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Abstract. In this paper, we obtain subordination, superordination and sandwich-type results regarding to
certain family of integral operators defined on the space of multivalent functions in the open unit disk. Also,
an application of the subordination and superordination theorems to the Gauss hypergeometric function
are considered. These new results generalize some previously well-known sandwich-type theorems.

1. Introduction

Let H = H(U) be the class of functions analytic in U = {z ∈ C : |z| < 1} and H[a,n] be the subclass
of H(U) consisting of functions of the form f (z) = a + anzn+ an+1zn+1 + . . . . Denote H0 = H[0, 1] and
H = H[1, 1]. Also, let P denote the class of functions

P =
{
h ∈ H[0, 1] : h(z)h′(z) , 0, z ∈ U∗ := U \ {0}

}
,

andA(p) be the class of all functions of the form

f (z) = zp +
∑
∞

k=1
ak+pzk+p (p ∈N = {1, 2, . . . }), (1)

which are analytic inU. We note thatA(1) = A.
Let φ : C2

× U → C and h (z) be univalent in U. If p (z) is analytic in U and satisfies the first order
differential subordination:

φ (p (z) , zp′ (z) ; z) ≺ h (z) , (2)

where ” ≺ ” stands for subordination (see [10, 13, 20, 21]) , then p (z) is a solution of (2). The univalent
function q (z) is called a dominant of the solutions of (2) if p (z) ≺ q (z) for all p (z) satisfying (2). A
univalent dominant

∼

q that satisfies
∼

q ≺ q for all dominants of (2) is called the best dominant. If p (z) and
φ (p (z) , zp′ (z) ; z) are univalent inU and if p(z) satisfies

h (z) ≺ φ (p (z) , zp′ (z) ; z) , (3)
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then p (z) is a solution of (3). An analytic function q (z) is called a subordinant of the solutions of (3) if
q (z) ≺ p (z) for all p (z) satisfying (3). A univalent subordinant

∼

q that satisfies q ≺
∼

q for all subordinants of
(3) is called the best subordinant (see [13, 14]).

For fi(z) ∈ A(p) (i = 1, 2, . . . ,n), h(z) ∈ P and β, α1, α2, . . . , αn ∈ C with β , 0, we introduce the integral
operator Ip,n

h;αi,β
: A(p)→A(p) as follows

Ip,n
h;αi,β

[ fi](z) =

 p
∑n

i=1 αi

zp
∑n

i=1 αi−pβ

z∫
0

(∏n

i=1
f αi
i (t)

)
h−1(t)h′(t)dt


1
β

, (4)

where all powers are principal ones.
For special casese of of the above defined integral operator (see Srivastava et al. [19], Aouf et al. [1],

Cho and Bulboacă [5], Miller et al. [15], Bulboacă [2–4], Cho et al. [6], Cho and Srivastava [7] and Owa and
Srivastava [17]).

We recall some definitions which we will be used in our paper.

Definition 1.1. [13] Denote by Q the set of all functions q(z) that are analytic and injective onU\E(q) where E(q) ={
ζ ∈ ∂U : limz→ζ q(z) = ∞

}
and are such that q′(ζ) , 0 for ζ ∈ ∂U\E(q). Further, denote by Q(a) the subclass of

Q for which q(0) = a.

Definition 1.2. [13] A function L (z, t) (z ∈ U, t ≥ 0) is a subordination chain if L (·, t) is analytic and univalent in
U for all t ≥ 0, L (z, ·) is continuously differentiable on [0,∞) for all z ∈ U and L (z, s) ≺ L (z, t) for all 0 ≤ s ≤ t.

2. Main results

Unless otherwise mentioned, we assume throughout this paper that h ∈ P, β, α1, α2, . . . , αn ∈ C with
β , 0 such that<

(
p
∑n

i=1 αi − 1
)
> 0, z ∈ U and all powers are principal ones.

Using similar arguments to Lemma 7 in [19], we obtain the following lemma.

Lemma 2.1. If fi ∈ Ap,h;αi ,

Ap,h;αi =

{
fi(z) ∈ A(p) :

∑n

i=1
αi

z f ′i (z)

fi(z)
+ 1 +

zh′′(z)
h′(z)

−
zh′(z)
h(z)

≺ Rp
∑n

i=1 αi
(z)

}
,

then Ip,n
h;αi,β

[ fi](z) ∈ A(p), z−pIp,n
h;αi,β

[ fi](z) , 0 and

<

β
z
(
Ip,n
h,αi,β

[ fi](z)
)′

Ip,n
h,αi,β

[ fi](z)
+ p

∑n

i=1
αi − pβ

 > 0,

where Ip,n
h,αi,β

is the integral operator defined by (4).

Theorem 2.2. Let f , 1 ∈ Ap,h;αi , and

<

{
1 +

zφ′′ (z)
φ′ (z)

}
> −δ

(
φ (z) = z

∏n

i=1

(
1i(z)

zp

)αi zh′(z)
h(z)

)
, (5)

where δ is given by

δ =
1 + |a|2 −

∣∣∣1 − a2
∣∣∣

4<{a}

(
a = p

∑n

i=1
αi − 1, <{a} > 0

)
. (6)
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Then the subordination condition

z
∏n

i=1

(
fi(z)
zp

)αi zh′(z)
h(z)

≺ φ (z) , (7)

implies that

z

 Ip,n
h;αi,β

[ fi](z)

zp


β

≺ z

 Ip,n
h;αi,β

[1i](z)

zp


β

, (8)

and the function z
(

Ip,n
h;αi ,β

[1i](z)

zp

)β
is the best dominant.

Proof. Define the functions Ψ(z) and Φ(z) inU by

Ψ(z) = z

 Ip,n
h;αi,β

[ fi](z)

zp


β

and Φ(z) = z

 Ip,n
h;αi,β

[1i](z)

zp


β

. (9)

From Lemma 2.1, it follows that these two functions are well defined. We first show that, if

q (z) = 1 +
zΦ′′ (z)
Φ′ (z)

, (10)

then<
{
q (z)

}
> 0. From (4) and the definitions of φ(z), Φ(z), we obtainp

n∑
i=1

αi

φ (z) = zΦ′ (z) +

p
n∑

i=1

αi − 1

Φ (z) . (11)

Hence, it follows that

1 +
zφ′′ (z)
φ′ (z)

= q (z) +
zq′ (z)

q (z) + p
∑n

i=1 αi − 1
= h(z). (12)

It follows from (5) and (12) that

<

{
h (z) + p

∑n

i=1
αi − 1

}
> 0. (13)

Moreover, by using the result of [12], we conclude that the differential equation (12) has a solution q (z) ∈
H (U) with h (0) = q (0) = 1. Let

H (u, v) = u +
v

u + p
∑n

i=1 αi − 1
+ δ.

From (12) and (13), we obtain<
{
H

(
q(z); zq′(z)

)}
> 0. To verify the condition

<{H (is; t)} ≤ 0
(
s ∈ R; t ≤ −

1 + s2

2

)
, (14)

we proceed as follows:

<{H (is; t)} =<
{
is +

t
is + a

+ δ
}

= δ +
t<{a}
|is + a|2

≤ −
Eδ (s)

2 |a + is|2
,
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where

Eδ (s) = (<{a} − 2δ) s2
− 4δ (= {a}) s +

(
<{a} − 2δ |a|2

)
. (15)

The coefficient of s2 in the quadratic expression Eδ (s) given by (15) is positive or equal to zero and Eδ (s) ≥
0. Thus, we see that<{H (is; t)} ≤ 0 for all s ∈ R and t ≤ − 1+s2

2 . Thus, by using the fact of [11], we conclude
that <

{
q (z)

}
> 0, that is, that Φ(z) defined by (9) is convex (univalent) in U. Next, we prove that the

subordination condition (7) implies that Ψ (z) ≺ Φ (z) , for Ψ(z) and Φ(z) defined by (9). Without loss of
generality, we assume that Φ(z) is analytic, univalent on U and Φ′(ζ) , 0 (|ζ| = 1) . If not, then we replace
Ψ(z) and Φ(z) by Ψ(ρz) and Φ(ρz), respectively, with 0 < ρ < 1. These new functions have the desired
properties onU, so we can use them in the proof of our result and the result would follow by letting ρ→ 1.
Consider the function L (z, t) given by

L (z, t) =

(
1 −

1
p
∑n

i=1 αi

)
Φ (z) +

(1 + t)
p
∑n

i=1 αi
zΦ′ (z) (0 ≤ t < ∞) . (16)

We note that

∂L (z, t)
∂z

∣∣∣∣∣
z=0

=

(
1 +

t
p
∑n

i=1 αi

)
Φ′ (0) , 0 (0 ≤ t < ∞) .

This show that L (z, t) = a1(t)z + a2(t)z2 + . . . , satisfy lim
t→∞
|a1 (t)| = ∞ and a1 (t) , 0. Further, we have

<


z
∂L (z, t)
∂z

∂L (z, t)
∂t

 =<

{
p
∑n

i=1
αi − 1 + (1 + t)

(
1 +

zΦ′′ (z)
Φ′ (z)

)}
> 0,

since Φ (z) is convex and <
(
p
∑n

i=1 αi − 1
)
> 0, by using the well-known growth and distortion sharp

inequalities for convex functions (see [8]), the second inequality of the result of [18, p. 159] is satisfied and
so L (z, t) is a subordination chain. It follows that φ (z) = L (z, 0) and L (z, 0) ≺ L (z, t) , which implies that

L (ζ, t) < L (U, 0) = φ (U) (0 ≤ t < ∞; ζ ∈ ∂U) . (17)

If Ψ(z) is not subordinate to Φ(z), by using of the result of [13, p. 24] (see also [16]), we know that there exist
two points z0 ∈ U and ζ0 ∈ ∂U such that

Ψ (z0) = Φ (ζ0) and z0Ψ
′ (z0) = (1 + t) ζ0Φ

′ (ζ0) (0 ≤ t < ∞) . (18)

Hence, we have

L (ζ0, t) =

(
1 −

1
p
∑n

i=1 αi

)
Φ (ζ0) +

(1 + t)
p
∑n

i=1 αi
ζ0Φ

′ (ζ0)

=

(
1 −

1
p
∑n

i=1 αi

)
Ψ (z0) +

1
p
∑n

i=1 αi
z0Ψ

′ (z0)

= z
∏n

i=1

 fi(z0)

zp
0

αi z0h′(z0)
h(z0)

∈ φ (U) .

This contradicts (17). Thus, we deduce that Ψ ≺ Φ. Considering Ψ = Φ, we see that the function Φ is the
best dominant.

We now derive the following superordination result.
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Theorem 2.3. Let f , 1 ∈ Ap,h;αi , and (5) holds. If z
∏n

i=1

( fi(z)
zp

)αi zh′(z)
h(z) is univalent in U and z

(
Ip,n
h;αi ,β

[ fi](z)

zp

)β
∈

H[0, 1] ∩ Q, then

φ (z) ≺ z
∏n

i=1

(
fi(z)
zp

)αi zh′(z)
h(z)

, (19)

implies that

z

 Ip,n
h;αi,β

[1i](z)

zp


β

≺ z

 Ip,n
h;αi,β

[ fi](z)

zp


β

, (20)

and the function z
(

Ip,n
h;αi ,β

[1i](z)

zp

)β
is the best subordinant.

Proof. Suppose that Ψ(z), Φ(z) and q(z) are defined by (9) and (10), respectively. As in Theorem 2.2, we have

φ (z) =

(
1 −

1
p
∑n

i=1 αi

)
Φ (z) +

1
p
∑n

i=1 αi
zΦ′ (z) = ϕ (G (z) , zG′ (z))

and we obtain <
{
q (z)

}
> 0. Next, to obtain the desired result, we show that Φ(z) ≺ Ψ(z). For this, we

suppose that

L (z, t) =

(
1 −

1
p
∑n

i=1 αi

)
Φ (z) +

t
p
∑n

i=1 αi
zΦ′ (z) (0 ≤ t < ∞) .

We note that L (z, t) satisfy the conditions lim
t→∞
|a1 (t)| = ∞ and a1 (t) , 0. Further, we have

<


z
∂L (z, t)
∂z

∂L (z, t)
∂t

 =<

{
p
∑n

i=1
αi − 1 + t

(
1 +

zΦ′′ (z)
Φ′ (z)

)}
> 0,

and so L (z, t) is a subordination chain. Therefore, by using the result of [18], we conclude that (19) must
imply (20). Moreover, since the differential equation has a univalent solution Φ, it is the best subordinant.

Combining Theorems 2.2 and 2.3, the following sandwich-type results are derived.

Theorem 2.4. Let f , 1 j ∈ Ap,h;αi

(
j = 1, 2

)
and

<

1 +
zφ′′j (z)

φ′j (z)

 > −δ
(
φ j (z) = z

∏n

i=1

(
1i, j(z)

zp

)αi zh′(z)
h(z)

)
.

If z
∏n

i=1

( fi(z)
zp

)αi zh′(z)
h(z) is univalent inU and z

(
Ip,n
h;αi ,β

[ fi](z)

zp

)β
∈ H[0, 1] ∩ Q. Then

φ1 (z) ≺ z
∏n

i=1

(
fi(z)
zp

)αi zh′(z)
h(z)

≺ φ2 (z) ,

implies that

z

 Ip,n
h;αi,β

[1i,1](z)

zp


β

≺ z

 Ip,n
h;αi,β

[ fi](z)

zp


β

≺ z

 Ip,n
h;αi,β

[1i,2](z)

zp


β

.

Moreover, the functions z
(

Ip,n
h;αi ,β

[1i,1](z)

zp

)β
and z

(
Ip,n
h;αi ,β

[1i,2](z)

zp

)β
are, respectively, the best subordinant and the best dominant.
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We note that the assumption of Theorem 2.4 that the functions

z
∏n

i=1

(
fi(z)
zp

)αi zh′(z)
h(z)

and z

 Ip,n
h;αi,β

[ fi](z)

zp


β

need to be univalent inU, may be replaced as in the following corollary.

Corollary 2.5. Let f , 1 j ∈ Ap,h;αi

(
j = 1, 2

)
,

<

1 +
zφ′′j (z)

φ′j (z)

 > −δ
(
φ j (z) = z

∏n

i=1

(
1i, j(z)

zp

)αi zh′(z)
h(z)

)
,

and

<

{
1 +

zΘ′′ (z)
Θ′ (z)

}
> −δ

(
Θ (z) = z

∏n

i=1

(
fi(z)
zp

)αi zh′(z)
h(z)

)
. (21)

Then

φ1 (z) ≺ z
∏n

i=1

(
fi(z)
zp

)αi zh′(z)
h(z)

≺ φ2 (z) ,

implies that

z

 Ip,n
h;αi,β

[1i,1](z)

zp


β

≺ z

 Ip,n
h;αi,β

[ fi](z)

zp


β

≺ z

 Ip,n
h;αi,β

[1i,2](z)

zp


β

.

Proof. To prove Corollary 1, we have to show that condition (21) implies the univalence of Θ (z) and

Ψ(z) = z
(

Ip,n
h;αi ,β

[ fi](z)

zp

)β
. Since 0 ≤ δ < 1

2 , it follows that Θ (z) is close to convex function in U (see [9]) and

hence Θ (z) is univalent in U. Also, by using the same techniques as in the proof of Theorem 2.2, we can
prove that Ψ is convex (univalent) inU, and so the details may be omitted. Therefore, by applying Theorem
2.4, we obtain the desired result.

Remark 2.6. For p = 1 in our results, we obtain the results obtained by Aouf et al. [1].
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