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Abstract. Very recently, Shahzad et al. [RACSAM 111 (2017) 307–324] introduced the notion of (A,S)-
contractions which unifies several well known nonlinear type contractions (e.g. R-contractions, Z-
contractions, L-contractions etc.) in one go. In this paper, we introduce the notion of generalized
(A,S) f -contractions and utilize the same to present some coincidence and common fixed point results
for a pair of self-mappings (1, f ) defined on a metric space endowed with a binary relation S. In this
course, we ought to introduce some new notions namely: (I,S)-continuity, (I,S)-compatibility and local
(1, f )-transitivity. Consequently, several results involving R-contractions andZ-contractions are deduced.
Finally, we furnish illustrative examples to demonstrate the utility of our results.

1. Introduction and preliminaries

The tremendous applications of fixed point theory had always inspired the growth of this domain. In
1922, Banach formulated his most simple but very natural result which is now popularly referred as Banach
contraction principle. In the course of last several decades, this principle has been extended and generalized
in many directions with several applications in many branches. Employing simulation functions, Khojasteh
et al. [10] initiated the idea of Z-contractions and utilized the same to cover varied type of nonlinear
contractions of the existing literature. Later, Argoubia et al. [5] and Hierro et al. [14] independently
sharpened the notion of simulation functions and also proved some coincidence and common fixed point
results.

Very recently, Hierro and Shahzad [7] introduced the notion of R-contractions in order to extend several
nonlinear contractions such as: Z-contractions, manageable contractions, Meir-Keeler contractions etc. In-
deed,R-contractions are associated toR-functions which satisfy two independent conditions involving two
sequences of nonnegative real numbers. Soon, inspired by R-contractions, Shahzad et al. [17] introduced
the notion of (A,S)-contractions which remains an extension of (R,S)-contractions given in [15] by Hierro
and Shahzad wherein the authors proved very interesting results.

In resent years, various results involving fixed point, coincidence point and common fixed point are
proved in metric spaces endowed with different types of binary relations (see [1–4, 6, 8, 11, 12, 15–18] and
references therein). In this context, we employ a binary relation wherein the involved contractive condition
is required to hold merely to those pair of points which are comparable.
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In this paper, we generalize (A,S)-contractions to generalized (A,S) f -contractions and utilize the same
to prove some existence and uniqueness results for a pair of self-mappings (1, f ) defined on a metric
space (X, d) endowed with a binary relation S. We also introduce the notions of (I,S)-continuity, (I,S)-
compatibility and locally (1, f )-transitivity. In our main results, the binary relationS need not to be reflexive,
antisymmetric, transitive, f -transitive or even (1, f )-transitive. Furthermore, we replace the completeness
assumption by a relatively weaker one namely increasingly precompleteness of an appropriate subspace.
Also, we use the new types of continuity and compatibility conditions namely: (I,S)-continuity and (I,S)-
compatibility which are relatively weaker thanS-continuity and (O,S)-compatibility. We also introduce the
notions of generalized (R,S) f -contractions and generalized (Z,S) f -contractions and derive some results
involving such contractions as consequences of our results. Finally, we adopt some illustrative examples to
exhibit the utility of our results.

For the sake of completeness, we collect here some basic definitions and fundamental results needed in
our subsequent discussions.

From now on, N0 = {0} ∪N while R stands for the set of real numbers. In the sequel, X stands for a
nonempty set, IX refers to the identity mapping on X and 1, f : X → X. For brevity, we write 1x instead of
1(x). A point x ∈ X is said to be:

(i) a fixed point of 1 if 1x = x (Fix(1) denotes the set of all such points);

(ii) a coincidence point of (1, f ) if 1x = f x (Coin(1, f ) stands for the set of all such points);

(iii) a point of coincidence of (1, f ) if there exists y ∈ Coin(1, f ) such that x = 1y = f y;

(iv) a common fixed point of (1, f ) if x = 1x = f x.

Recall that a pair (1, f ) is commuting on X if 1 f x = f1x, for all x ∈ X and weakly compatible if 1 f x = f1x,
for all x ∈ Coin(1, f ). For x0 ∈ X, the sequence {xn} ⊆ X defined by xn+1 = 1nx0 = 1xn, for all n ∈N0, is called
a Picard sequence based at x0. Following [15], a Picard-Jungck sequence of the pair (1, f ) based at a point x0 ∈ X
is a sequence {xn} ⊆ X such that f xn+1 = 1xn, for all n ∈N0. This sequence is known as (1, f )-Picard-Jungck
sequence.

If (X, d) is a metric space, then ran(d) stands for the range of d, i.e, ran(d) = {d(x, y) : x, y ∈ X}. We write
{xn} → x whenever {xn} converges to x. The sequence {xn} ⊆ X is said to be asymptotically regular on (X, d) if
{d(xn+1, xn)} → 0.

2. Relation-theoretic notions and auxiliary results

A nonempty subset S of X × X is said to be a binary relation on X. Trivially, X × X is always a binary
relation on X known as the universal relation. For simplicity, we write xSy whenever (x, y) ∈ S and write
xS/y whenever xSy and x , y. Observe that S/ ⊆ S. The elements x and y of X are said to be S-comparable
if either xSy or ySx. If x, y ∈ X are S-comparable, then we write [x, y] ∈ S. Throughout this presentation,
S stands for a binary relation defined on X and SX stands for the universal relation on X.

Definition 2.1. A binary relation S on X is said to be:

(i) amorphous if it has no specific property at all;

(ii) reflexive if xSx, for all x ∈ X;

(iii) transitive if xSy and ySz imply xSz, for any x, y, z ∈ X;

(iv) antisymmetric if xSy and ySx imply x = y, for any x, y ∈ X;

(v) preorder if it is reflexive and transitive;

(vi) partial order if it is reflexive, transitive and antisymmetric.
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Definition 2.2. [15] Let S be a binary relation on a nonempty set X and 1, f : X → X. If 1xS1y, for all x, y ∈ X
with f xS f y, then 1 is called ( f ,S)-nondecreasing. If f = IX, then 1 is said to be S-nondecreasing.

Here it can be pointed out that calling “1 is S-nondecreasing” is equivalent to saying that “S is 1-closed”
as used by Alam and Imdad [2, 4].

Definition 2.3. [15] Let S be a binary relation on a nonempty set X and 1, f : X → X. If for every x ∈ X, there
exists y ∈ X such that 1x = f y and f xS f y, then we write 1X ⊆S f X.

Clearly, if 1X ⊆S f X, then 1X ⊆ f X.

Definition 2.4. (see [15]) Let S be a binary relation on a nonempty set X and 1, f : X → X. A sequence {xn} is
called a (1, f ,S)-Picard-Jungck sequence if it is a (1, f )-Picard-Jungck sequence and f xnS f xm, for all n,m ∈ N0
with n < m. For f = IX, {xn} is called (1,S)-Picard sequence.

Definition 2.5. Let S be a binary relation on a nonempty set X and f : X→ X. A sequence {xn} ⊆ X is said to be:

(i) ( f ,S)-nondecreasing if f xnS f xn+1, for all n ∈N0;

(ii) ( f ,S)-increasing if f xnS
/ f xn+1, for all n ∈N0.

Remark 2.6. On setting f = IX, Definition 2.5 reduces to Definition 5 due to Shahzad et al. [17].

Here it can be pointed out that Alam and Imdad [2, 4] used the termS-preserving instead ofS-nondecreasing
in case f = IX.

Definition 2.7. [3, 15] Let S be a binary relation on a nonempty set X and 1, f : X→ X. Then S is said to be:

(i) f -transitive if it is transitive on f X;

(ii) (1, f )-transitive if f xS f y and f yS1y imply f xS1y, for any x, y ∈ X;

(iii) (1, f )-compatible if f x = f y and f xS f y imply 1x = 1y, for any x, y ∈ X.

Remark 2.8. Every transitive binary relation is f -transitive and (1, f )-transitive, whatever 1 and f . The notions of
f -transitivity and (1, f )-transitivity extend the notion of transitivity properly throughout independent notions (for
more details one may see [15]).

Definition 2.9. [3] Let S be a binary relation on a nonempty set X and f : X→ X. Then S is said to be:

(i) locally transitive if for each (effective) S-nondecreasing sequence {xn} ⊆ X (with range E := {xn : n ∈ N0}),
the binary relation S|E is transitive.

(ii) locally f -transitive if for each (effective) ( f ,S)-nondecreasing sequence {xn} (with range E := {xn : n ∈ N0}),
the binary relation S|E is f -transitive.

Remark 2.10. (i) Every transitive binary relation is locally transitive.
(ii) Every f -transitive binary relation is locally f -transitive, but the converse is not true in general.

Now, we introduce the notion of locally (1, f )-transitive as follows:

Definition 2.11. A binary relation S on a nonempty set X is said to be locally (1, f )-transitive if for each (effective)
(1, f )-Picard-Jungck iterates ( f ,S)-nondecreasing sequence {xn} (with range E := {xn : n ∈N0}), the binary relation
S|E is (1, f )-transitive.

Remark 2.12. Every (1, f )-transitive binary relation is locally (1, f )-transitive, but the converse is not true in
general.
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Proposition 2.13. If S is locally f -transitive, then S is locally (1, f )-transitive.

Proof. Let {xn} be a (1, f )-Picard-Jungck ( f ,S)-nondecreasing sequence. If n,m ∈ N0 are such that f xnS f xm
and f xmS1xm, then we have f xnS f xm and f xmS f xm+1(as f xm+1 = 1xm) so that f xnS f xm+1 (as S is locally
f -transitive). Hence, f xnS1xm. Thus, S is locally (1, f )-transitive.

Proposition 2.14. Let S be a locally f -transitive (or locally (1, f )-transitive) binary relation on a nonempty set X
and 1, f : X→ X.

(a) If 1X ⊆ f X, 1 is ( f ,S)-nondecreasing and there is a point x0 ∈ X such that f x0S1x0, then there exists a
(1, f ,S)-Picard-Jungck sequence in X based at x0.

(b) If 1X ⊆S f X, then there exists a (1, f ,S)-Picard-Jungck sequence in X based at each x0 ∈ X.

Proof. First of all, we prove that there exists a (1, f )-Picard-Jungck ( f ,S)-nondecreasing sequence {xn} ⊆ X.

(a) Since 1x0 ∈ 1X ⊆ f X, there exists x1 ∈ X such that f x1 = 1x0. Similarly, as 1x1 ∈ 1X ⊆ f X, there exists
x2 ∈ X such that f x2 = 1x1. Moreover, f x0S1x0 = f x1 and 1 is ( f ,S)-nondecreasing so that 1x0S1x1
which means that f x1S f x2. Continuing these arguments, we can construct a sequence {xn} ⊆ X such
that f xn+1 = 1xn and f xnS f xn+1, for all n ∈ N0, i.e., {xn} is a (1, f )-Picard-Jungck ( f ,S)-nondecreasing
sequence.

(b) Let x0 ∈ X be an arbitrary point. Since 1x0 ∈ 1X ⊆S f X, there exists x1 ∈ X such that f x1 = 1x0 and
f x0S f x1. Again, 1x1 ∈ 1X ⊆S f X implies that there exists x2 ∈ X such that f x2 = 1x1 and f x1S f x2.
Thus inductively, one can construct a sequence {xn} ⊆ X such that f xn+1 = 1xn and f xnS f xn+1, for all
n ∈N0.

Now, we prove that f xnS f xm, for all n,m ∈ N0 with n < m. As earlier, we have {xn} remains a (1, f )-
Picard-Jungck ( f ,S)-nondecreasing sequence. Firstly, assume that S is locally f -transitive. Let n,m ∈ N0
with n < m. We have

f xnS f xn+1, f xn+1S f xn+2, ..., f xm−1S f xm =⇒ f xnS f xm.

Next, assume that S is locally (1, f )-transitive. For n ∈N0, we have

f xnS f xn+1, f xn+1S f xn+2 = 1xn+1 =⇒ f xnS1xn+1 = f xn+2.

Similarly,
f xnS f xn+2, f xn+2S f xn+3 = 1xn+2 =⇒ f xnS1xn+2 = f xn+3.

Thus, by induction, we have f xnS f xm, for all n,m ∈N0 with n < m.

Observe that the converse of Proposition 2.14 is not true in general as substantiated in the following
example:

Example 2.15. Consider X = {0,
1
2
,

1
22 , ...}. Define a binary relation S on X as follows:

xSy ⇐⇒ 1
22 ≥ x > y or (x, y) ∈ {(0, 0), (0, 1

2 ), ( 1
2 ,

1
22 ), (0, 1

2n ) : n ≥ 3}.

Also, define 1, f : X→ X by:

1x = 1
4 x and f x = x, for all x ∈ X.

Then S is locally (1, f )-transitive. However, it is not locally f -transitive. To see this, consider the S-nondecreasing
sequence: x0 = 0, xn = 1

2n : n ≥ 1, (with range E := {xn : n ∈N0}). Observe that S|E is not f -transitive.
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Definition 2.16. [15] Let X be a nonempty set. A self-mapping 1 : X → X is said to be an S-continuous if
{1xn} → 1y whenever {xn} ⊆ X is such that {xn} → y ∈ X and xnSxm, for all n,m ∈N0 with n < m.

Definition 2.17. Let X be a nonempty set. A self-mapping 1 : X → X is said to be an (I,S)-continuous if
{1xn} → 1y whenever {xn} ⊆ X is an S-increasing sequence such that {xn} → y ∈ X. For S = SX, 1 is called
I-continuous.

Remark 2.18. Continuity =⇒S-continuity =⇒ (I,S)-continuity.

Definition 2.19. [9, 15] Let (X, d) be a metric space endowed with a binary relation S and 1, f : X → X. Then the
pair (1, f ) is said to be an (O,S)-compatible if

lim
n→∞

d( f1xn, 1 f xn) = 0,

whenever {xn} ⊆ X is such that f xnS f xm, for all n < m and lim
n→∞
1xn = lim

n→∞
f xn = z ∈ X.

Definition 2.20. Let (X, d) be a metric space endowed with a binary relation S and 1, f : X → X. Then the pair
(1, f ) is said to be an (I,S)-compatible if

lim
n→∞

d( f1xn, 1 f xn) = 0,

whenever {xn} ⊆ X is ( f ,S)-increasing and lim
n→∞
1xn = lim

n→∞
f xn = z ∈ X. For S = SX, the pair (1, f ) is said to be

I-compatible.

Remark 2.21. Commutativity =⇒ weakly compatible =⇒ (O,S)-compatibility =⇒ (I,S)-compatibility.

Definition 2.22. Let (X, d) be a metric space. A subset B ⊆ X is said to be an (S, d)-increasingly complete if every
S-increasing Cauchy sequence {xn} ⊆ B converges to a point y ∈ B.

Definition 2.23. (see[17]) Let (X, d) be a metric space. A subset B ⊆ X is said to be precomplete if each Cauchy
sequence {xn} ⊆ B converges to some x ∈ X.

Remark 2.24. Every complete subset of X is precomplete.

Definition 2.25. (see [15]) Let (X, d) be a metric space endowed with a binary relation S. A subset B ⊆ X is said to
be an (S, d)-increasingly precomplete if each S-increasing Cauchy sequence {xn} ⊆ B converges to some x ∈ X.

Remark 2.26. Every precomplete subset of X is (S, d)-increasingly precomplete whatever the binary relation S.

Definition 2.27. (see [15]) Let (X, d) be a metric space equipped with a binary relation S. A subset B ⊆ X is said to
be an (S, d)-increasingly regular if for every S-increasing sequence {xn} ⊆ X with {xn} → y ∈ X, we have xnSy,
for all n ∈N0.

The following lemma is needed in the sequel.

Lemma 2.28. [13] Let (X, d) be a metric space and {xn} a sequence in X. If {xn} is not a Cauchy sequence in X, then
there exist ε0 > 0 and two subsequences {xn(k)} and {xm(k)} of {xn} such that k ≤ n(k) ≤ m(k), d(xn(k), xm(k)−1) ≤ ε0 <
d(xn(k), xm(k)), ∀k ∈N0. Moreover, if {xn} is asymptotically regular, then

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)−1, xm(k)−1) = ε0.
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3. Generalized contractivity notions and auxiliary results

In what follows: N(1, f , x, y) = max
{
d( f x, f y), d( f x, 1x), d( f y, 1x)}.

Definition 3.1. [5, 10, 14] A mapping ζ : [0,∞) × [0,∞) → R is called a simulation function if it satisfies the
following conditions:

(ζ1) ζ(u, v) < v − u, for all u, v > 0;

(ζ2) if {an} and {bn} are two sequences in (0,∞) such that lim
n→∞

an = lim
n→∞

bn > 0 and an < bn, for all n ∈ N, then
lim supn→∞ ζ(an, bn) < 0.

The set of all simulation functions is denoted byZ.

Inspired by [10], we will use simulation functions to present some generalized contractions on metric
spaces in the following sense:

Definition 3.2. Let (X, d) be a metric space endowed with a binary relation S and 1, f : X → X. If there exists a
simulation function ζ such that

ζ(d(1x, 1y),N(1, f , x, y)) ≥ 0, for all x, y ∈ X such that f xS/ f y and 1xS/1y,

then 1 is called a generalized (Z,S) f -contraction w.r.t. ζ.
By choosing f = IX, S = SX and f = IX with S = SX, we respectively deduce generalized (Z,S)-contractions,
generalizedZ f -contractions and generalizedZ-contractions w.r.t. ζ.

Definition 3.3. [7] Let B be a nonempty subset of R and % : B × B → R a function. Then % is said to be an
R-function if it satisfies the following conditions:

(%1) If {an} ⊆ (0,∞) ∩ B is a sequence such that %(an+1, an) > 0, for all n ∈N, then {an} → 0.

(%2) If {an}, {bn} ⊆ (0,∞)∩B are two sequences converging to the same limit L ≥ 0 such that L < an and %(an, bn) > 0,
for all n ∈N, then L = 0.

The family of all R-functions with domain B × B is denoted by RB. In some cases, the following condition is also
considered.

(%3) If {an}, {bn} ⊆ (0,∞) ∩ B are two sequences such that {bn} → 0 and %(an, bn) > 0, for all n ∈N, then {an} → 0.

Proposition 3.4. [7] Every simulation function is an R-function satisfying %3.

Proposition 3.5. [7] If % ∈ RB, then %(u,u) ≤ 0, for all u ∈ (0,∞) ∩ B.

Inspired by [7], we will use R-functions to present some generalized contractions on metric spaces in
the following sense:

Definition 3.6. Let (X, d) be a metric space endowed with a binary relation S and 1, f : X → X. If there exists an
R-function % ∈ RB such that ran(d) ⊆ B and

%(d(1x, 1y),N(1, f , x, y)) > 0, ∀ x, y ∈ X such that f xS/ f y and 1xS/1y, (1)

then 1 is called a generalized (R,S) f -contraction w.r.t. %.
By choosing f = IX, S = SX and f = IX with S = SX, we respectively deduce generalized (R,S)-contractions,
generalized R f -contractions and generalized R-contractions w.r.t. %.

The following proposition is immediate.
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Proposition 3.7. If ζ : [0,∞) × [0,∞) → R is a simulation function, then every generalized (Z,S) f -contraction
w.r.t. ζ is a generalized (R,S) f -contraction w.r.t. ζ.

Definition 3.8. Let {an} and {bn} be two sequences of real numbers. We say that {(an, bn)} is a (1, f ,S)N-sequence
if there exist two sequences {xn}, {yn} ⊆ X such that f xnS f yn, an = d(1xn, 1yn) > 0 and bn = N(1, f , xn, yn) > 0,
where N(1, f , xn, yn) = max{d( f xn, f yn), d( f xn, 1xn), d( f yn, 1xn)}, for all n ∈ N0. If S is the universal relation SX,
then {(an, bn)} is called a (1, f )N-sequence.

Inspired by [17], we introduce the notion of generalized (A,S) f -contractions as follows:

Definition 3.9. Let (X, d) be a metric space, B ⊆ R such that ran(d) ⊆ B and 1, f : X→ X. If there exists a function
% : B × B→ R such that 1 and % satisfy the following conditions:

(A1) If {xn} ⊆ X is a (1, f )-Picard-jungck ( f ,S)-increasing sequence of1 such that %(d( f xn+1, f xn+2),N(1, f , xn, xn+1)) >
0, for all n ∈N0, then { f xn} is asymptotically regular on (X, d) (i.e., {d( f xn, f xn+1)} → 0);

(A2) If {(an, bn)} ⊆ B × B is a (1, f ,S)N-sequence such that {an} and {bn} converge to the same limit L ≥ 0 such that
L < an and %(an, bn) > 0, for all n ∈N0, then L = 0;

(A3) %
(
d(1x, 1y),N(1, f , x, y)

)
> 0, for all x, y ∈ X such that f xS/ f y and 1xS/1y.

Then 1 is said to be a generalized (A,S) f -contraction w.r.t. %.
The set of all generalized (A,S) f -contractions with respect to % : B × B→ R is denoted byAS, f ,B.
By choosing f = IX, S = SX and f = IX with S = SX, we respectively deduce generalized (A,S)-contractions,
generalizedA f -contractions and generalizedA-contractions w.r.t. %.

Some times, we also consider the following condition:

(A4) If {(an, bn)} is a (1, f ,S)N-sequence such that {bn} → 0 and %(an, bn) > 0, for all n ∈N0, then {an} → 0.

Remark 3.10. Observe that conditions (A1), (A2) and (A4) are established under the existence of a sequence with
suitable conditions. Conventionally, in the case of nonexistence of such sequences the conditions (A1), (A2) and (A4)
are assumed to be satisfied vacuously.

Proposition 3.11. If 1 is generalized (R,S) f -contraction with respect to % : B × B → R, then it is generalized
(A,S) f -contraction (w.r.t. %).

Proof. The proof follows from the fact that (%1) ⇒ (A1), (%2) ⇒ (A2), (%3) ⇒ (A4) and (1) is equivalent to
(A3).

Lemma 3.12. If %(u, v) ≤ v − u, for all u, v > 0 and (A2) holds, then (A1) holds.

Proof. Let {xn} ⊆ X be a (1, f )-Picard-jungck ( f ,S)-increasing sequence of 1 such that

%(d( f xn+1, f xn+2),N(1, f , xn, xn+1)) > 0 , for all n ∈N0.

Observe that

N(1, f , xn, xn+1) = max{d( f xn, f xn+1), d( f xn, 1xn), d( f xn+1, 1xn)} = d( f xn, f xn+1).

Now, as %(d( f xn+1, f xn+2),N(1, f , xn, xn+1)) > 0, f xn , f xn+1, for all n ∈N0, %(u, v) ≤ v−u, for all u, v > 0, we
have

d( f xn, f xn+1) − d( f xn+1, f xn+2) ≥ %(d( f xn+1, f xn+2), d( f xn, f xn+1)) > 0,

which implies that d( f xn+1, f xn+2) < d( f xn, f xn+1) so that {d( f xn, f xn+1)} is a strictly decreasing sequence of
positive real numbers. Hence, {d( f xn, f xn+1)} → L ≥ 0. Let {an} and {bn} be the two sequences of positive real
numbers defined by an = d( f xn+1, f xn+2) and bn = d( f xn, f xn+1), for all n ∈N0. Then an > 0 and bn > 0, for all
n ∈N0 and {(an, bn)} ⊆ B × B is a (1, f ,S)N-sequence such that {an} and {bn} converge to the same limit L ≥ 0
and satisfying that L < an ( as {an} is strictly decreasing sequence of positive real numbers converging to L)
and %(an, bn) > 0, for all n ∈ N0. Hence, L = 0 (due to (A2)). Therefore, we have limn→0 d( f xn, f xn+1) = 0,
i.e., { f xn} is asymptotically regular. Hence, (A1) holds.
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Lemma 3.13. If %(u, v) ≤ v − u, for all u, v > 0, then (A4) holds.

Proof. Let {(an, bn)} be a (1, f ,S)N-sequence such that {bn} → 0 and %(an, bn) > 0, for all n ∈ N0, then there
exist two sequences {xn}, {yn} ⊆ X such that f xnS f yn, an = d(1xn, 1yn) > 0 and bn = N(1, f , xn, yn) > 0, for all
n ∈ N0. Since %(u, v) ≤ v − u, for all u, v > 0 and %(an, bn) > 0, for all n ∈ N0, we have bn − an ≥ %(an, bn) >
0, for all n ∈ N0. Therefore, we have bn > an > 0, for all n ∈ N0, which on letting n → ∞ implies that
lim
n→∞

an = 0 (as {bn} → 0). Hence, (A4) holds.

Remark 3.14. Observe that (in view of Lemmas 3.12 and 3.13) if %(u, v) ≤ v − u, for all u, v > 0 and (A2) holds,
then (A1) and (A4) both hold.

4. Main results

Firstly, we present a result on the existence of a coincidence point under (I,S)-continuity, which runs as
follows:

Theorem 4.1. Let (X, d) be a metric space equipped with a binary relation S and 1, f : X→ X two (I,S)-continuous
mappings such that 1 is generalized (A,S) f -contraction w.r.t. % : B × B→ R. Assume that

(a) there exists a (1, f ,S)-Picard-Jungck sequence in X;

(b) 1X is (S, d)-increasingly precomplete;

(c) the pair (1, f ) is (I,S)-compatible.

Then the pair (1, f ) has a coincidence point. Indeed, if {xn} is any (1, f ,S)-Picard-Jungck sequence, then either { f xn}

contains a coincidence point of the pair (1, f ) or { f xn} converges to a coincidence point of the pair (1, f ).

Before presenting the proof, let us point out the advantages of the hypotheses utilized in this theorem
over earlier ones.

• Due to Proposition 2.14, hypothesis (a) is guaranteed if one of the following conditions holds.

(i) If S is locally f -transitive (or locally (1, f )-transitive), 1X ⊆ f X, 1 is ( f ,S)-nondecreasing and
there exists a point x0 ∈ X such that f x0S1x0;

(ii) If S is locally f -transitive (or locally (1, f )-transitive) and 1X ⊆S f X.

Herein, we observe that the binary relationS is locally f -transitive (or locally (1, f )-transitive), and in-
deed, transitivity⇒ f -transitivity⇒ locally f -transitivity⇒ locally (1, f )-transitivity, (1, f )-transitivity
⇒ locally (1, f )-transitivity. Moreover, S need not to be reflexive or antisymmetric.

• 1 and f are (I,S)-continuous, and indeed, continuity⇒S-continuity⇒ (I,S)-continuity;

• 1X is (S, d)-increasingly precomplete which is relatively weaker than the following conditions:

(i) 1X is precomplete;
(ii) X or 1X is complete;

(iii) there exists a complete subset Y ⊆ X such that 1X ⊆ Y ⊆ X;
(iv) X is complete and 1X is closed.

Moreover, if any one of these four preceeding conditions holds, then 1X is (S, d)-increasingly precom-
plete;

• (1, f ) is (I,S)-compatible, and indeed, commutativity⇒ (O,S)-compatibility⇒ (I,S)-compatibility.
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Proof. Observe that, hypothesis (a) ensures the existence of a (1, f ,S)-Picard-Jungck sequence {xn} ⊆ X, such
that f xn+1 = 1xn and f xnS f xm, for all n,m ∈ N0 with n < m. If f xn0+1 = f xn0 , for some n0 ∈ N0, then xn0 is a
coincidence point of the pair (1, f ). Assume that f xn , f xn+1, for all n ∈ N0. Then, f xnS

/ f xn+1 (i.e., {xn} is
( f ,S)-increasing) and 1xnS

/1xn+1, for all n ∈N0. Using (A3), we have

0 < %(d(1xn, 1xn+1),N(1, f , xn, xn+1)) = %(d( f xn+1, f xn+2),N(1, f , xn, xn+1)),

where

N(1, f , xn, xn+1) = max{d( f xn, f xn+1), d( f xn, 1xn), d( f xn+1, 1xn)} = d( f xn, f xn+1).

Therefore, we have

%(d( f xn+1, f xn+2), d( f xn, f xn+1)) > 0, for all n ∈N0.

Applying (A1), we deduce that { f xn} is asymptotically regular, i.e.,

lim
n→0

d( f xn, f xn+1) = 0. (2)

Now, we prove that { f xn} is a Cauchy sequence. To accomplish this, let on contrary that { f xn} is not
Cauchy, then Lemma 2.28 and (2) guarantee the existence of an ε0 > 0 and two subsequences { f xn(k)} and
{ f xm(k)} of { f xn} such that k ≤ n(k) ≤ m(k), d( f xn(k), f xm(k)−1) ≤ ε0 < d( f xn(k), f xm(k)), ∀k ∈N0 and

lim
k→∞

d( f xn(k), f xm(k)) = lim
k→∞

d( f xn(k)−1, f xm(k)−1) = ε0. (3)

Since {d( f xn(k), f xm(k))} and {d( f xn(k)−1, f xm(k)−1)} converge to ε0, there exists k0 ∈N0 such that d( f xn(k), f xm(k)) >
0 and d( f xn(k)−1, f xm(k)−1) > 0, ∀k ≥ k0. In particular, d(1xn(k)−1, 1xm(k)−1) = d( f xn(k), f xm(k)) > 0 and
d( f xn(k)−1, f xm(k)−1) > 0, for all k ≥ k0 so that 1xn(k)−1S

/1xm(k)−1 and f xn(k)−1S
/ f xm(k)−1, for all k ≥ k0 (in view of

(a) and Proposition 2.14). On using (A3), we have

0 < %(d(1xn(k)−1, 1xm(k)−1),N(1, f , xn(k)−1, xm(k)−1))
= %(d( f xn(k), f xm(k)),N(1, f , xn(k)−1, xm(k)−1)), for all k ≥ k0, (4)

where

N(1, f , xn(k)−1, xm(k)−1) = max{d( f xn(k)−1, f xm(k)−1), d( f xn(k)−1, 1xn(k)−1), d( f xm(k)−1, 1xn(k)−1)}
= max{d( f xn(k)−1, f xm(k)−1), d( f xn(k)−1, f xn(k)), d( f xm(k)−1, f xn(k))}.

Using (2), (3) and triangle inequality one can prove that {N(1, f , xn(k)−1, xm(k)−1)} → ε0. Let L = ε0, ak =
d( f xn(k), f xm(k)) > 0 and bk = N(1, f , xn(k)−1, xm(k)−1) > 0, for all k ≥ k0. Then, {(ak, bk)} ⊆ B × B is a (1, f ,S)N-
sequence such that {ak} and {bk} converge to the same limit L ≥ 0. Since L = ε0 < d( f xn(k), f xm(k)) = ak
and %(ak, bk) > 0, for all k ≥ k0 (in view of (4)), therefore the condition (A2) guarantees that ε0 = L = 0, a
contradiction. Thus, { f xn+1 = 1xn} ⊆ 1X is a Cauchy sequence which is S-increasing. Since 1X is (S, d)-
increasingly precomplete (in view of the condition (b)), there exists y ∈ X such that { f xn} → y. Moreover,
as 1 and f are (I,S)-continuous, we have {1 f xn} → 1y and { f f xn} → f y.

As {xn} is ( f ,S)-increasing and {1xn = f xn+1} → y, therefore (I,S)- compatibility of the pair (1, f ) yields
that

lim
n→∞

d( f1xn, 1 f xn) = 0.

Observe that d( f y, 1y) = d
(

lim
n→∞

f f xn+1, lim
n→∞
1 f xn

)
= lim

n→∞
d( f1xn, 1 f xn) = 0. Hence, 1y = f y so that y is a

coincidence point of the pair (1, f ). This concludes the proof.

Theorem 4.2. Conclusions of Theorem 4.1 remain true if (A1) is replaced by the following condition:

• %(u, v) ≤ v − u, for all u, v > 0.
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Proof. This theorem is immediate in view of Lemma 3.12 and Theorem 4.1.

Now, we prove a coincidence point result under S-increasing regularity.

Theorem 4.3. Let (X, d) be a metric space equipped with a binary relation S and 1, f : X → X such that 1 is
generalized (A,S) f -contraction w.r.t. % : B × B→ R. Assume that

(a) there exists a (1, f ,S)-Picard-Jungck sequence in X;

(b) (X, d) is (S, d)-increasingly regular;

(c) (A4) holds and 1 is ( f ,S)-nondecreasing.

If in addition, at lest, one of the following conditions holds:

(d) f X is (S, d)-increasingly complete;

(e) f X is (S, d)-increasingly precomplete, the pair (1, f ) is (I,S)-compatible, f is S-nondecreasing and f is (I,S)-
continuous and injective on f X,

then the pair (1, f ) has a coincidence point. Indeed, if {xn} is any (1, f ,S)-Picard-Jungck sequence, then either { f xn}

contains a coincidence point of the pair (1, f ) or { f xn} converges to a coincidence point of the pair (1, f ).

Proof. Following the proof of Theorem 4.1, we can prove that the sequence { f xn} is an asymptotically regular
S-increasing Cauchy sequence. Now, we distinguish two cases as follows:
Case 1. Assume that the condition (d) holds. Since f X is (S, d)-increasingly complete, there exists z ∈ f X
such that { f xn} → z. Now, we prove that any point y ∈ f−1z is a coincidence point of the pair (1, f ). Let
y ∈ X be an arbitrary point such that y = f z. Since { f xn} → f y and (X, d) is (S, d)-increasingly regular ( in
view of (b)), we have f xnS f y, for all n ∈ N0. Now, if there exists some n0 ∈ N0 such that f xn0 = f z, then
f xn0+1 , f z and hence the set {n ∈N0 : f xn , f z} is infinite. Thus, there exists a subsequence { f xn(k)} of { f xn}

such that d( f xn(k), f z) > 0, for all k ∈ N0. So, f xn(k)S
/ f z, for all k ∈ N0. Let P = {k ∈ N0 : 1xn(k) = 1z}. Here,

arise two sub-cases. Firstly, if P is finite, then there exists k0 ∈ N0 such that 1xn(k) , 1z, for all k ≥ k0. Since
f xn(k)S f z, for all k ∈ N0 and 1 is ( f ,S)-nondecreasing, therefore 1xn(k)S1z, for all k ≥ k0 and henceforth,
1xn(k)S

/1z, for all k ≥ k0. Therefore, on using the contractivity condition (A3), we have

%(d(1xn(k), 1z),N(1, f , xn(k), z)) > 0, for all k ≥ k0, (5)

where

N(1, f , xn(k), z) = max{d( f xn(k), f z), d( f xn(k), 1xn(k)), d( f z, 1xn(k))}
= max{d( f xn(k), f z), d( f xn(k), f xn(k)+1), d( f z, f xn(k)+1)}.

Let ak = d(1xn(k), 1z) and bk = N(1, f , xn(k), z), for all k ≥ k0. Then ak > 0 and bk > 0, for all k ≥ k0. Furthermore,
{bk} → 0 and (5) guarantees that %(ak, bk) > 0, for all k ≥ k0. Hence, on applying (A4), we get that {ak} → 0
so that { f xn(k)+1 = 1xn(k)} → 1z. As { f xn(k)} ⊆ { f xn} and { f xn} → f z, we conclude that 1z = f z. Therefore, z
is a coincidence point of the pair (1, f ). Secondly, if P is infinite, then there exists a subsequence {1xn′(k)} of
{1xn(k)} such that 1xn′(k) = 1z, for all k ∈ N0. As f xn′(k)+1 = 1xn′(k) = 1z, for all k ∈ N0, we have { f xn′(k)} → 1z.
Since { f xn′(k)} ⊆ { f xn} and { f xn} → f z, we conclude that f z = 1z. Therefore, z is a coincidence point of the
pair (1, f ) in both the sub-cases.
Case 2. Assume that the condition (e) holds. Since f X is (S, d)-increasingly precomplete and { f xn} ⊆ f X is
an S-increasing Cauchy sequence, then there exists y ∈ X such that { f xn} → y. As f is (I,S)-continuous, we
have { f f xn} → f y. Moreover, the (I,S)-compatibility of the pair (1, f ) leads to

lim
n→∞

d( f y, 1 f xn) = lim
n→∞

d( f f xn+1, 1 f xn) = lim
n→∞

d( f1xn, 1 f xn) = 0.

Thus, we have

{1 f xn} → f y. (6)
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Let Q = {n ∈ N0 : 1 f xn = 1y}. Again, we have two sub-cases depending on Q. Firstly, assume that Q
is infinite, then there exists a subsequence { f xn(k)} of { f xn} such that 1 f xn(k) = 1y, for all k ∈ N0. Hence,
{1 f xn(k)} → 1y. Since {1 f xn} → f y, then 1y = f y, proving y is a coincidence point of the pair (1, f ) and
hence the proof is finished in this sub-case. Secondly, if Q is finite, then there exists an n0 ∈ N0 such that
1 f xn , 1y, for all n ≥ n0. Let us assume that

1 f xn , 1y, for all n ∈N0. (7)

Since X is (S, d)-increasingly regular, { f xn} is S-increasing sequence, { f xn} → y and f xnS f xm, for all n < m,
therefore f xnSy, for all n ∈N0. Moreover, as f is S-nondecreasing, we have

f f xnS f y, for all n ∈N0. (8)

As earlier, we distinguish two sub-sub-cases depending on Q∗ = {n ∈ N0 : f xn = y}. Firstly, assume that
Q∗ is finite, then there exists n0 ∈ N0 such that f xn , y, for all n ≥ n0. Then f f xn , f y, for all n ≥ n0 (as
f is injective). Hence, f f xnS

/ f y, for all n ≥ n0. As 1 is ( f ,S)-nondecreasing, therefore due to (7) and (8),
we have 1 f xnS

/1y, for all n ≥ n0. Let an = d(1 f xn, 1y) > 0 and bn = N(1, f , f xn, y) > 0, for all n ≥ n0, where
N(1, f , f xn, y) = max{d( f f xn, f y), d( f f xn, 1 f xn), d( f y, 1 f xn)}. Applying the contractivity condition (A3), we
have

%(an, bn) = %(d(1 f xn, 1y),N(1, f , f xn, y)) > 0, for all n ≥ n0. (9)

Since { f f xn} → f y and {1 f xn} → f y, therefore {bn} → 0. Thus, on using the condition (A4), we have {an} → 0
so that {1 f xn} → 1y. Hence, 1y = f y (due to(6)) so that y is a coincidence point of the pair (1, f ). Secondly,
assume that Q∗ is infinite. Then there exists a subsequence { f xn(k)} ⊆ { f xn} such that f xn(k) = y, for all k ∈N0
which implies that 1 f xn(k) = 1y, for all k ∈ N0. Hence, {1 f xn(k)} → 1y. As {1 f xn} → f y (due to (6)), we have
1y = f y so that y is a coincidence point of the pair (1, f ) (in all cases). This completes the proof.

Theorem 4.4. Conclusions of Theorem 4.3 remain true if conditions (A1) and (A4) are replaced by the following
condition:

• %(u, v) ≤ v − u, for all u, v > 0.

Proof. This theorem is immediate in view of Lemmas 3.12, 3.13 and Theorem 4.3.

Lemma 4.5. Under the hypotheses of Theorem 4.1 (or Theorem 4.3), let x, y ∈ Coin(1, f ) and assume that f x and f y
are S-comparable and %(u,u) ≤ 0, for all u > 0 . Then f x = f y.

Proof. Suppose, on contrary, that f x , f y. Since f x and f y are S-comparable, therefore without loss of
generality, we can assume that f xS f y. As 1x = f x and 1y = f y, we have f xS/ f y and 1xS/1y. As %(u,u) ≤ 0,
for all u > 0, on applying (A3), we have

0 ≥ %(d( f x, f y), d( f x, f y)) = %(d(1x, 1y),N(1, f , x, y)) > 0,

a contradiction. Therefore, f x = f y.

Next, we prove a corresponding uniqueness result as follows:

Theorem 4.6. If in addition to the hypotheses of Theorem 4.1 (or Theorem 4.3), we assume that, for all distinct
coincidence points x, y ∈ Coin(1, f ), f x and f y are S-comparable and %(u,u) ≤ 0, for all u > 0. Then the pair (1, f )
has a unique point of coincidence. Moreover, If 1 or f is injective on Coin(1, f ), then the pair (1, f ) has a unique
coincidence point.
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Proof. In view of Theorem 4.1 (or Theorem 4.3) the set Coin(1, f ) is nonempty so that the pair (1, f ) has, at
least, one coincidence point. Let z and z∗ be two points of coincidence of the pair (1, f ), then there exist
x, y ∈ Coin(1, f ) such that z = 1x = f x and z∗ = 1y = f y. Lemma 4.5 implies that z = f x = f y = z∗. Hence,
(1, f ) has a unique point of coincidence.

Now, assume that f (or 1) is injective on Coin(1, f ) and let x, y ∈ Coin(1, f ). On contrary, suppose that
x , y. By Lemma 4.5, we have 1x = f x = f y = 1y. Since f (or 1) is injective on Coin(1, f ), we obtain x = y, a
contradiction. Thus, (1, f ) has a unique coincidence point.

Now, we present a common fixed point result, which runs as follows:

Theorem 4.7. If in addition to the hypotheses of Theorem 4.6, we assume that 1 and f are weakly compatible, then
the pair (1, f ) has a unique common fixed point.

Proof. Theorem 4.6 guarantees the existence of a unique coincidence point of the pair (1, f ), let x be such
point and let z ∈ X be such that z = 1x = f x. As 1 and f are weakly compatible, we have 1z = 1 f x = f1x = f z.
Thus, z is a coincidence point of 1 and f . As x is unique, we must have x = z = 1x = f x. Therefore, x is a
common fixed point of (1, f ) which is indeed unique (in view of the uniqueness of the coincidence point of
(1, f )).

5. Some consequences

In this section, as consequences of our results, we derive several results involving coincidence point,
common fixed point and fixed point results.

Firstly, we derive the following coincidence point results by setting S = SX in Theorems 4.1 and 4.3
respectively.

Corollary 5.1. Let (X, d) be a metric space and 1, f : X → X two I-continuous mappings such that 1 is generalized
A f -contraction w.r.t. % : B × B→ R. Assume that

(a) there exists a (1, f )-Picard-Jungck sequence in X;

(b) 1X is increasingly precomplete;

(c) the pair (1, f ) is I-compatible.

Then the pair (1, f ) has a coincidence point. Indeed, if {xn} is any (1, f )-Picard-Jungck sequence, then either { f xn}

contains a coincidence point of the pair (1, f ) or { f xn} converges to a coincidence point of the pair (1, f ).

Corollary 5.2. Let (X, d) be a metric space and 1, f : X → X such that 1 is generalized A f -contraction w.r.t.
% : B×B→ R. Assume that there exists a (1, f )-Picard-Jungck sequence in X and (A4) holds. If in addition, at least,
one of the following conditions holds:

(a) f X is increasingly complete;

(b) f X is increasingly precomplete, the pair (1, f ) is I-compatible, f is I-continuous and injective on f X,

then the pair (1, f ) has a coincidence point. Indeed, if {xn} is any (1, f )-Picard-Jungck sequence, then either { f xn}

contains a coincidence point of the pair (1, f ) or { f xn} converges to a coincidence point of the pair (1, f ).

The following common fixed point result is a sharpened version of Theorem 33 due to Hierro and
Shahzad [15].

Corollary 5.3. Let (X, d) be a metric space equipped with a binary relationS and 1, f : X→ X two (I,S)-continuous
mappings such that 1 is generalized (R,S) f -contraction w.r.t. an R-function % ∈ RB. Assume that

(a) there exists a (1, f ,S)-Picard-Jungck sequence in X;
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(b) 1X is (S, d)-increasingly precomplete;

(c) the pair (1, f ) is (I,S)-comparable.

Then the pair (1, f ) has a coincidence point. Moreover, if 1 and f are weakly compatible and for all distinct points
x, y ∈ Coin(1, f ), f x and f y are S-comparable, then (1, f ) has a unique common fixed point.

Proof. As every generalized (R,S) f -contraction is generalized (A,S) f -contraction, Theorem 4.1 ensures the
existence of a coincidence point of the pair (1, f ). Also, since every % ∈ RB satisfies %(u,u) ≤ 0, for all u > 0,
therefore Theorem 4.7 proves that (1, f ) has a unique common fixed point.

The following common fixed point result is a sharpened version of Theorem 37 due to Hierro and
Shahzad [15].

Corollary 5.4. Let (X, d) be a metric space equipped with a binary relation S and 1, f : X → X such that 1 is
generalized (R,S) f -contraction w.r.t. an R-function % ∈ RB. Assume that

(a) there exists a (1, f ,S)-Picard-Jungck sequence in X;

(b) (X, d) is (S, d)-increasingly regular;

(c) (A4) holds (or %(u, v) ≤ v − u, ∀ u, v > 0) and 1 is ( f ,S)-nondecreasing.

If in addition, at least, one of the following conditions holds:

(d) f X is (S, d)-increasingly complete;

(e) f X is (S, d)-increasingly precomplete, the pair (1, f ) is (I,S)-compatible, f is S-nondecreasing and f is (I,S)-
continuous and injective on f X,

then the pair (1, f ) has a coincidence point. Moreover, if 1 and f are weakly compatible and for all distinct points
x, y ∈ Coin(1, f ), f x and f y are S-comparable, then (1, f ) has a unique common fixed point.

Proof. As every generalized (R,S) f -contraction is generalized (A,S) f -contraction, Theorem 4.3 (ifA4 holds)
(or Theorem 4.4 if %(u, v) ≤ v − u, ∀ u, v > 0) ensures the existence of a coincidence point of the pair (1, f ).
Also, since every % ∈ RB satisfies %(u,u) ≤ 0, for all u > 0, therefore Theorem 4.7 proves that (1, f ) has a
unique common fixed point.

The following common fixed point results are obtained by assuming 1 to be generalized (Z,S) f -
contraction. These results present sharpened versions of the main result of [14].

Corollary 5.5. Let (X, d) be a metric space equipped with a binary relationS and 1, f : X→ X two (I,S)-continuous
mappings such that 1 is generalized (Z,S) f -contraction w.r.t. a simulation function ζ. Assume that

(a) there exists a (1, f ,S)-Picard-Jungck sequence in X;

(b) 1X is (S, d)-increasingly precomplete;

(c) the pair (1, f ) is (I,S)-comparable.

Then the pair (1, f ) has a coincidence point. Moreover, if 1 and f are weakly compatible and for all distinct points
x, y ∈ Coin(1, f ), f x and f y are S-comparable, then (1, f ) has a unique common fixed point.

Proof. This corollary is immediate in view of Proposition 2.14 and Corollary 5.3.

Corollary 5.6. Let (X, d) be a metric space equipped with a binary relation S and 1, f : X → X such that 1 is
generalized (Z,S) f -contraction w.r.t. a simulation function ζ : [0,∞) × [0,∞)→ R. Assume that

(a) there exists a (1, f ,S)-Picard-Jungck sequence in X;
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(b) (X, d) is (S, d)-increasingly regular;

(c) (A4) holds (or %(u, v) ≤ v − u, ∀ u, v > 0 ) and 1 is ( f ,S)-nondecreasing.

If in addition, at least, one of the following conditions holds:

(d) f X is (S, d)-increasingly complete;

(e) f X is (S, d)-increasingly precomplete, the pair (1, f ) is (I,S)-compatible, f is S-nondecreasing and f is (I,S)-
continuous and injective on f X,

then the pair (1, f ) has a coincidence point. Moreover, if T and f are weakly compatible and for all distinct points
x, y ∈ Coin(1, f ), f x and f y are S-comparable, then (1, f ) has a unique common fixed point.

Proof. This corollary is immediate in view of Proposition 2.14 and Corollary 5.4.

The following two fixed point results remain sharpened versions of the main result of Shahzad et al.
[17].

Corollary 5.7. Let (X, d) be a metric space equipped with a binary relation S and 1 : X→ X be an (I,S)-continuous
mapping such that 1 is generalized (A,S)-contraction w.r.t. % : B × B→ R. Assume that 1X is (S, d)-increasingly
precomplete and there exists a (1,S)-Picard sequence in X. Then 1 has a fixed point.

Proof. Taking f = IX, in Theorem 4.1, one can derive the required.

Corollary 5.8. Let (X, d) be a metric space equipped with a binary relationS and 1 : X→ X such that 1 is generalized
(A,S)-contraction w.r.t. % : B × B→ R. Assume that

(a) there exists a (1,S)-Picard sequence in X;

(b) X is (S, d)-increasingly precomplete;

(c) (X, d) is (S, d)-increasingly regular.

If in addition, at least, one of the following conditions holds:

(d) (A4) holds and 1 is S-nondecreasing;

(e) %(u, v) ≤ v − u, for all u, v > 0 and 1 is S-nondecreasing,

then 1 has a fixed point.

Proof. If the condition (d) holds, then taking f = IX in Theorem 4.3, we deduce this corollary. On the other
case, assume that the condition (e) holds, then setting f = IX in Theorem 4.4, one can derive the required.

The reader may particularize the previous fixed point results to the cases:

• 1 is generalized (R,S)-contraction w.r.t. anR-function % ∈ RB (in which the main result and Corollaries
28-33 of Hierro et al. [14] are generalized).

• 1 is generalized (Z,S)-contraction w.r.t a simulation function ζ (in which the main result of Khojasteh
et al. [10] is generalized).
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6. Illustrative examples

In this section, we illustrate some examples to show the utility of our results.

Example 6.1. Let X and S be defined as in Example 2.15 and let d be the usual metric on X. Denote B = ran(d) = X
and define % : B × B → R by %(u, v) = v − u, for all u, v ∈ B. We assert that 1 is generalized (A,S) f -contraction
w.r.t. %.
(A1): Assume that {xn} ⊆ X is a (1, f )-Picard-Jungck ( f ,S)-increasing sequence of 1 based on some nonzero x0 ∈ X,
otherwise f xn = 0, for all n, and hence {xn} is not ( f ,S)-increasing. Now, assume that x0 = 1

2n0 , for some n0 ≥ 1,
then xn = 1

2n0+2n , for all n, and hence we have {d( f xn, f xn+1) = | 1
2n0+2n −

1
2n0+2(n+1) |} → 0.

(A2): Assume that {(an, bn)} ⊆ B×B is a (1, f ,S)N-sequence satisfying {an} and {bn} converge to the same limit L ≥ 0
such that L < an and %(an, bn) > 0, for all n ∈ N0, then there exist two sequences {xn}, {yn} ⊆ X such that f xnS f yn,
an = d(1xn, 1yn) > 0 and bn = N(1, f , xn, yn) > 0, for all n ∈N, wherein we distinguish three cases:
Case 1. Both {xn} and {yn} are constant sequences in X. Then there exist r, s ∈ N such that xn = 1

2r and yn = 1
2s ,

for all n ∈ N. Hence, an = d(1xn, 1yn) = |1xn − 1yn| =
∣∣∣ 1

2r −
1
2s

∣∣∣, for all n ∈ N so that {an} →
∣∣∣ 1

2r −
1
2s

∣∣∣ = L which
contradicts the fact that L < an, for all n. So, this case is impossible.
Case 2. One of {xn} and {yn} is constant sequence in X. Assume that {xn} is constant sequence while {yn} is not
constant sequence. Then {yn}, {1yn} and { f yn} converge to zero and there exists r ∈ N such that xn = 1

2r , for all
n ∈N. Thus, {1xn = 1

2r+2 } →
1

2r+2 and { f xn = 1
2r } →

1
2r . Now,

an = d(1xn, 1yn) = |1xn − 1yn| →
1

2r+2 as n→∞,

where as

bn = max{d( f xn, f yn), d( f xn, 1xn), d( f yn, 1xn)} ≥ d( f xn, f yn) = | f xn − f yn| →
1
2r as n→∞,

which is a contradiction to the fact that {an} and {bn} converging to the same limit. Hence, this case is also impossible.
Case 3. Both {xn} and {yn} are not constant sequences in X. Then {xn}, {1xn}, { f xn}, {yn}, {1yn} and { f yn} are all
strictly decreasing sequences in X and converge to zero. Hence, {an} and {bn} are also strictly decreasing sequences
and converge to zero, i.e., L = 0.
(A3): Let x, y ∈ X be such that f xS/ f y and 1xS/1y. Observe that f x , f y and 1x , 1y implies x , y. Now, we
have

N(1, f , x, y) = max{d( f x, f y), d( f x, 1x), d( f y, 1x)} = max{|x − y|,
3
4

x,
1
4
|4y − x|} >

1
4
|x − y| = d(1x, 1y).

Hence, %(d(1x, 1y),N(1, f , x, y)) = N(1, f , x, y) − d(1x, 1y) > 0. Therefor, 1 is generalized (A,S) f -contraction w.r.t.
%. By a routine calculation, one can easily show that all the remaining hypotheses of Theorem 4.7 are satisfied.
Therefor, (1, f ) has a unique common fixed point (namely x = 0).

Observe that the binary relation S in Example 6.1 is not reflexive, not antisymmetric, not transitive, not
f -transitive, not (1, f )-transitive, not locally transitive and not locally f -transitive . Henceforth, our results
are genuine extension of several corresponding results proved under binary relations which are earlier
required to be at least reflexive, antisymmetric, transitive, f -transitive or (1, f )-transitive.

Example 6.2. Let X = {−1, 0, 1} equipped with the usual metric and the binary relation S defined by:
xSy ⇔ (x, y) ∈ {(−1, 0), (0,−1), (0, 0), (0, 1), (1, 1)}.

Define 1, f : X→ X by
1x = 0 and f x = x, for all x ∈ X.

Observe that S is (1, f )-transitive. Put B = ran(d) = [0,∞) and define % : B×B→ R by %(u, v) = v, for all u, v ∈ B.
We assert that 1 is generalized (A,S) f -contraction w.r.t. %.
(A1): It is impossible to have such kind of sequence, as it is impossible to find a (1, f )-Picard-Jungck sequence {xn} ⊆ X
such that f xnS

/ f xn+1, for all n ∈N0.



W. M. Alfaqih et al. / Filomat 32:7 (2018), 2651–2666 2666

(A2): We claim that it is again impossible to have such kind of sequences because if {(an, bn)} ⊆ B × B is a (1, f ,S)N-
sequence such that {an} and {bn} converge to the same limit L ≥ 0 and L < an, for all n ∈ N0, then there exist two
sequences {xn}, {yn} ⊆ X such that f xnS f yn, an = d(1xn, 1yn) > 0 and bn = N(1, f , xn, yn) > 0, for all n ∈N0, which
is impossible as 1x = 0, for all x ∈ X.
(A3): obvious.
Hence, 1 is generalized (A,S) f -contraction w.r.t. %. By a routine calculation, one can verify the remaining conditions
of Theorem 4.3. Now in view of Theorem 4.3, (1, f ) has a coincidence point (namely x = 0).

Observe that the binary relation S in Example 6.2 is not reflexive, not antisymmetric, not transitive and not
f -transitive. Henceforth, our results are a proper extension of several corresponding results proved under
binary relations which are required to be at least reflexive, antisymmetric, transitive or f -transitive.
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