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Abstract. Let G = (V,E), V = {1, 2, . . . ,n}, E = {e1, e2, . . . , em}, be a simple graph with n vertices and m edges.
Denote by d1 ≥ d2 ≥ · · · ≥ dn > 0, and d(e1) ≥ d(e2) ≥ · · · ≥ d(em), sequences of vertex and edge degrees,
respectively. If i-th and j-th vertices of G are adjacent, it is denoted as i ∼ j. Graph invariants referred to as
the first, second and the first reformulated Zagreb indices are defined as M1 =

∑n
i=1 d2

i , M2 =
∑

i∼ j did j and
EM1 =

∑m
i=1 d(ei)2, respectively. Let λ1 ≥ λ2 ≥ · · · ≥ λn be eigenvalues of G. With ρ(G) = λ1 a spectral radius

of G is denoted. Lower bounds for invariants M1, M2, EM1 and ρ(G) are obtained.

1. Introduction

Let G = (V,E), V = {1, 2, . . . ,n}, E = {e1, e2, . . . , em}, be a simple graph, with the sequence of vertex degrees
d1 ≥ d2 ≥ · · · ≥ dn > 0, di = d(i) (i = 1, 2, . . . ,n) and the sequence of edge degrees d(e1) ≥ d(e2) ≥ · · · ≥
d(em) > 0. If i-th and j-th vertices (edges) of the graph G are adjacent, we denote it as i ∼ j (ei ∼ e j). The
edge connecting vertices i and j will be denoted by e = {i, j}. The degree of edge e = {i, j} is defined as
d(e) = di + d j − 2.

A single number that can be used to characterize some property of the graph is called a topological index
for that graph. Obviously, the number of vertices and the number of edges are topological indices.

Two vertex-degree based topological indices, the first and the second Zagreb index, M1 and M2, are
defined as (see [12])

M1 = M1(G) =

n∑
i=1

d2
i and M2 = M2(G) =

∑
i∼ j

did j.

The Zagreb indices are among the oldest and most studied molecular structure descriptors and found
significant applications in chemistry. Nowadays, there exist hundreds of papers on Zagreb indices and
related matter. For the recent results on Zagreb indices, the interested reader can refer to [1, 9, 10, 13, 18, 22,
30, 33]. Let us note that the Zagreb indices are special cases of Randić index (see for example [20, 21, 28]).
Details on other vertex–based topological indices can be found in [11, 27].

2010 Mathematics Subject Classification. Primary 05C12; Secondary 05C50
Keywords. Vertex degree; edge degree; first Zagreb index; reformulated Zagreb index.
Received: 25 January 2016; Revised: 16 July 2016; Accepted: 26 July 2016
Communicated by Francesco Belardo
Research supported by Serbian Ministry of Education, Science and Technological Development, Grant No TR-32012.
Email addresses: ema@elfak.ni.ac.rs (Emina Milovanović), igor@elfak.ni.ac.rs (Igor Milovanović),
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In [24], an edge-degree graph topological index, named reformulated first Zagreb index, EM1, is defined
as

EM1 = EM1(G) =

m∑
i=1

d(ei)2 =
∑
ei∼e j

(d(ei) + d(e j)).

Denote by A the adjacency matrix of G. The eigenvalues of adjacency matrix A, λ1 ≥ λ2 ≥ . . . ≥ λn,
represent ordinary eigenvalues of the graph G. The eigenvalue λ1 = ρ(G) is referred to as spectral radius of
graph G (see for example [2, 32, 34]).

The first and reformulated first Zagreb indices, particulary theirs upper/lower bounds has attracted
recently the attention of many mathematicians and computer scientists (see for example [6, 8, 15–17, 24,
25, 29, 35]). In this paper we state some new inequalities that set lower bounds for the invariants M1 and
EM1. Some of the obtained inequalities are generalization of the results published in the literature. As a
corollaries of the obtained results, lower bounds of graph invariants M2 and λ1 = ρ(G) are acquired.

2. Preliminaries

In what follows, we outline a few results of spectral graph theory that will be needed in the subsequent
considerations.

The following lower bounds of M1 and M2 in terms of parameters n, m, d1, d2 and dn were obtained in
[5]:

Lemma 2.1. [5] Let G be a simple graph with n ≥ 3 vertices and m edges. Then

M1 ≥ d2
1 +

(2m − d1)2

n − 1
+

2(n − 2)
(n − 1)2 (d2 − dn)2. (1)

Equality holds if and only if G is regular graph or with the property d2 = d3 = · · · = dn.

Lemma 2.2. [5] Let G be a simple graph with n ≥ 3 vertices and m edges. Then

M2 ≥ 2m2
− (n − 1)md1 +

1
2

(d1 − 1)
(
d2

1 +
(2m − d1)2

n − 1
+

2(n − 2)
(n − 1)2 (d2 − dn)2

)
, (2)

with equality if and only if G is regular.

In [4] (see also [5]) the following inequality was proved.

Lemma 2.3. [4] Let G be a simple graph with n ≥ 3 vertices and m edges. Then

M2 ≥ 2m2
− (n − 1)md1 +

1
2

(d1 − 1)M1 (3)

with equality if and only if G is regular.

In [3] the following result that determines the lower bound of M1 in terms of m, n, d1 and dn was proved.

Lemma 2.4. [3] Let G be a simple graph with n ≥ 3 vertices and m edges. Then

M1 ≥ d2
1 + d2

n +
(2m − d1 − dn)2

n − 2
, (4)

with equality if and only if G is regular or with the property d2 = d3 = · · · = dn−1.

In [7] (see also [15, 19, 31] the lower bound of M1 in terms of n and m was determined.



E. Milovanović et al. / Filomat 32:7 (2018), 2667–2675 2669

Lemma 2.5. [7] Let G be a simple connected graph with n vertices and m edges. Then

M1 ≥
4m2

n
. (5)

Equality holds if and only if G is regular.

The following lower bound of the spectral radius of graph, λ1 = ρ(G), in terms of parameters n and m
was determined in [2]:

Lemma 2.6. [2] Let G be a simple connected graph with n vertices and m edges. Then

λ1 = ρ(G) ≥
2m
n
. (6)

Equality holds if and only if G is regular.

In [16] (see also [6]) the following lower bound for the invariant EM1 in terms of M1 and m was
determined:

Lemma 2.7. [16] Let G be a simple graph with n vertices and m ≥ 1 edges. Then

EM1 ≥
(M1 − 2m)2

m
. (7)

Equality holds if and only if G is regular.

3. Main results

In the following theorem we prove the inequality that determines the lower bound for M1 which is
better than (5).

Theorem 3.1. Let G be a simple graph of order n (n ≥ 2) with m edges and without isolated vertices. Let k1 and k2
be arbitrary real numbers with the properties d1 ≥ k1 ≥

2m
n and 2m

n ≥ k2 ≥ dn. Then

M1 ≥
4m2

n
+ α(k1, k2), (8)

where

α(k1, k2) = max
{

(nk1 − 2m)2

n(n − 1)
,

(2m − nk2)2

n(n − 1)
,

1
2

(d1 − dn)2

}
.

Equality holds if and only if G is a regular graph.

Proof. In [23] a class of real polynomials Pn(a1, a2) of the form Pn(x) = xn + a1xn−1 + a2xn−2 + b3xn−3 + · · ·+ bn,
where a1 and a2 are fixed real numbers, was considered. Let x1 ≥ x2 ≥ · · · ≥ xn be real roots of the polynomial
Pn(x) ∈ Pn(a1, a2). Then

x̄ +
1
n

√
∆

n − 1
≤ x1 ≤ x̄ +

1
n

√
(n − 1)∆ , (9)

x̄ −
1
n

√
(i − 1)∆
n − i + 1

≤ xi ≤ x̄ +
1
n

√
(n − i)∆

i
, i = 2, 3, . . . ,n − 1,

x̄ −
1
n

√
(n − 1)∆ ≤ xn ≤ x̄ −

1
n

√
∆

n − 1
, (10)
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where

x̄ =
1
n

n∑
i=1

xi and ∆ = n
n∑

i=1

x2
i −

 n∑
i=1

xi


2

. (11)

Now consider the polynomial

Pn(x) =

n∏
i=1

(x − di) = xn + a1xn−1 + a2xn−2 + b3xn−3 + · · · + bn,

where d1 ≥ d2 ≥ · · · ≥ dn are vertex degrees in G. Since

a1 = −

n∑
i=1

di = −2m, a2 =
1
2


 n∑

i=1

di


2

−

n∑
i=1

d2
i

 =
1
2

(4m2
−M1),

the polynomial Pn(x) belongs to a class of real polynomials Pn(−2m, 1
2 (4m2

−M1)). According to (11) we
have that

x̄ =
1
n

n∑
i=1

di =
2m
n

and ∆ = n
n∑

i=1

d2
i −

 n∑
i=1

di


2

= nM1 − 4m2. (12)

For x1 = d1 from (12) and the right part of the inequality (9), we have that for each real k1, d1 ≥ k1 ≥
2m
n ,

holds
k1 ≤ d1 ≤

2m
n

+
1
n

√
(n − 1)(nM1 − 4m2),

i.e.
0 ≤ nk1 − 2m ≤

√
(n − 1)(nM1 − 4m2),

wherefrom follows

M1 ≥
4m2

n
+

(nk1 − 2m)2

n(n − 1)
. (13)

For xn = dn, from (12) and left part of the inequality (10), for each k2, 2m
n ≥ k2 ≥ dn, holds

2m
n
−

1
n

√
(n − 1)(nM1 − 4m2) ≤ dn ≤ k2,

i.e.
0 ≤ 2m − nk2 ≤

√
(n − 1)(nM1 − 4m2),

wherefrom follows

M1 ≥
4m2

n
+

(2m − nk2)2

n(n − 1)
. (14)

In [26] the following inequality was proved

M1 ≥
4m2

n
+

1
2

(d1 − dn)2. (15)

According to (13), (14) and (15) we obtain (8).

Remark 3.2. The inequalities (13), (14) and (15) are stronger than (5). Consequently, (8) is also stronger than (5).
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Corollary 3.3. Let G be a simple graph of order n (n ≥ 2) with m edges, without isolated vertices. Then

M1 ≥
4m2

n
+ α(d1, dn), (16)

where

α(d1, dn) = max
{

(nd1 − 2m)2

n(n − 1)
,

(2m − ndn)2

n(n − 1)
,

1
2

(d1 − dn)2

}
.

Equality holds if and only if G is regular.

Proof. The required result is obtained from (8) for k1 = d1 and k2 = dn.

Remark 3.4. Let us note that values (nd1−2m)2

n(n−1) , (2m−ndn)2

n(n−1) and 1
2 (d1 − dn)2 are incomparable. Thus, for example, if

G = K1,n−1 then (nd1−2m)2

n(n−1) has a maximal value, if G = Pn then (2m−ndn)2

n(n−1) is the maximum, and if sequence of vertex
degrees of G is of the form (3, 2, . . . , 2︸  ︷︷  ︸

(n−2)−times

, 1) then 1
2 (d1 − dn)2 has a maximal value.

Corollary 3.5. Let G be a simple connected graph with n vertices and m edges. Then

λ1 ≥

√
4m2

n2 +
α(d1, dn)

n
. (17)

Equality holds if and only if G is regular.

Proof. The inequality (17) can be obtained from the inequality (16) and inequality λ1 ≥

√
M1
n proved in

[14].

Remark 3.6. Since α(d1, dn) ≥ 0, the inequality (17) is stronger than (6).

Corollary 3.7. Let G be a simple graph with n (n ≥ 3) vertices and m edges. Then

M2 ≥ 2m2
− (n − 1)md1 +

1
2

(d1 − 1)
(

4m2

n
+ α(k1, k2)

)
. (18)

Equality holds if and only if G is regular.

In the following theorem we determine the lower bound of the invariant M1 in terms of parameters
n,m, d1, d2 and dn.

Theorem 3.8. Let G be a simple graph with n ≥ 3 vertices and m edges. Then

M1 ≥ d2
1 +

(2m − d1)2

n − 1
+

1
2

(d2 − dn)2. (19)

Equality holds if and only if G is a regular graph or with the property d3 = · · · = dn−1 = d2+dn
2 .

Proof. Based on the inequality

(n − 1)
n∑

i=2

d2
i −

 n∑
i=2

di


2

=
∑

2≤i< j≤n

(di − d j)2
≥

n−1∑
i=3

((d2 − di)2 + (di − dn)2) + (d2 − dn)2

≥

n−1∑
i=3

1
2

(d2 − dn)2 + (d2 − dn)2 =
(n − 1)

2
(d2 − dn)2,
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we have that
(n − 1)(M1 − d2

1) − (2m − d1)2
≥

(n − 1)
2

(d2 − dn)2,

wherefrom we obtain (19).

Corollary 3.9. Let G be a simple graph with n (n ≥ 3) vertices and m edges. Then

M2 ≥ 2m2
− (n − 1)md1 +

1
2

(d1 − 1)
(
d2

1 +
(2m − d1)2

n − 1
+

1
2

(d2 − dn)2

)
. (20)

Equality holds if and only if G is regular.

Remark 3.10. Since for each n ≥ 3 holds

1
2

(d2 − dn)2
≥

2(n − 2)
(n − 1)2 (d2 − dn)2

it follows that the inequality (19) is stronger than (1), while (20) is stronger than (2).

Corollary 3.11. Let G be a simple graph with n (n ≥ 3) vertices and m edges. Then

λ1 = ρ(G) ≥

√
1
n

(
d2

1 +
(2m − d1)2

n − 1
+

1
2

(d2 − dn)2

)
.

Equality holds if and only if G is regular.

By the similar procedure as the one applied in the proof of Theorem 3.8, the following result can be
proved.

Theorem 3.12. Let G be a simple graph with n (n ≥ 3) vertices and m edges. Then

M1 ≥ d2
1 + d2

n +
(2m − d1 − dn)2

n − 2
+

1
2

(d2 − dn−1)2. (21)

Equality holds if and only if G is a regular graph or with the property d3 = · · · = dn−2 = d2+dn−1
2 .

Remark 3.13. The inequality (21) is stronger than (4).

Corollary 3.14. Let G be a simple graph with n (n ≥ 3) vertices and m edges. Then

M2 ≥ 2m2
− (n − 1)md1 +

1
2

(d1 − 1)
(
d2

1 + d2
n +

(2m − d1 − dn)2

n − 2
+

1
2

(d2 − dn−1)2

)
.

Equality holds if and only if G is regular.

In the next theorem we set up the lower bound for the invariant EM1.

Theorem 3.15. Let G be a simple graph with n (n ≥ 2) vertices and m edges. Let k3 and k4 be arbitrary real numbers
with the properties

d(e1) ≥ k3 ≥
M1 − 2m

m
and

M1 − 2m
m

≥ k4 ≥ d(em).

Then

EM1 ≥
(M1 − 2m)2

m
+ α(k3, k4) , (22)

where

α(k3, k4) = max
{

(mk3 −M1 + 2m)2

m(m − 1)
,

(M1 − 2m −mk4)2

m(m − 1)
,

1
2

(d(e1) − d(em))2

}
.

Equality holds if and only if G is regular or semiregular bipartite graph.
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Proof. Consider the polynomial

Pm(x) =

m∏
i=1

(x − d(ei)) = xm + a1xm−1 + a2xm−2 + b3xm−3 + · · · + bm,

where d(e1) ≥ d(e2) ≥ · · · ≥ d(em) ≥ 0 are edge degrees of G. Since

a1 = −

m∑
i=1

d(ei) = −(M1 − 2m)

and

a2 =
1
2


 m∑

i=1

d(ei)


2

−

m∑
i=1

d(ei)2

 =
1
2

((M1 − 2m)2
− EM1),

the polynomial Pm(x) belongs to a class of polynomials Pm(2m −M1, 1
2 ((M1 − 2m)2

− EM1)). According to
(11) we have that

x̄ =
1
m

m∑
i=1

d(ei) =
M1 − 2m

m
,

∆ = m
m∑

i=1

d(ei)2
−

 m∑
i=1

d(ei)


2

= mEM1 − (M1 − 2m)2.

(23)

For x1 = d(e1), from (23) and right part of the inequality (9), for each real k3, d(e1) ≥ k3 ≥
M1−2m

m , we have that

k3 ≤ d(e1) ≤
M1 − 2m

m
+

1
m

√
(m − 1)(mEM1 − (M1 − 2m)2),

i.e.
0 ≤ mk3 −M1 + 2m ≤

√
(m − 1)(mEM1 − (M1 − 2m)2) ,

wherefrom it follows that

EM1 ≥
(M1 − 2m)2

m
+

(mk3 −M1 + 2m)2

m(m − 1)
. (24)

For n = m, xm = d(em), according to (23) and left part of the inequality (10), for each k4, M1−2m
m ≥ k4 ≥ d(em),

we have that
M1 − 2m

m
−

1
m

√
(m − 1)(mEM1 − (M1 − 2m)2) ≤ d(em) ≤ k4,

i.e.
0 ≤M1 − 2m −mk4 ≤

√
(m − 1)(mEM1 − (M1 − 2m)2)

wherefrom follows

EM1 ≥
(M1 − 2m)2

m
+

(M1 − 2m −mk4)2

m(m − 1)
. (25)

From the inequality

mEM1 − (M1 − 2m)2 = m
m∑

i=1

d(ei)2
−

 m∑
i=1

d(ei)


2

=
∑

1≤i< j≤m

(d(ei) − d(e j))2
≥

≥

m−1∑
i=2

((d(e1) − d(ei))2 + (d(ei) − d(em))2) + (d(e1) − d(em))2

≥
m
2

(d(e1) − d(em))2,
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follows

EM1 ≥
(M1 − 2m)2

m
+

1
2

(d(e1) − d(em))2. (26)

The inequality (22) is obtained from the inequalities (24), (25) and (26).

For k3 = d(e1) and k4 = d(em) the following corollary holds.

Corollary 3.16. Let G be a simple graph with n (n ≥ 2) vertices and m edges. Then

EM1 ≥
(M1 − 2m)2

m
+ α(d(e1), d(em)) , (27)

where

α(d(e1), d(em)) = max
{

(md(e1) −M1 + 2m)2

m(m − 1)
,

(M1 − 2m −md(em))2

m(m − 1)
,

1
2

(d(e1) − d(em))2

}
.

Equality holds if and only if G is regular or semiregular bipartite graph.

Remark 3.17. The inequality (22), as well as the inequalities (24), (25) and (26), are stronger than (7).
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[30] A. Vasilyev, R. Darda, D. Stevanović, Trees of given order and independence number with minimal first Zagreb index, MATCH
Commun. Math. Comput. Chem. 72 (2014), 775-782.

[31] Y. S. Yoon, J. K. Kim, A relationship between bounds on the sum of squares of degrees of a graph, J. Appl. Math. Comput., 21
(2006), 233–238.

[32] A. M. Yu, M. Lu, F. Tian, On spectral radius of graphs, Lin. Algebra Appl., 387 (2004), 41–49.
[33] K. Xu, K. C. Das, S. Balachandran, Maximizing the Zagreb indices of (n,m)-graphs, MATCH Commun. Math. Comput. Chem.

72 (2014), 641-654.
[34] B. Zhou, On spectral radius of nonnegative matrices, Australas. J. Combin., 22 (2000), 301–306.
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