}|(x(t) + p(t)x(\tau(t)))^{\Delta n-1}|]^{\gamma}\}^{\Delta} + \lambda f(t, x(\delta(t))) = 0,$$

where $\alpha > 0$ is a constant, $\gamma > 0$ is a quotient of odd positive integers, $\lambda = \pm 1$; $p(t) \in C_r d(\mathbb{T}, \mathbb{R})$ and $0 \le p(t) \le 1$.

In the last two decades, several special cases of (1) have been discussed by numerous authors in the literature, we mention for instance Li et al. [15] established a new oscillation criteria for the neutral delay differential equations

$$\left[x(t) + p(t)x(\tau(t))\right]^{(n)} + q(t)f(x(\sigma(t))) = 0, \ t \ge t_0,$$

where $0 \le p(t) \le p_0 < \infty$.

More recently, Baculíková et al. [3] combined new generalization of the classical Philos and Staikos lemma (see[19, 20]) together with a suitable comparison technique to introduce new oscillation criteria for the *nth*-order differential equation

$$\left[r(t)(z'(t))^{\gamma}\right]^{(n-1)} + q(t)x^{\gamma}(\sigma(t)) = 0,$$

where γ is the ratio of two positive odd integers, $n \ge 3$, $p(t) \ge 0$ and q(t) > 0.

In 2016, Karpuz and Öcalan [14] presented new sufficient conditions for the oscillation of first-order delay dynamic equation on time scales

$$x^{\Delta}(t) + p(t)x(\tau(t)) = 0, \tag{4}$$

provided that p(t) > 0 and $\tau(\sigma(t)) \le t$.

For completeness, we outline some known results, which will be useful for proving our main results.

Theorem 1.2. [6] Assume that $v : \mathbb{T} \to \mathbb{R}$ is strictly increasing and $\tilde{\mathbb{T}} := v(\mathbb{T})$ is a time scale. Let $y : \tilde{\mathbb{T}} \to \mathbb{R}$. If $y^{\tilde{\Delta}}[v(t)]$ and $v^{\Delta}(t)$ exist for $t \in \mathbb{T}_k$, then

$$(y[v(t)])^{\Delta} = y^{\Delta}[v(t)]v^{\Delta}(t).$$

Lemma 1.3. [6] Let $n \in N$, $f \in C_{rd}^n(\mathbb{T}, \mathbb{R})$ and $\sup \mathbb{T} = \infty$. Suppose that f is either positive or negative, $f^{\Delta n}$ is not identically zero and is either nonnegative or nonpositive on $[t_0, \infty)_{\mathbb{T}}$ for some $t_0 \in \mathbb{T}$. Then, there exist $t_1 \in [t_0, \infty)_{\mathbb{T}}$ and $m \in [0, n)_{\mathbb{Z}}$ such that $(-1)^{n-m} f(t) f^{\Delta n}(t) \ge 0$ for all $t \in [t_0, \infty)_{\mathbb{T}}$ with

- $f(t)f^{\Delta j}(t) > 0$ for all $t \in [t_0, \infty)_{\mathbb{T}}$ and all $j \in [0, m]_{\mathbb{Z}}$;
- $(-1)^{m+j}f(t)f^{\Delta j}(t) \ge 0$ for all $t \in [t_0, \infty)_{\mathbb{T}}$ and all $j \in [m, n)_{\mathbb{Z}}$.

Lemma 1.4. [13] Let $\sup \mathbb{T} = \infty$, $n \in \mathbb{N}$ and $f \in C^n_{rd}([t_0, \infty), \mathbb{R}^+_0)$ with $f^{\Delta n} \leq 0$ on $[t_0, \infty)_{\mathbb{T}}$. Let Lemma 1.3 hold with $m \in [0, n)_{\mathbb{Z}}$ and $s \in [t_0, \infty)_{\mathbb{T}}$. Then

$$f(t) \ge h_m(t,s) f^{\Delta m}(t) \quad \text{for all } t \in [s,\infty)_{\mathbb{T}}$$

$$\tag{5}$$

Lemma 1.5. [10] Let $\sup \mathbb{T} = \infty$ and $f \in C^n_{rd}(\mathbb{T}, \mathbb{R}^+)$ as well as $(n \ge 2)$. Suppose that Kneser's theorem holds with $m \in [1, n]_{\mathbb{N}}$ and $f^{\Delta n}(t) \le 0$ on \mathbb{T} . Then there exists a sufficiently large $t_1 \in \mathbb{T}$ such that

$$f^{\Delta}(t) \ge h_{m-1}(t,t_1) f^{\Delta m}(t), \quad for \quad all \ t \in [t_1,\infty)_{\mathbb{T}}.$$

In this article, we introduce new comparison theorems in which we compare the higher-order dynamic equation (1) with first order dynamic equations of the form (4). The obtained results supplement and improve those reported in the literature.

2. Main results

We begin with the following lemma.

Lemma 2.1. Let the conditions (H₁)-(H₃) be satisfied. If x(t) is an eventually positive solution of (1), then there exists $t_1 \in [t_0, \infty)_{\mathbb{T}}$ such that

$$z^{\Delta n-1}(t) > 0, \ z^{\Delta n}(t) \le 0, \ z^{\Delta}(t) > 0, \ t > t_1.$$
(6)

Proof. Since x(t) is an eventually positive solution of (1), then there exists $t_1 \in [t_0, \infty)_T$ such that

$$x(t) > 0$$
, $x(\delta(t)) > 0$ and $x(\tau(t)) > 0$, for $t \ge t_1$.

Now from (1) and the assumptions (H₃) and (H₄), we have $z(t) \ge x(t) > 0$. Then (1) implies that

$$\left[r(t)(z^{\Delta n-1}(t))^{\alpha}\right]^{\Delta} \le -kq(t)x^{\alpha}(\delta(t)) < 0, \quad t \ge t_1.$$

$$\tag{7}$$

Therefore, $r(t)(z^{\Delta n-1}(t))^{\alpha}$ is decreasing and either $z^{\Delta n-1}(t) > 0$ or $z^{\Delta n-1}(t) < 0$ eventually for $t \ge t_1$. If $z^{\Delta n-1}(t) < 0$, then there exists a constant *c* such that

$$z^{\Delta n-1}(t) \leq -c \frac{1}{r^{\frac{-1}{\alpha}}(t)}.$$

Integrating from t_1 to t, we obtain

$$z^{\Delta n-2}(t) \leq -c \int_{t_1}^t \frac{1}{r^{\frac{-1}{\alpha}}(s)} \Delta s.$$

Letting $t \to \infty$, it follows from (2), that $\lim_{t\to\infty} z^{\Delta n-2}(t) = -\infty$. Therefore, $\lim_{t\to\infty} z(t) = -\infty$ which is a contradiction. Consequently, $z^{\Delta n-1}(t) > 0$ for $t \ge t_1$. Now, we prove that $z^{\Delta n}(t) \le 0$. Since

$$\left[r(t)(z^{\Delta n-1}(t))^{\alpha}\right]^{\Delta} = r^{\Delta}(t)(z^{\Delta n-1}(t))^{\alpha} + r^{\sigma}(t)\left[(z^{\Delta n-1}(t))^{\alpha}\right]^{\Delta} \le 0.$$
(8)

Using the Pötzche chain rule [6] with fact that $\alpha \ge 1$, we obtain

$$[(z^{\Delta n-1}(t))^{\alpha}]^{\Delta} = \left\{ \alpha \int_{0}^{1} \left[z^{\Delta n-1}(t) + \mu h z^{\Delta n}(t) \right]^{\alpha-1} dh \right\} z^{\Delta n}$$

$$\geq \alpha (z^{\Delta n-1}(t))^{\alpha-1} z^{\Delta n}(t).$$

This with (8), leads to

$$r^{\Delta}(t)(z^{\Delta n-1}(t))^{\alpha} + \alpha r^{\sigma}(t)(z^{\Delta n-1}(t))^{\alpha-1}z^{\Delta n}(t) \leq 0,$$

since $z^{\Delta n-1}(t) > 0$, $r^{\Delta}(t)$ and r(t) > 0, we then obtain

 $z^{\Delta n}(t) \leq 0.$

Applying Lemma1.3 and Lemma1.5, we obtain

$$z^{\Delta n-1}(t) > 0, \ z^{\Delta n}(t) \le 0, \ z^{\Delta}(t) > 0, \ t > t_1.$$

Theorem 2.2. Suppose that (2) and (H_1) - (H_3) . If

$$\int_{t_0}^{\infty} Q(s)\Delta s = \infty,$$
(9)

where $Q(t) = \min\{kq(t), kq(\tau(t))\}$, then every solution of (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x(t) on $[t_0, \infty)$, such that x(t) > 0, $x(\tau(t)) > 0$, $x(\delta(t)) > 0$ on $[T_0, \infty)$. Then by Lemma 2.1, we have z(t) > 0, $z^{\Delta(t)} > 0$, $z^{\Delta n-1}(t) > 0$, and $z^{\Delta n}(t) \le 0$. Then we obtain

$$\left[r(t)(z^{\Delta n-1}(t))^{\alpha}\right]^{\Delta} \le -kq(t)x^{\alpha}(\delta(t)) < 0, \quad t \ge t_1.$$

$$\tag{10}$$

It follows from Theorem 1.2 and $\left[r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}\right]^{\Delta} = \left[r(t)(z^{\Delta n-1}(t))^{\alpha}\right]^{\Delta}\tau^{\Delta}(t)$, that there exists a $t_2 \ge T$ such that

$$p_0^{\alpha} \frac{\left[r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}\right]^{\Delta}}{\tau^{\Delta}(t)} \leq -kp_0^{\alpha}q(\tau(t))x^{\alpha}(\delta(\tau(t))).$$

2640

But since $\tau^{\Delta}(t) \ge \tau_0 > 0$, for $t \ge t_2$, we have

$$\frac{p_0^{\alpha}}{\tau_0} \Big[r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha} \Big]^{\Delta} \le -k p_0^{\alpha} q(\tau(t)) x^{\alpha}(\delta(\tau(t))).$$

$$\tag{11}$$

Combining (10) and (11) and using the assumption that $\delta \circ \tau = \tau \circ \delta$, we obtain

$$\left(r(t)(z^{\Delta n-1}(t))^{\alpha} \right)^{\Delta} + \frac{p_0^{\alpha}}{\tau_0} \left(r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha} \right)^{\Delta}$$

$$\leq -\left(kq(t)x^{\alpha}(\delta(t)) + p_0^{\alpha}kq(\tau(t))x^{\alpha}(\delta(\tau(t))) \right)$$

$$\leq -\min\{kq(t), kq(\tau(t))\} \left(x^{\alpha}(\delta(t)) + p_0^{\alpha}x^{\alpha}(\tau(\delta(t))) \right)$$

$$= -Q(t) \left(x^{\alpha}(\delta(t)) + p_0^{\alpha}x^{\alpha}(\tau(\delta(t))) \right).$$

$$(12)$$

Since $0 \le p(t) < p_0 < \infty$, then by the following inequality (see[5],Lemma1)

$$x_1^{\alpha} + x_2^{\alpha} \ge \frac{1}{2^{\alpha - 1}} (x_1 + x_2)^{\alpha}, \tag{13}$$

where $\alpha \ge 1$, $x_1 \ge 0$ and $x_2 \ge 0$, we have

$$x^{\alpha}(\delta(t)) + p_{0}^{\alpha} x^{\alpha}(\tau(\delta(t))) \ge \frac{1}{2^{\alpha - 1}} \Big(x(\delta(t)) + p_{0} x(\tau(\delta(t))) \Big)^{\alpha} \ge \frac{z^{\alpha}(\delta(t))}{2^{\alpha - 1}}.$$
(14)

Substituting (14) into (12), for $t \ge t_2$, we obtain

$$\left(r(t)(z^{\Delta n-1}(t))^{\alpha}\right)^{\Delta} + \frac{p_{0}^{\alpha}}{\tau_{0}} \left(r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}\right)^{\Delta} + Q(t)\frac{z^{\alpha}(\delta(t))}{2^{\alpha-1}} \le 0.$$
(15)

Integrating from t_1 to t, we have

$$\int_{t_1}^t \left(r(s)(z^{\Delta n-1}(s))^{\alpha} \right)^{\Delta} \Delta s + \frac{p_0^{\alpha}}{\tau_0} \int_{t_1}^t \left(r(\tau(s))(z^{\Delta n-1}(\tau(s)))^{\alpha} \right)^{\Delta} \Delta s + \frac{1}{2^{\alpha-1}} \int_{t_1}^t Q(s) z^{\alpha}(\delta(s)) \Delta s \le 0, \tag{16}$$

i.e.,

$$\frac{1}{2^{\alpha-1}} \int_{t_1}^t Q(s) z^{\alpha}(\delta(s)) \leq -\int_{t_1}^t \left(r(s) (z^{\Delta n-1}(s))^{\alpha} \right)^{\Delta} \Delta s - \frac{p_0^{\alpha}}{\tau_0^2} \int_{t_1}^t \left(r(\tau(s)) (z^{\Delta n-1}(\tau(s)))^{\alpha} \right)^{\Delta} \Delta(\tau(s)) \\
\leq r(t_1) z^{\Delta n-1}(t_1) - r(t) z^{\Delta n-1}(t) \\
+ \frac{p_0^{\alpha}}{\tau_0^2} \left(r(\tau(t_1)) (z^{\Delta n-1}(\tau(t_1)))^{\alpha} - r(\tau(t)) (z^{\Delta n-1}(\tau(t)))^{\alpha} \right).$$
(17)

Since $z^{\Delta}(t) > 0$ for $t \ge t_1$, then there exists a constant c > 0 such that $z(\delta(t)) \ge c$, $t \ge t_1$. Using the fact that $r(t)z^{\Delta n-1}(t)$ is decreasing, we obtain from (17)

$$\int_{t_1}^{\infty} Q(s) \Delta s < \infty.$$

This contradicts (9), and completes the proof. \Box

Theorem 2.3. Assume that for all sufficiently large $s \in [t_0, \infty)_T$, (2) holds and $\tau(t) \ge t$. If the first-order dynamic equation

$$u^{\Delta}(t) + Q(t,s)u(\delta(t)) = 0, \quad \text{for } t \in [t_0, \infty)_{\mathbb{T}},$$
(18)

where $Q(t,s) = Q(t) \frac{h_{n-1}^{\alpha}(\delta(t),s)}{2^{n-1}r(\delta(t))}$, is oscillatory, then (1) is also oscillatory.

Proof. Assume that (1) is nonoscillatory. Without loss of generality there is a solution x of (1) and $t_1 \in [t_0, \infty)_{\mathbb{T}}$ with x(t) > 0, $x(\tau(t)) > 0$ and $x(\delta(t)) > 0$ for all $t \in [t_1, \infty)_{\mathbb{T}}$. Proceeding as in the proof of Theorem 2.2, we arrive (15). By Lemma 1.4 for all $t \in [s, \infty)_{\mathbb{T}}$, we obtain

$$\left(r(t)(z^{\Delta n-1}(t))^{\alpha}\right)^{\Delta} + \frac{p_{0}^{\alpha}}{\tau_{0}} \left(r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}\right)^{\Delta} + Q(t)\frac{h_{n-1}^{\alpha}(\delta(t),s)}{2^{\alpha-1}}(z^{\Delta n-1}(\delta(t)))^{\alpha} \le 0.$$
(19)

Let $y(t) = r(t)(z^{\Delta n-1}(t))^{\alpha} > 0$. Then

$$\left(y(t) + \frac{p_0^{\alpha}}{\tau_0}y(\tau(t))\right)^{\Delta} + Q(t)\frac{h_{n-1}^{\alpha}(\delta(t),s)}{2^{\alpha-1}r(\delta(t))}y(\delta(t) \le 0.$$
(20)

Now, define

$$u(t) := y(t) + \frac{p_0^{t}}{\tau_0} y(\tau(t)), \quad \text{for } t \in [t_1, \infty)_{\mathbb{T}},$$
(21)

since y(t) is decreasing and $\tau(t) \ge t$. Then

$$u(t) \le \left(1 + \frac{p_0^{\alpha}}{\tau_0}\right) y(t), \quad \text{for } t \in [t_1, \infty)_{\mathbb{T}}.$$
(22)

Using (20), we obtain

$$u^{\Delta}(t) + Q(t) \frac{h_{n-1}^{\alpha}(\delta(t), s)}{2^{\alpha - 1}r(\delta(t))} u(\delta(t) \le 0.$$
⁽²³⁾

Therefore,

$$u^{\Delta}(t) + Q(t,t_1)u(\delta(t)) \le 0 \quad \text{for } t \in [t_1,\infty)_{\mathbb{T}}.$$
(24)

By [7, Theorem 3.1], Eq.(18) also presents a nonoscillatory solution. This contradiction proves that (1) is oscillatory. \Box

In view of Theorem 1 and Theorem 2 in [14] as well as Theorem 2.2, we obtain the following oscillation criteria for (1).

Corollary 2.4. If

$$\limsup_{t \to \infty} \frac{\int_{\delta(t)}^{\sigma(t)} Q(s, t_1) \Delta s}{1 - [1 - \mu(\delta(t))Q(\delta(t), t_1)]\mu^{\sigma}(t)Q^{\sigma}(t, t_1)} > 1,$$
(25)

then every solution of (1) is oscillatory.

Corollary 2.5. *If there exists* $\gamma \in [0, 1]_{\mathbb{R}}$ *such that*

$$\liminf_{t \to \infty} \int_{\delta(t)}^{t} Q(s, t_1) \Delta s > \gamma \quad and \quad \limsup_{t \to \infty} \int_{\delta(t)}^{\sigma(t)} Q(s, t_1) \Delta s > 1 - \left(1 - \sqrt{1 - \gamma}\right)^2, \tag{26}$$

then every solution of (1) is oscillatory.

The following theorem introduces a new oscillation criterion when $\delta(t) \le \tau(t) \le t$.

Theorem 2.6. Assume that (2) holds. If there exists a real-valued function $\rho \in C^1_{rd}([t_0, \infty)_T, (0, \infty))$ such that

$$\limsup_{t \to \infty} \int_{t_0}^t \left(\frac{1}{2^{\alpha - 1}} \rho(s) Q(s) - \frac{(1 + \frac{p_0^*}{\tau_0})}{(\alpha + 1)^{\alpha + 1}} \frac{(\rho^{\Delta}(s))^{\alpha + 1} r(\delta(s))}{(\delta^{\Delta}(s))^{\alpha} h_{n-2}^{\alpha}(\delta(s), t_1) \rho^{\alpha}(s)} \right) \Delta s = \infty,$$
(27)

Then (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1) on $[t_0, \infty)_T$ such that x(t) > 0, $x(\tau(t)) > 0$ and $x(\delta(t)) > 0$ for $t \in [t_1, \infty)_T$. Define a Riccati substitution as

$$\omega(t) = \rho(t) \frac{r(t)(z^{\Delta n - 1}(t))^{\alpha}}{z^{\alpha}(\delta(t))}, \quad t \in [t_2, \infty)_{\mathbb{T}}.$$
(28)

Clearly $\omega(t) > 0$, and

$$\omega^{\Delta}(t) = \frac{\rho(t)}{z^{\alpha}(\delta(t))} [r(t)(z^{\Delta n-1}(t))^{\alpha}]^{\Delta} + [r(t)(z^{\Delta n-1}(t))^{\alpha}]^{\sigma} \left[\frac{\rho(t)}{z^{\alpha}(\delta(t))}\right]^{\Delta}$$
$$= \rho(t) \frac{[r(t)(z^{\Delta n-1}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(\delta(t))} + \frac{\rho^{\Delta}(t)}{\rho(\sigma(t))} \omega(\sigma(t)) - \alpha \delta^{\Delta}(t) \frac{\rho(t)}{\rho(\sigma(t))} \frac{z^{\Delta}(\delta(t))}{z(\delta(t))} \omega(\sigma(t)),$$
(29)

since by Lemma 1.5, we have

$$z^{\Delta}(\delta(t)) \ge h_{n-2}(\delta(t), t_1) z^{\Delta n-1}(\delta(t)).$$
(30)

Substituting (30) into (29), we get

$$\omega^{\Delta}(t) \le \rho(t) \frac{[r(t)(z^{\Delta n-1}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(\delta(t))} + \frac{\rho^{\Delta}(t)}{\rho(\sigma(t))} \omega(\sigma(t)) - \alpha \delta^{\Delta}(t) \frac{\rho(t)}{\rho(\sigma(t))} \frac{h_{n-2}(\delta(t), t_1) z^{\Delta n-1}(\delta(t))}{z(\delta(t))} \omega(\sigma(t)).$$
(31)

Since

$$\omega^{\frac{1}{\alpha}}(\sigma(t)) = \rho^{\frac{1}{\alpha}}(\sigma(t)) \frac{r^{\frac{1}{\alpha}}(\sigma(t))(z^{\Delta n-1}(\sigma(t)))}{z(\delta(\sigma(t)))}.$$
(32)

Since $\delta^{\Delta} > 0$ and $\delta(t) \le t \le \sigma(t)$. In view of the fact $r(t)(z^{\Delta}(t))^{\alpha}$ is decreasing and $z^{\Delta} > 0$, then we obtain

$$\frac{\omega^{\frac{1}{\alpha}}(\sigma(t))}{\rho^{\frac{1}{\alpha}}(\sigma(t))r^{\frac{1}{\alpha}}(\delta(t))} \le \frac{z^{\Delta n-1}(\delta(t))}{z(\delta(t))}.$$
(33)

Substituting (33) into (30), we obtain

$$\omega^{\Delta}(t) \leq \rho(t) \frac{[r(t)(z^{\Delta n-1}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(\delta(t))} + \frac{\rho^{\Delta}(t)}{\rho(\sigma(t))} \omega(\sigma(t)) - \alpha \delta^{\Delta}(t) h_{n-2}(\delta(t), t_1) \frac{\rho(t)}{\rho^{\frac{\alpha+1}{\alpha}}(\sigma(t)) r^{\frac{1}{\alpha}}(\delta(t))} \omega^{\frac{\alpha+1}{\alpha}}(\sigma(t)).$$
(34)

Define another function v(t) by

$$\nu(t) := \rho(t) \frac{r(\tau(t))(z^{\Delta n - 1}(\tau(t)))^{\alpha}}{z^{\alpha}(\delta(t))}, \quad t \in [t_2, \infty)_{\mathbb{T}}.$$
(35)

Then v(t) > 0, and

$$\nu^{\Delta}(t) = \frac{\rho(t)}{z^{\alpha}(\delta(t))} [r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}]^{\Delta} + [r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}]^{\sigma} \Big[\frac{\rho(t)}{z^{\alpha}(\delta(t))}\Big]^{\Delta}$$
$$= \rho(t) \frac{[r(t)(z^{\Delta n-1}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(\delta(t))} + \frac{\rho^{\Delta}(t)}{\rho(\sigma(t))} \nu(\sigma(t)) - \alpha \delta^{\Delta}(t) \frac{\rho(t)}{\rho(\sigma(t))} \frac{z^{\Delta}(\delta(t))}{z(\delta(t))} \nu(\sigma(t)).$$
(36)

This with (30), leads to

$$\nu^{\Delta}(t) \leq \rho(t) \frac{[r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}]^{\Delta}}{z^{\alpha}(\delta(t))} + \frac{\rho^{\Delta}(t)}{\rho(\sigma(t))}\nu(\sigma(t)) - \alpha\delta^{\Delta}(t)\frac{\rho(t)}{\rho(\sigma(t))}\frac{h_{n-2}(\delta(t),t_1)z^{\Delta n-1}(\delta(t))}{z(\delta(t))}\nu(\sigma(t)).$$
(37)

From the definition of v(t), with the facts that $\tau^{\Delta} > 0$, $\delta^{\Delta} > 0$, $z^{\Delta} > 0$ and $r(t)(z^{\Delta}(t))^{\alpha}$ is decreasing, we get

$$\nu^{\frac{1}{\alpha}}(\sigma(t)) = \rho^{\frac{1}{\alpha}}(\sigma(t)) \frac{[r^{\frac{1}{\alpha}}(\tau(t))z^{\Delta n-1}(\tau(t))]^{\sigma}}{z(\delta(\sigma(t)))} \le \rho^{\frac{1}{\alpha}}(\sigma(t)) \frac{r^{\frac{1}{\alpha}}(\tau(t))z^{\Delta n-1}(\tau(t))}{z(\delta(t))},$$
(38)

But since $\delta(t) \leq \tau(t)$ and $r(t)(z^{\Delta}(t))^{\alpha}$ is decreasing, (38) takes the form

$$\nu^{\frac{1}{\alpha}}(\sigma(t)) \le \rho^{\frac{1}{\alpha}}(\sigma(t)) \frac{r^{\frac{1}{\alpha}}(\delta(t)) z^{\Delta n-1}(\delta(t))}{z(\delta(t))}$$
(39)

i.e.,

$$\frac{\nu^{\frac{1}{\alpha}}(\sigma(t))}{\rho^{\frac{1}{\alpha}}(\sigma(t))r^{\frac{1}{\alpha}}(\delta(t))} \le \frac{z^{\Delta n-1}(\delta(t))}{z(\delta(t))}.$$
(40)

Substituting (40) into (37), we obtain

$$\nu^{\Delta}(t) \leq \rho(t) \frac{[r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}]^{\Delta}}{z^{\alpha}(\delta(t))} + \frac{\rho^{\Delta}(t)}{\rho(\sigma(t))}\nu(\sigma(t)) - \alpha\delta^{\Delta}(t)h_{n-2}(\delta(t), t_1)\frac{\rho(t)}{\rho^{\frac{\alpha+1}{\alpha}}(\sigma(t))r^{\frac{1}{\alpha}}(\delta(t))}\nu^{\frac{\alpha+1}{\alpha}}(\sigma(t)).$$
(41)

Combining (41) and (34), we obtain

$$\omega^{\Delta}(t) + \frac{p_{0}^{\alpha}}{\tau_{0}}v^{\Delta}(t) \leq \rho(t) \frac{[r(t)(z^{\Delta n-1}(t))^{\alpha}]^{\Delta} + \frac{p_{0}^{\alpha}}{\tau_{0}}[r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}]^{\Delta}}{z^{\alpha}(\delta(t))} \\
+ \left(\frac{\rho^{\Delta}(t)}{\rho(\sigma(t))}\omega(\sigma(t)) - \frac{\alpha\delta^{\Delta}(t)h_{n-2}(\delta(t),t_{1})\rho(t)}{\rho^{\frac{\alpha+1}{\alpha}}(\sigma(t))r^{\frac{1}{\alpha}}(\delta(t))} \omega^{\frac{\alpha+1}{\alpha}}(\sigma(t))\right) \\
+ \frac{p_{0}^{\alpha}}{\tau_{0}}\left(\frac{\rho^{\Delta}(t)}{\rho(\sigma(t))}v(\sigma(t)) - \frac{\alpha\delta^{\Delta}(t)h_{n-2}(\delta(t),t_{1})\rho(t)}{\rho^{\frac{\alpha+1}{\alpha}}(\sigma(t))r^{\frac{1}{\alpha}}(\delta(t))}v^{\frac{\alpha+1}{\alpha}}(\sigma(t))\right).$$
(42)

Applying the following inequality

$$Bu - Au^{\frac{\alpha+1}{\alpha}} \le \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{B^{\alpha+1}}{A^{\alpha}}.$$
(43)

on (42), we obtain

$$\frac{\rho^{\Delta}(t)}{\rho(\sigma(t))}\omega(\sigma(t)) - \frac{\alpha\delta^{\Delta}(t)h_{n-2}(\delta(t),t_1)\rho(t)}{\rho^{\frac{\alpha+1}{\alpha}}(\sigma(t))r^{\frac{1}{\alpha}}(\delta(t))}\omega^{\frac{\alpha+1}{\alpha}}(\sigma(t)) \le \frac{1}{(\alpha+1)^{\alpha+1}}\frac{(\rho^{\Delta}(t))^{\alpha+1}r(\delta(t))}{(\delta^{\Delta}(t))^{\alpha}h_{n-2}^{\alpha}(\delta(t),t_1)\rho^{\alpha}(t)},\tag{44}$$

and

$$\frac{\rho^{\Delta}(t)}{\rho(\sigma(t))}\nu(\sigma(t)) - \frac{\alpha\delta^{\Delta}(t)h_{n-2}(\delta(t),t_1)\rho(t)}{\rho^{\frac{\alpha+1}{\alpha}}(\sigma(t))r^{\frac{1}{\alpha}}(\delta(t))}\nu^{\frac{\alpha+1}{\alpha}}(\sigma(t)) \le \frac{1}{(\alpha+1)^{\alpha+1}}\frac{(\rho^{\Delta}(t))^{\alpha+1}r(\delta(t))}{(\delta^{\Delta}(t))^{\alpha}h_{n-2}^{\alpha}(\delta(t),t_1)\rho^{\alpha}(t)}.$$
(45)

This with (15), (44) and (42) leads to

$$\omega^{\Delta}(t) + \frac{p_{0}^{\alpha}}{\tau_{0}} \nu^{\Delta}(t) \le \frac{-1}{2^{\alpha-1}} \rho(t) Q(t) + \frac{(1 + \frac{p_{0}^{\alpha}}{\tau_{0}})}{(\alpha+1)^{\alpha+1}} \frac{(\rho^{\Delta}(t))^{\alpha+1} r(\delta(t))}{(\delta^{\Delta}(t))^{\alpha} h_{n-2}^{\alpha}(\delta(t), t_{1}) \rho^{\alpha}(t)}.$$
(46)

Integrating from $t_2 > t_1$ to t, we obtain

$$\int_{t_2}^{t} \left(\frac{1}{2^{\alpha-1}} \rho(s) Q(s) - \frac{(1 + \frac{p_0^{\alpha}}{\tau_0})}{(\alpha+1)^{\alpha+1}} \frac{(\rho^{\Delta}(s))^{\alpha+1} r(\delta(s))}{(\delta^{\Delta}(s))^{\alpha} h_{n-2}^{\alpha}(\delta(s), t_1) \rho^{\alpha}(s)} \right) \Delta s \le \omega(t_2) + \frac{p_0^{\alpha}}{\tau_0} \nu(t_2).$$
(47)

Taking $\limsup_{t\to\infty}$, we get a contradiction with (27). This completes the proof

Now, we present new oscillation criteria for (1) under the case (3).

Theorem 2.7. *Assume that* (3) *holds and* $\tau(t) \ge t$ *. If*

$$\int_{t_1}^{\infty} \left[\frac{h_{n-2}(\delta(s), t_1)\zeta^{\alpha}(s)Q(s)}{2^{\alpha-1}} - \left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1} \frac{(1+\frac{p_0^{-}}{\tau_0})(\tau^{\Delta}(s))^{\alpha+1}}{r^{\frac{1}{\alpha}}(s)\zeta(\tau(s))} \right] \Delta s = \infty,$$
(48)

then every solution of (1) is oscillatory.

Proof. Suppose that *x* is a nonoscillatory solution of (1) on $[t_0, \infty)_T$ such that x(t) > 0, $x(\tau(t)) > 0$ and $x(\delta(t)) > 0$ for $t \in [t_1, \infty)_T$. Proceeding as in the proof of Theorem 2.2, it is clear that $[r(t)(z^{\Delta n-1}(t))^{\alpha}]$ is a decreasing function. Thus $z^{\Delta n-1}(t)$ is either eventually positive or eventually negative for $t \ge t_2 \ge t_1$.

Case(I): $z^{\Delta n-1}(t) > 0$, $t \ge t_2$. The proof of this case is similar to that of Theorem 2.6;

Case(II): $z^{\Delta n-1}(t) < 0$, $t \ge t_2$. Applying Lemma 1.3, we obtain $z^{\Delta n-2}(t) > 0$ and $z^{\Delta}(t) > 0$. Then $\lim_{t\to\infty} z(t) \ne 0$. Define the function

$$\nu(t) := \frac{r(\tau(t))(z^{\Delta n - 1}(\tau(t)))^{\alpha}}{(z^{\Delta n - 2}(t))^{\alpha}}, \quad t \in [t_2, \infty)_{\mathbb{T}}.$$
(49)

Since $[r(t)(z^{\Delta n-1}(t))^{\alpha}]$ is decreasing and $\tau^{\Delta} > 0$, we have

$$r^{\frac{1}{\alpha}}(\tau(s))z^{\Delta n-1}(\tau(s)) \le r^{\frac{1}{\alpha}}(\tau(t))z^{\Delta n-1}(\tau(t)), \quad t \ge s > t_2$$

i.e.,

$$z^{\Delta n-1}(\tau(s)) \le r^{\frac{1}{\alpha}}(\tau(t)) z^{\Delta n-1}(\tau(t)) \frac{1}{r^{\frac{1}{\alpha}}(\tau(s))}.$$

Integrating from *t* to *l*, we obtain

$$z^{\Delta n-2}(\tau(l)) \le z^{\Delta n-2}(\tau(t)) + r^{\frac{1}{\alpha}}(\tau(t)) z^{\Delta n-1}(\tau(t)) \int_{\tau(t)}^{\tau(l)} \frac{1}{r^{\frac{1}{\alpha}}(s)} \Delta s.$$
(50)

Letting $l \to \infty$, we get

$$0 \le z^{\Delta n - 2}(\tau(t)) + r^{\frac{1}{\alpha}}(\tau(t)) z^{\Delta n - 1}(\tau(t)) \zeta(\tau(t)).$$
(51)

Using the facts that $z^{\Delta n-1} < 0$ and $\tau(t) \ge t$, we have

$$z^{\Delta n-2}(\tau(t)) \le z^{\Delta n-2}(t), \quad t \ge t_2.$$

Hence,

$$-1 \leq \frac{r^{\frac{1}{\alpha}}(\tau(t))z^{\Delta n-1}(\tau(t))}{z^{\Delta n-2}(t)}\zeta(\tau(t)),$$

i.e.,

$$-1 \le \nu(t)\zeta^{\alpha}(\tau(t)) \le 0, \quad t \ge t_2.$$
(52)

Next, define the function

$$\omega(t) := \frac{r(t)(z^{\Delta n-1}(t))^{\alpha}}{(z^{\Delta n-2}(t))^{\alpha}}, \quad t \in [t_2, \infty)_{\mathbb{T}}.$$
(53)

Thus clearly $\omega < 0$ and by the facts $[r(t)(z^{\Delta n-1}(t))^{\alpha}]$ is decreasing and $\tau^{\Delta} > 0$, we get

 $\omega(t) \geq \nu(t).$

i.e.,

$$-1 \le \omega(t)\zeta^{\alpha}(\tau(t)) \le 0, \quad t \ge t_2, \tag{54}$$

From (49), we have

$$\nu^{\Delta}(t) = \frac{[r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha}]^{\Delta}}{(z^{\Delta n-2}(t))^{\alpha}} - \frac{\alpha}{r^{\frac{1}{\alpha}}(\tau(t))}\nu^{\frac{\alpha+1}{\alpha}}(\sigma(t)).$$
(55)

Similarly we can obtain the following from (53)

$$\omega^{\Delta}(t) = \frac{[r(t)(z^{\Delta n-1}(t))^{\alpha}]^{\Delta}}{(z^{\Delta n-2}(t))^{\alpha}} - \frac{\alpha}{r^{\frac{1}{\alpha}}(t)} \omega^{\frac{\alpha+1}{\alpha}}(\sigma(t)).$$
(56)

Combining (54) and (56), we get

$$\omega^{\Delta}(t) + \frac{p_{0}^{\alpha}}{\tau_{0}} \nu^{\Delta}(t) \leq -Q(t) \frac{z^{\alpha}(\delta(t))}{2^{\alpha-1} (z^{\Delta n-2}(t))^{\alpha}} - \frac{\alpha}{r^{\frac{1}{\alpha}}(t)} \omega^{\frac{\alpha+1}{\alpha}}(\sigma(t)) - \frac{p_{0}^{\alpha}}{\tau_{0}} \frac{\alpha}{r^{\frac{1}{\alpha}}(\tau(t))} \nu^{\frac{\alpha+1}{\alpha}}(\sigma(t)).$$
(57)

Using Lemma 1.4, for m = n - 2, we have

$$z(t) \ge h_{n-2}(t, t_1) z^{\Delta n-2}(t).$$
(58)

Since $z^{\Delta n-1}(t) < 0$ and $\delta(t) \le t$, then $z^{\Delta n-2}(t) \le z^{\Delta n-2}(\delta(t))$, consequently by (58). the inequality (57) takes the form

$$\omega^{\Delta}(t) + \frac{p_{0}^{\alpha}}{\tau_{0}} \nu^{\Delta}(t) + \frac{h_{n-2}(\delta(t), t_{1})}{2^{\alpha-1}} Q(t) + \alpha r^{\frac{-1}{\alpha}}(t) \omega^{\frac{\alpha+1}{\alpha}}(\sigma(t)) + \frac{\alpha p_{0}^{\alpha}}{\tau_{0}} r^{\frac{-1}{\alpha}}(\tau(t)) \nu^{\frac{\alpha+1}{\alpha}}(\sigma(t)) \le 0.$$
(59)

Multiplying the above inequality by $\zeta^{\alpha}(\tau(t))$ and integrating it from t_1 to t, we obtain

$$\omega(t)\zeta^{\alpha}(\tau(t)) - \omega(t_{1})\zeta^{\alpha}(\tau(t_{1})) + \frac{p_{0}^{\alpha}}{\tau_{0}}\nu(t)\zeta^{\alpha}(\tau(t)) - \frac{p_{0}^{\alpha}}{\tau_{0}}\nu(t_{1})\zeta^{\alpha}(\tau(t_{1}))$$

$$+ \alpha \int_{t_{1}}^{t} \left[r^{\frac{-1}{\alpha}}(s)\zeta^{\alpha-1}(\tau(s))\tau^{\Delta}(s)\omega(\sigma(s)) + r^{\frac{-1}{\alpha}}(s)\zeta^{\alpha}(\tau(s))\omega^{\frac{\alpha+1}{\alpha}}(\sigma(s)) \right] \Delta s$$

$$+ \frac{\alpha p_{0}^{\alpha}}{\tau_{0}} \int_{t_{1}}^{t} \left[r^{\frac{-1}{\alpha}}(s)\zeta^{\alpha-1}(\tau(s))\tau^{\Delta}(s)\nu(\sigma(s)) + r^{\frac{-1}{\alpha}}(\tau(s))\zeta^{\alpha}(\tau(s))\nu^{\frac{\alpha+1}{\alpha}}(\sigma(s)) \right] \Delta s$$

$$+ \frac{1}{2^{\alpha-1}} \int_{t_{1}}^{t} h_{n-2}(\delta(s), t_{1})\zeta^{\alpha}(\tau(s))Q(s)\Delta s + \leq 0.$$
(60)

Applying the inequality (43), we get

$$\omega(t)\zeta^{\alpha}(\tau(t)) - \omega(t_{1})\zeta^{\alpha}(\tau(t_{1})) + \frac{p_{0}^{\alpha}}{\tau_{0}}\nu(t)\zeta^{\alpha}(\tau(t)) - \frac{p_{0}^{\alpha}}{\tau_{0}}\nu(t_{1})\zeta^{\alpha}(\tau(t_{1})) + \int_{t_{1}}^{t} \left[\frac{h_{n-2}(\delta(s), t_{1})\zeta^{\alpha}(\tau(s))Q(s)}{2^{\alpha-1}} - \left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}\frac{(1+\frac{p_{0}^{\alpha}}{\tau_{0}})(\tau^{\Delta}(s))^{\alpha+1}}{r^{\frac{1}{\alpha}}(s)\zeta(\tau(s))}\right]\Delta s \leq 0.$$
(61)

Therefore from (52) and (53), we have

$$\int_{t_1}^t \left[\frac{h_{n-2}(\delta(s), t_1)\zeta^{\alpha}(s)Q(s)}{2^{\alpha-1}} - \left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1} \frac{(1+\frac{p_0}{\tau_0})(\tau^{\Delta}(s))^{\alpha+1}}{r^{\frac{1}{\alpha}}(s)\zeta(\tau(s))} \right] \Delta s \\
\leq \omega(t_1)\zeta^{\alpha}(t_1) + \frac{p_0^{\alpha}}{\tau_0}\nu(t_1)\zeta^{\alpha}(t_1) + 1 + \frac{p_0^{\alpha}}{\tau_0}.$$
(62)

Which contradicts (48). This completes the proof. \Box

Theorem 2.8. Assume that (3) holds and $\delta(t) \le \tau(t) \le t$. If

$$\int_{t_0}^{\infty} \left[\frac{h_{n-2}(\delta(s), t_1)\zeta^{\alpha}(s)Q(s)}{2^{\alpha-1}} - \left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1} \frac{(1+\frac{p_0^{\alpha}}{\tau_0})}{r^{\frac{1}{\alpha}}(s)\zeta(s)} \right] \Delta s = \infty,$$
(63)

then every solution of (1) is oscillatory.

Proof. Suppose that *x* is a nonoscillatory solution of (1) on $[t_0, \infty)_{\mathbb{T}}$ such that x(t) > 0, $x(\tau(t)) > 0$ and $x(\delta(t)) > 0$ for $t \in [t_1, \infty)_{\mathbb{T}}$. Proceeding as in the proof of Theorem 2.2, $[r(t)(z^{\Delta n-1}(t))^{\alpha}]$ is clearly a decreasing function. This means $z^{\Delta n-1}(t)$ is either eventually positive or eventually negative for $t \ge t_2 \ge t_1$.

Case(I): $z^{\Delta n-1}(t) > 0$, $t \ge t_2$. The proof of this case is similar to that of Theorem 2.6;

Case(II): $z^{\Delta n-1}(t) < 0$, $t \ge t_2$. Applying Lemma 1.3, we get $z^{\Delta n-2}(t) > 0$ and $z^{\Delta}(t) > 0$. Then $\lim_{t\to\infty} z(t) \ne 0$. Define the function $\omega(t)$ as defined in (53). Since $[r(t)(z^{\Delta n-1}(t))^{\alpha}]$ is a decreasing function, then we have for $s \ge t \ge t_1$

$$r(s)(z^{\Delta n-1}(s))^{\alpha} \le r(t)(z^{\Delta n-1}(t))^{\alpha}.$$
(64)

Dividing (64) by r(s) and integrating from t to l, we have

$$z^{\Delta n-2}(l) \le z^{\Delta n-2}(t) + r^{\frac{1}{\alpha}}(t)z^{\Delta n-1}(t) \int_{t}^{l} r^{-\frac{1}{\alpha}}(s)\Delta s.$$
(65)

Letting $l \to \infty$, we get

$$0 \le z^{\Delta n-2}(t) + r^{\frac{1}{\alpha}}(t) z^{\Delta n-1}(t) \int_{t}^{\infty} r^{-\frac{1}{\alpha}}(s) \Delta s.$$
(66)

That is,

$$-1 \leq \frac{r^{\frac{1}{\alpha}}(t)z^{\Delta n-1}(t)}{z^{\Delta n-2}(t)}\zeta(t).$$

Therefore,

$$-1 \le \omega(t)\zeta^{\alpha}(t) \le 0, \quad t \ge t_1.$$
(67)

Define another Riccati transformation as defined in (49). Clearly, v(t) < 0, $[r(t)(z^{\Delta n-1}(t))^{\alpha}]$ is decreasing and $\tau(t) \le t$, we have

$$r(\tau(t))(z^{\Delta n-1}(\tau(t)))^{\alpha} \ge r(t)(z^{\Delta n-1}(t))^{\alpha},$$

then

$$v(t) \ge \omega(t)$$

i.e.,

$$1 \le \nu(t)\zeta^{\alpha}(t) \le 0, \quad t \ge t_1.$$
(68)

Proceeding as in the proof of Theorem 2.7 we arrive to (59). Multiplying (59) by $\zeta(t)$ and integrating from t_1 to t, we get

$$\begin{split} \omega(t)\zeta^{\alpha}(t) &- \omega(t_{1})\zeta^{\alpha}(t_{1}) + \frac{p_{0}^{\alpha}}{\tau_{0}}\nu(t)\zeta^{\alpha}(t) - \frac{p_{0}^{\alpha}}{\tau_{0}}\nu(t_{1})\zeta^{\alpha}(t_{1}) \\ &+ \alpha \int_{t_{1}}^{t} \left[r^{\frac{-1}{\alpha}}(s)\zeta^{\alpha-1}(s)\omega(\sigma(s)) + r^{\frac{-1}{\alpha}}(s)\zeta^{\alpha}(s)\omega^{\frac{\alpha+1}{\alpha}}(\sigma(s)) \right] \Delta s \\ &+ \frac{\alpha p_{0}^{\alpha}}{\tau_{0}} \int_{t_{1}}^{t} \left[r^{\frac{-1}{\alpha}}(s)\zeta^{\alpha-1}(s)\nu(\sigma(s)) + r^{\frac{-1}{\alpha}}(\tau(s))\zeta^{\alpha}(s)\nu^{\frac{\alpha+1}{\alpha}}(\sigma(s)) \right] \Delta s \\ &+ \frac{1}{2^{\alpha-1}} \int_{t_{1}}^{t} h_{n-2}(\delta(s), t_{1})\zeta^{\alpha}(s)Q(s)\Delta s + \leq 0. \end{split}$$
(69)

Applying the inequality (43), we get

$$\omega(t)\zeta^{\alpha}(t) - \omega(t_{1})\zeta^{\alpha}(t_{1}) + \frac{p_{0}^{\alpha}}{\tau_{0}}\nu(t)\zeta^{\alpha}(t) - \frac{p_{0}^{\alpha}}{\tau_{0}}\nu(t_{1})\zeta^{\alpha}(t_{1}) + \int_{t_{1}}^{t} \left[\frac{h_{n-2}(\delta(s), t_{1})\zeta^{\alpha}(s)Q(s)}{2^{\alpha-1}} - \left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1}\frac{(1+\frac{p_{0}^{\alpha}}{\tau_{0}})}{r^{\frac{1}{\alpha}}(s)\zeta(s)}\right]\Delta s \leq 0.$$
(70)

Therefore from (67) and (68), we have

$$\int_{t_{1}}^{t} \left[\frac{h_{n-2}(\delta(s), t_{1})\zeta^{\alpha}(s)Q(s)}{2^{\alpha-1}} - \left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1} \frac{(1+\frac{p_{0}^{\alpha}}{\tau_{0}})}{r^{\frac{1}{\alpha}}(s)\zeta(s)} \right] \Delta s \\
\leq \omega(t_{1})\zeta^{\alpha}(t_{1}) + \frac{p_{0}^{\alpha}}{\tau_{0}}\nu(t_{1})\zeta^{\alpha}(t_{1}) + 1 + \frac{p_{0}^{\alpha}}{\tau_{0}}.$$
(71)

This contradicts (63) and completes the proof. \Box

Example 2.9. Consider for $\mathbb{T} = \mathbb{R}$, the fourth-order differential equation

$$\left(t^{5}x'''(t)\right)' + \beta t x(t) = 0, \quad t \ge 1,$$
(72)

where $\beta > 0$ is constant. Here $\alpha = 1$, $r(t) = t^5$, $q(t) = \beta t$, $\tau(t) = \delta(t) = t$. Since $\mathbb{T} = \mathbb{R}$, then $h_k(t, s) = \frac{(t-s)^k}{k!}$. Clearly

$$\zeta(t) = \int_t^\infty r^{-1/\alpha}(s) ds = \int_t^\infty s^{-5} ds = \frac{t^4}{4} < \infty.$$

Now, since

$$\int_{t_0}^{\infty} \left[\frac{h_{n-2}(\delta(s), t_1)\zeta^{\alpha}(s)Q(s)}{2^{\alpha-1}} - \left(\frac{\alpha}{\alpha+1}\right)^{\alpha+1} \frac{\left(1 + \frac{p_0^{+}}{\tau_0}\right)}{r^{\frac{1}{\alpha}}(s)\zeta(s)} \right] \Delta s = \infty$$

Hence, by Theorem 2.8, every solution of (72) is oscillatory. One can observe that by Theorem 2.1 [25], every solution of Eq. (72) is oscillatory for $\beta > 12$ if $\beta > 4$. Therefore, our criteria are more general than the equation in [25].

Example 2.10. Consider the second order neutral delay differential equation

$$[t^{1/2}[x(t) + p_0 x(\lambda t)]']' + \frac{a}{t^{3/2}} x(\beta t) = 0,$$
(73)

where $0 < p_0 < \infty$, $0 < \lambda < \infty$, $0 < \beta < 1$, and a > 0.

It is clear that $\alpha = 1$, n = 2, $r(t) = t^{1/2}$, $p(t) = p_0 < \infty$, $\tau(t) = \lambda t$, $\delta(t) = \beta t$, $q(t) = \frac{a}{t^{3/2}}$, and $r(t) = t^{\frac{1}{2}}$, $\int_{t_0}^{\infty} r^{\frac{-1}{\alpha}}(s) ds = \infty$ If $\lambda \ge 1, 0 < \beta < 1$, then $\tau(t) \ge \delta(t)$, and $Q(t) = \frac{a}{(\lambda t)^{3/2}}$. From corollary 2.4, and $\mathbb{T} = \mathbb{R}$, (25) takes the form

$$\limsup_{t \to \infty} \int_{\delta(t)}^{t} Q(s, t_1) \Delta s = \limsup_{t \to \infty} \int_{\delta(t)}^{t} Q(s) \frac{h_{n-1}^{\alpha}(\delta(s), t_1)}{2^{\alpha - 1} r(\delta(s))}$$
$$= \limsup_{t \to \infty} \int_{\beta t}^{t} \frac{a}{(\lambda s)^{3/2}} \frac{1}{\sqrt{\beta s}} ds = \frac{a\beta^{1/2}}{2\lambda^{3/2}} \ln\left(\frac{1}{\beta}\right).$$
(74)

Using corollary 2.4, then Eq.(73) is oscillatory if $\frac{a\beta^{1/2}}{2\lambda^{3/2}}\ln\left(\frac{1}{\beta}\right) > 1$ for any $\lambda \ge 1$ and $0 < \beta < 1$. If $0 < \beta < \lambda \le 1$, then $\tau(t) \le \delta(t)$, and $Q(t) = \frac{a}{t^{3/2}}$. From Theorem 2.6 and $\mathbb{T} = \mathbb{R}$, we have

$$\limsup_{t \to \infty} \int_{t_0}^t \left(\frac{1}{2^{\alpha - 1}} \rho(s) Q(s) - \frac{(1 + \frac{p_0^*}{\tau_0})}{(\alpha + 1)^{\alpha + 1}} \frac{(n - 2)! (\rho'(s))^{\alpha + 1} r(\delta(s))}{(\delta'(s))^{\alpha} (\delta(s) - t_1)^{\alpha(n - 2)} \rho^{\alpha}(s)} \right) ds$$

$$= \limsup_{t \to \infty} \int_{t_0}^t \left(s^2 \frac{a}{s^{3/2}} - \frac{1 + \frac{p_0}{\lambda}}{4} \frac{(2s)^2 \sqrt{\beta s}}{\beta s^2} \right) ds = \infty.$$
(75)

Provided that $a > \frac{\lambda + p_0^2}{\lambda \beta^{1/2}}$, (73) is oscillatory for $0 < \beta < \lambda \le 1$. Note that this example has been studied in [2] and to the best of our knowledge, we improve the oscillation criteria that mentioned in [2].

Example 2.11. Consider the second-order differential equation

$$\left(x(t) + \frac{9}{10}x\left(\frac{t}{4}\right)\right)'' + \frac{\lambda}{t^2}x\left(\frac{t}{5}\right) = 0, \quad t \ge 1$$
(76)

where $\lambda > 0$. Here r(t) = 1, $\alpha = 1$, n = 2, p(t) = 0.9, $\tau(t) = t/4$, $q(t) = \frac{\lambda}{t^2}$, and $\delta(t) = t/5$. Then $\tau_0 = 1/4$, $Q(t) = \frac{\lambda}{t^2}$, and

$$\limsup_{t \to \infty} \int_{t_0}^t \left(\frac{1}{2^{\alpha - 1}} \rho(s) Q(s) - \frac{(1 + \frac{p_0}{\tau_0})}{(\alpha + 1)^{\alpha + 1}} \frac{(n - 2)! (\rho'(s))^{\alpha + 1} r(\delta(s))}{(\delta'(s))^{\alpha} (\delta(s) - t_1)^{\alpha(n - 2)} \rho^{\alpha}(s)} \right) ds$$

$$= \left(\lambda - \frac{24}{3} \right) \limsup_{t \to \infty} \int_{t_0}^t \frac{1}{s} ds = \infty.$$
(77)

Provided that $\lambda > \frac{24}{3}$ *. This is consistent with the results of* [23]*.*

References

- R. Agarwal, D. ORegan, and S. Saker, Oscillation criteria for second-order nonlinear neutral delay dynamic equations, Journal of Mathematical Analysis and Applications, 300(1) (2004) 203–217.
- B. Baculíková and J. Džurina, Oscillation theorems for second order neutral differential equations, Computers & Mathematics with Applications, 61(1)(2011)94–99.
- [3] B. Baculíková and J. Džurina, Comparison theorems for higher-order neutral delay differential equations, Journal of Applied Mathematics and Computing, 49 (2015)107–118.
- [4] B. Baculíková, T. Li, and J. Džurina, Oscillation theorems for second-order superlinear neutral differential equations. Mathematica Slovaca, 63(1)(2013)123–134.
- [5] J. Baculíková and J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Computers & Mathematics with Applications, 62(12)(2011) 4472–4478.
- [6] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser Boston, Inc, (2001).
- [7] E. Braverman and B. Karpuz, Nonoscillation of first-order dynamic equations with several delays, Advances in Difference Equations, 1 (2010)1–22.
- [8] D. Chen, Oscillation and asymptotic behavior for nth-order nonlinear neutral delay dynamic equations on time scales, Acta Applicandae Mathematicae, 109(3)(2010)703–719.
- [9] J. Džurina, Oscillation theorems for second order advanced neutral differential equations, Tatra Mt. Math. Publ, 48(2011) 61–79.
- [10] L. Erbe, B. Karpuz, and A. Peterson, Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations, Int. J. Difference Equ, 6(1)(2011) 1–16.
- [11] S. Hilger, Analysis on measure chainsa unified approach to continuous and discrete calculus, Results Math, 18(1990)18–56.
- [12] Y. Jiang, C. Jiang, and T. Li, Oscillatory behavior of third-order nonlinear neutral delay differential equations, Advances in Difference Equations, 1(2016) 1–12.
- [13] B. Karpuz, Comparison tests for the asymptotic behaviour of higher-order dynamic equations of neutral type, Forum Mathematicum, 27(2015) 2759–2773.
- [14] B. Karpuz and Ö. Öcalan, New oscillation tests and some refinements for first-order delay dynamic equations, Turkish Journal of Mathematics, 40(4)(2016)850–863.
- [15] T. Li, Z. Han, P. Zhao, and S. Sun, Oscillation of even-order neutral delay differential equations, Advances in Difference Equations, 1 (2010) 184180.
- [16] T. Li and Y. Rogovchenko, Asymptotic behavior of higher-order quasilinear neutral differential equations, Abstract and Applied Analysis, Article ID 395368 (2014).
- [17] T. Li and Y. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Applied Mathematics Letters, 61(2016)35–41.
- [18] T. Li and E. Thandapani, Oscillation of solutions to odd-order nonlinear neutral functional differential equations, Electronic Journal of Differential Equations, 23(2011)1–12.
- [19] C. Philos, On the existence of nonoscillatory solutions tending to zero at for differential equations with positive delays, Archiv der Mathematik, 36(1981)168–178.
- [20] C. Philos, Oscillation and asymptotic behaviour of linear retarded differential equations of arbitrary order, Bulletin mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, 29(1985)355–363.
- [21] S. Saker and D. ORegan, New oscillation criteria for second-order neutral functional dynamic equations via the generalized riccati substitution, Communications in Nonlinear Science and Numerical Simulation, 16(2011)423–434.
- [22] Y. Sun, Z. Han, and C. Sun, S. and Zhang, Oscillation criteria for even order nonlinear neutral differential equations, Elec. J. Qual. Diff. Eqn, 30(2012)1–12.
- [23] J. Yang, J. Wang, X. Qin, and T. Li, Oscillation of nonlinear second-order neutral delay differential equations, J. Nonlinear Sci. Appl, 10(2017)2727–2734.
- [24] A. Zafer, Oscillation criteria for even order neutral differential equations, Applied Mathematics Letters, 11(3)(1998)21–25.
- [25] C. Zhang, T. Li, and S.H. Saker, Oscillation of fourth-order delay differential equations, Journal of Mathematical Sciences, 201(3)(2014)296–309.