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Abstract. Let A be a Banach algebra and X be a compact Hausdorff space. For given homomorphisms
σ ∈ Hom(A) and τ ∈ Hom(C(X,A)), we introduce homomorphisms σ̃ ∈ Hom(C(X,A)) and τ̃x ∈ Hom(A),
where x ∈ X. We then study both σ̃-(weak) amenability of C(X,A), and τ̃x-(weak) amenability of A.

1. Introduction

Let X be a compact Hausdorff space and let A be a Banach algebra. It is known that C(X,A), the set
of all A-valued continuous functions on X, is a Banach algebra with pointwise algebraic operations and
the uniform norm || f ||∞ := supx∈X || f (x)||, f ∈ C(X,A) [5]. In the nice papers [3, 11], Ghamarshoushtari and
Zhang studied amenability and weak amenability of C(X,A). They showed that C(X,A) is amenable if and
only if A is amenable. Further, if A is commutative, they proved that C(X,A) is weakly amenable if and
only if A is weakly amenable.

Let A be a Banach algebra. We denote by Hom(A) the space of all continuous homomorphisms from A
into A. Let A be a Banach algebra, E be a Banach A-bimodule and let σ ∈ Hom(A). From [6], we recall that a
bounded linear map D : A −→ E is a σ-derivation if D(ab) = D(a) ·σ(b)+σ(a) ·D(b), for a, b ∈ A. A σ-derivation
D : A −→ E is σ-inner derivation if there exists x ∈ E such that D(a) = σ(a) · x − x · σ(a), for all a ∈ A.

Let A be a Banach algebra and let σ ∈ Hom(A). The notion of σ-amenable Banach algebras was introduced
and studied by Mirzavaziri and Moslehian in [7] (see also [8]). We say A is σ-amenable if for every Banach
A-bimodule E, every σ-derivation D : A −→ E∗ is σ-inner. Especially, a Banach algebra A is σ-weakly amenable
if every σ-derivation D : A −→ A∗ is σ-inner [9].

For a Banach algebra A, it is known that the projective tensor product A⊗̂A is a Banach A-bimodule in a
natural way. A bounded net (uα) ⊂ A⊗̂A is a σ-bounded approximate diagonal for A if

σ(a) · uα − uα · σ(a) −→ 0, and π(uα)σ(a) −→ σ(a) (a ∈ A),

where σ ∈ Hom(A), and π : A⊗̂A −→ A is the product map defined by π(a ⊗ b) = ab.
Before preceding further, we set up our notations. Let X be a compact Hausdorff space and let A be

a Banach algebra. For each x ∈ X, we consider the continuous epimorphism Tx : C(X,A) −→ A defined
by Tx( f ) := f (x), for all f ∈ C(X,A). For every a ∈ A, we define 1a ∈ C(X,A) by the formula 1a(x) := a, for
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all x ∈ X. We notice that, every homomorphism σ ∈ Hom(A) induces a homomorphism σ̃ ∈ Hom(C(X,A))
defined by σ̃( f ) := σ f , f ∈ C(X,A). Conversely, for every homomorphism τ ∈ Hom(C(X,A)) and x ∈ X, we
introduce the map τ̃x : A −→ A through τ̃x(a) := Tx(τ(1a)), a ∈ A. Since 1ab = 1a1b, τ̃x ∈ Hom(A). It is readily
seen that (Txτ)(1a) = (τ̃xTx)(1a), for each a ∈ A. Next, for f ∈ C(X) and a ∈ A we define f a ∈ C(X,A) via
f a(x) = f (x)a for each x ∈ X. Throughout the paper, we keep the above definitions and notations.

In this paper, motivated by [3, 6], we deal with amenability-like properties of the Banach algebra
C(X,A). Suppose that σ and τ are homomorphisms on A and C(X,A), respectively. For a given σ-bounded
approximate diagonal for A, we construct a σ̃-bounded approximate diagonal for C(X,A) (Theorem 2.1). We
show that under some certain conditions, τ-(weak) amenability of C(X,A) implies τ̃x-(weak) amenability
of A (Theorems 2.4 and 3.4). For a commutative Banach algebra A, we prove that σ-weak amenability of
A yields σ̃-weak amenability of C(X,A) in the presence of a bounded approximate identity for A (Theorem
3.2). Finally, we show that Theorem 3.2 is still true without the existence of a bounded approximate identity
for A (Theorem 3.9).

2. σ-amenability

Suppose that A is a Banach algebra and X is a compact Hausdorff space. For u =
∑

i ui ⊗ vi ∈ C(X)⊗̂C(X)
and α =

∑
j α j ⊗ β j ∈ A⊗̂A, we consider

Γ(u, α) =
∑

i, j

uiα j ⊗ viβ j ∈ C(X,A)⊗̂C(X,A)

so that ‖Γ(u, α)‖ ≤ ‖u‖ ‖α‖.

Theorem 2.1. Let X be a compact Hausdorff space, A be a Banach algebra and let σ ∈ Hom(A). If A has a σ-bounded
approximate diagonal, then C(X,A) has a σ̃-bounded approximate diagonal.

Proof. We follow the standard argument in [3]. Let (αv) ∈ A⊗̂A be a σ-bounded approximate diagonal
for A such that ‖αv‖p ≤ M for all v. We claim that for any ε > 0 and any finite set F ⊂ C(X,A), there is
U = U(F,ε) ∈ C(X,A)⊗̂C(X,A) with ‖U‖ ≤ 2Mc such that

‖σ̃(a) . U −U . σ̃(a)‖ < ε and ‖π(U)σ̃(a) − σ̃(a)‖ < ε (a ∈ F)

where c > 0 is the constant asserted in [2, Corollary 1.2]. Given ε > 0 and a finite set F ⊂ C(X,A). We first
assume that each a ∈ F is of the form of a finite sum a =

∑
k fkak, with fk ∈ C(X) and ak ∈ A. It is easy to check

that σ̃(a) =
∑

k fkσ(ak). We denote by FA (⊂ A) the finite set of all elements ak associated to a for all a ∈ F, and by
FC (⊂ C(X)) the finite set of all functions fk associated to a for all a ∈ F. Let N > 0 be an integer that is greater
than the number of the terms of a =

∑
k fkak for all a ∈ F, and set L := max{‖σ(b)‖ , ‖ f ‖ : b ∈ FA, f ∈ FC}. By

the assumption, there is α ∈ (αv) such that

‖σ(b) . α − α . σ(b)‖ <
ε

4cNL
, ‖π(α) . σ(b) − σ(b)‖ <

ε
NL

(b ∈ FA).

On the other hand, by the same argument as in the proof of [2, Theorem 2.1], we obtain an element
u ∈ C(X) ⊗ C(X) with π(u) = 1 and ‖u‖ ≤ 2c for which

‖ f . u − u . f ‖ <
ε

2‖α‖LN
( f ∈ FC).
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Putting U := Γ(u, α), for a =
∑

k fkak we see that

‖σ̃(a) . U −U . σ̃(a)‖ = ‖
∑

k

(Γ( fku, σ(ak)α) − Γ(u fk, ασ(ak))‖

= ‖
∑

k

Γ( fku, σ(ak)α − ασ(ak)) + Γ( fku − u fk, ασ(ak))‖

≤

∑
k

(L‖u‖ ‖σ(ak)α − ασ(ak)‖ + L‖α‖ ‖ fku − u fk‖)

≤ NL(2c
ε

4cNL
+ ‖α‖

ε
2‖α‖PLN

) = ε

and

‖π(U)σ̃(a) − σ̃(a)‖ = ‖π(u)π(α)σ̃(a) − σ̃(a)‖ = ‖
∑

k

fk(π(α)σ(ak) − σ(ak))‖

≤ L
∑

k

‖π(α)σ(ak) − σ(ak)‖ < NL
ε

NL
= ε.

Now, we assume that F ⊂ C(X,A) is an arbitrary finite set. From the proof of [2, Theorem 2.1], we
know that for each a ∈ F there exists an element aε =

∑
k fkak where the right side of aε is a finite sum,

fk ∈ C(X) and ak ∈ A such that ‖σ̃(a) − σ̃(aε)‖ < min
{ε
4
,
ε

8Mc

}
. Applying the above argument for the finite

set Fε := {aε : a ∈ F}, we get U ∈ C(X,A)⊗̂C(X,A) such that ‖U‖ ≤ 2cM and

‖σ̃(aε) . U −U . σ̃(aε)‖ <
ε
2

and ‖π(U)σ̃(aε) − σ̃(aε)‖ <
ε
2

(aε ∈ Fε).

Therefore
‖σ̃(a) . U −U . σ̃(a)‖ < ε and ‖π(U)σ̃(a) − σ̃(a)‖ < ε (a ∈ F)

so that the claim is proved. Finally, the net (UF,ε) with the natural partial order (F1, ε1) < (F2, ε2) if and only
if F1 ⊂ F2 and ε1 ≥ ε2 is the desired σ̃-approximate diagonal for C(X,A).

Remark 2.2. To our knowledge, we do not know whether or not the existence of σ-bounded approximate diagonal
is equivalent to σ-amenability. Hence, we can not prove or disprove if σ-amenability of A implies σ̃-amenability of
C(X,A).

Proposition 2.3. Suppose that σ ∈ Hom(A) and τ ∈ Hom(B), where A and B are Banach algebras. Suppose that
φ : A −→ B is a continuous homomorphism with a dense range and τφ = φσ. If A is σ-amenable, then B is
τ-amenable.

Proof. We may either prove it or else look at [8, Proposition 3.3].

Theorem 2.4. Let X be a compact Hausdorff space, let A be a Banach algebra and let τ ∈ Hom(C(X,A)) such that
Tx0τ = τ̃x0 Tx0 , for some x0 ∈ X. If C(X,A) is τ-amenable, then A is τ̃x0 -amenable.

Proof. We have already seen that the map Tx0 is surjective, so this is immediate by Proposition 2.3.

We note that homomorphisms τ ∈ Hom(C(X,A)) satisfying the condition of Theorem 2.4 exist in abundance.
Take an arbitrary homomorphism η ∈ Hom(C(X,A)) and define the map τ : C(X,A) −→ C(X,A) by

τ( f )(x) := τ(1 f (x))(x) := η(1 f (x))(x) ( f ∈ C(X,A), x ∈ X) .

Then, we may check that τ ∈ Hom(C(X,A)) and Txτ = τ̃xTx for all x ∈ X.
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3. σ-weak amenability

For a Banach algebra A and a homomorphism σ on A, we write Z1
σ(A,E) for the set of all σ-derivations

from A into a Banach A-bimodule E.
Let A be a σ-weakly amenable Banach algebra, and σ ∈ Hom(A) such that σ(A) is a dense subset of A. A

more or less verbatim of the classic argument, shows that A2 = A (see [6, Theorem 6] for details).

Proposition 3.1. Let A be a commutative Banach algebra and let σ ∈ Hom(A) with a dense range. If A is σ-weakly
amenable, then Z1

σ(A,E) = 0 for each Banach A-module E.

Proof. Assume towards a contradiction that there is a nonzero element D ∈ Z1
σ(A,E). Since A2 = A, there

exists a0 ∈ A with D(a2
0) , 0. Hence σ(a0) · Da0 , 0 and so there exists λ ∈ E∗ with 〈σ(a0) · Da0, λ〉 = 1.

Consider Rλ ∈ AB(E,A∗) such that 〈a,Rλx〉 = 〈a · x, λ〉, for a ∈ A and x ∈ E [2, Proposition 2.6.6]. It is not hard
to see that Rλ ◦D ∈ Z1

σ(A,A∗). Then we have

〈σ(a0), (Rλ ◦D)(a0)〉 = 〈σ(a0) ·Da0, λ〉 = 1

so that Rλ ◦D , 0, a contradiction of the fact that A is σ-weakly amenable.

Proposition 3.2. Let X be a compact Hausdorff space and let A be a commutative Banach algebra with a bounded
net (ev) for which (σ(ev)) is a bounded approximate identity for A, where σ belongs to Hom(A) with a dense range. If
A is σ-weakly amenable, then C(X,A) is σ̃-weakly amenable.

Proof. Using the map a 7−→ 1a, we may consider A as a closed subalgebra of the commutative Banach
algebra C(X,A). Suppose that D : C(X,A) −→ C(X,A)∗ is a σ̃-derivation. Notice that C(X,A) is naturally a
commutative A-bimodule with actions a . f (x) = f . a(x) := a f (x), (a ∈ A, f ∈ C(X,A), x ∈ X). We also note
that σ̃ = σ on A. Therefore D |A: A −→ C(X,A)∗ is a σ-derivation and then, by Proposition 3.1, D |A= 0.
On the other hand, (σ(ev)) is also a bounded approximate identity for C(X,A) and wk∗-lim D(σ(ev)) = 0. An
argument similar to that in the proof of [2, Proposition 4.1] shows that wk∗-lim D( fσ(ev)) exists for each
f ∈ C(X). So we may define D̃ : C(X) −→ C(X,A)∗ via D̃( f ) = wk∗ − limv D( fσ(ev)). Clearly C(X,A) is a
commutative C(X)-bimodule. Then

D( f1σ(ev)) = wk∗ − lim D( f1σ(eµ)σ(ev))) = wk∗ − lim D( fσ(eµ)1σ(ev)))
= wk∗ − lim D( fσ(eµ)) . σ̃(1σ(ev)) + σ̃( fσ(eµ)) . D(1σ(ev))

= D̃( f ) . σ̃(1σ(ev)) + f . D(1σ(ev))

for f , 1 ∈ C(X). Taking wk∗-limit in v, we get

D̃( f1) = D̃( f ) . 1 + f . D̃(1) ( f , 1 ∈ C(X)).

Hence D̃ is a derivation on amenable C(X). Therefore D̃ = 0, and then

D( fσ(a)) = D̃( f ) · σ(a) + f · D̃(σ(a)) = 0 (a ∈ A, f ∈ C(X)).

Whence D = 0 on the linear span of { fσ(a) : f ∈ C(X), a ∈ A} which is dense in the linear span of
{ f a : f ∈ C(X), a ∈ A}, by the density of range of σ. The latter is itself dense in C(X,A) by [2], so that D = 0
on the whole C(X,A).

In Proposition 3.2, as an special case, we may suppose that (ev) is itself a bounded approximate identity for
A. Indeed if (ev) is a bounded approximate identity for A, then the density of the range of σ shows that
(σ(ev)) is still a bounded approximate identity for A.

The following was proved in [9, Proposition 18], and so we omit its proof.

Proposition 3.3. Suppose that σ ∈ Hom(A) and τ ∈ Hom(B), where A and B are Banach algebras such that A is
commutative and σ has a dense range. Suppose that φ : A −→ B is a continuous epimorphism for which τφ = φσ. If
A is σ-weakly amenable, then B is τ-weakly amenable.



S. Ghoraishi et al. / Filomat 32:8 (2018), 2701–2706 2705

The following is the converse of Proposition 3.2.

Theorem 3.4. Let X be a compact Hausdorff space, let A be a commutative Banach algebra and let τ ∈ Hom(C(X,A))
with a dense range such that Tx0τ = τ̃x0 Tx0 , for some x0 ∈ X. If C(X,A) is τ-weakly amenable, then A is τ̃x0 -weakly
amenable.

Proof. We use Proposition 3.3.

We extend [1, Theorem 1.8.4] as follows, where the proof reads somehow the same lines.

Proposition 3.5. Let I be an ideal in a commutative algebra A, E be an A-module and D : I −→ E be a σ-derivation.
Then the map

D̃ : I × A −→ E, D̃(a, b) := D(ab) − σ(b) ·D(a)

is bilinear such that
(i) D̃(a, b) = σ(a) ·D(b) (a, b ∈ I);
(ii) for each a ∈ I2, the map b 7−→ D̃(a, b), A −→ E is a σ-derivation.

Proof. We only prove the clause (ii). For a1, a2 ∈ I, and b1, b2 ∈ A, we have

D̃(a1a2, b1b2) = D(a1a2b1b2) − σ(b1b2) ·D(a1a2)
= σ(a1b1) ·D(a2b2) + σ(a2b2) ·D(a1b1) − σ(b1b2) ·D(a1a2)
= σ(b1) · [σ(a1) ·D(a2b2) − σ(b2)σ(a1) ·D(a2)]
+ σ(b2) · [σ(b1a1) ·D(a2) + σ(a2) ·D(a1b1) − σ(b1) ·D(a1a2)]
= σ(b1) · [D(a1a2b2) − σ(a2b2) ·D(a1) − σ(b2a1) ·D(a2)]
+ σ(b2) · [D(a1a2b1) − σ(b1) ·D(a1a2)]
= σ(b1) · [D(a1a2b2) − σ(b2) ·D(a1a2)]
+ σ(b2) · [D(a1a2b1) − σ(b1) ·D(a1a2)]

= σ(b1) · D̃(a1a2, b2) + σ(b2) · D̃(a1a2, b1)

as required.

The following is an analogue of [1, Lemma 2.8.68].

Lemma 3.6. Let A be a σ-weakly amenable commutative Banach algebra, I be a closed ideal in A, and E be a Banach
A-module. Take σ ∈ Hom(A) with a dense range such that σ(I) ⊆ I. Then D |I4= 0 for each D ∈ Z1

σ(I,E).

Proof. We first observe that F := AB(I,E) is a Banach A-module for the action (a · T)(b) = T(ab), (a ∈ A, b ∈ I).
Then we notice that the map j : E −→ F with j(x)(a) = a · x, (a ∈ I, x ∈ E) belongs to AB(E,F). Whence
j ◦D ∈ Z1

σ(I,E). Clearly the map

D̃ : I × A→ F, (a, b) 7−→ ( j ◦D)(a, b) − σ(b) · ( j ◦D)(a)

is bilinear. Therefore D̃(a, b) = σ (a) · ( j ◦D)(b), by Proposition 3.5 (i), for a, b ∈ I. Take a ∈ I2. By Proposition
3.5 (ii), the map A −→ F, b 7−→ D̃(a, b), is a σ-derivation. It follows from Proposition 3.1, that this map is
zero and so D̃(I2

× A) = 0. Hence, for a ∈ I2 and b, c ∈ I, we have

σ(a)c ·D(b) = ( j ◦D)(b)(σ(a)c) = (σ(a) · ( j ◦D)(b))(c) = D̃(a, b)(c) = 0.

In particular, choosing c ∈ σ(I), we may see that σ(I3) ·D(I) = 0, and whence D | I4 = 0.

Proposition 3.7. Let A be aσ-weakly amenable commutative Banach algebra, I be a closed ideal in A, andσ ∈ Hom(A)
with a dense range such that σ(I) = I. Then I is σ-weakly amenable if and only if I2 = I.
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Proof. If I is σ-weakly amenable, then I2 = I by [9, Theorem 6].
Conversely if I2 = I, then I4 = I. Suppose that D ∈ Z1

σ(I, I∗). Then by Lemma 3.6, D |I4= 0 so that D = 0.
Hence I is σ-weakly amenable.

Lemma 3.8. Let X be a compact Hausdorff space, let A be a Banach algebra and let σ ∈ Hom(A). If σ has a dense
range, then σ̃ has a dense range as well.

Proof. Take f ∈ C(X) and a ∈ A and put h := f a ∈ C(X,A). By the assumption, there exists a sequence
(an) ⊆ A such that limn σ(an) = a. Define hn := f an, (n = 1, 2, ...). Then it is easy to verify that limn σ̃(hn) = h.
This completes the proof, since the set of all linear combinations of elements of C(X,A) of the form f a
( f ∈ C(X), a ∈ A) is dense in C(X,A) [2].

We recall that a homomorphism σ ∈ Hom(A) is extended to a homomorphism σ] ∈ Hom(A]) through
σ](a + λe) = σ(a) + λe (a ∈ A, λ ∈ C), where e is the identity of A], the unitization of A.

Now, we are ready to prove our last goal.

Theorem 3.9. Let X be a compact Hausdorff space, let A be a commutative Banach algebra and let σ ∈ Hom(A) with
a dense range. If A is σ-weakly amenable, then C(X,A) is σ̃-weakly amenable.

Proof. Suppose that A is σ-weakly amenable. By [6, Theorem 12], A] is σ]-weakly amenable. Applying
Proposition 3.2, we see that C(X,A]) is σ̃]-weakly amenable. Our assumptions together with [6, Theorem
6], imply that A2 is dense in A. We learn from the proof of [8, Theorem 1] that C(X,A)2 is dense in C(X,A),
and also C(X,A) is a closed ideal of C(X,A]). Next, it is easy to verify that σ̃]( f ) = σ̃( f ), for all f ∈ C(X,A).
Hence

σ̃](C(X,A)) = σ̃(C(X,A)) = C(X,A)

by Lemma 3.8. Now, an application of Proposition 3.7 yields that C(X,A) is σ̃-weakly amenable.
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