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Abstract. In this paper, we introduce the concept of extended partial b-metric space. We demonstrate a
fundamental lemma for the convergence of sequences in such spaces. Then we prove some fixed point
results for weakly contractive mappings in the setup of ordered extended partial b-metric spaces. An
example is given to verify the effectiveness and applicability of our main results. An application of these
results to Volterra-type integral equations is provided at the end.

1. Introduction

The concept of a b-metric space was introduced by Bakhtin [3] and then extensively used by Czerwik [4, 5]
and the others.

Definition 1.1. [4] Let X be a (nonempty) set and s ≥ 1 be a given real number. A function d : X × X → R+ is a
b-metric on X if, for all x, y, z ∈ X, the following conditions hold:

(b1) d(x, y) = 0 if and only if x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space.

On the other hand, Matthews introduced in 1994 the notion of a partial metric space.

Definition 1.2. [8] A partial metric on a nonempty set X is a mapping p : X×X→ R+ such that for all x, y, z ∈ X:

(p1) x = y if and only if p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
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In this case, (X, p) is called a partial metric space.

As a generalization and unification of partial metric and b-metric spaces, Shukla [14] introduced the
concept of partial b-metric space. In the following definition, Mustafa et al. [9] modified the concept of
partial b-metric space in the sense of Shukla in order to obtain that each partial b-metric pb generates a
b-metric dpb .

Definition 1.3. [9] Let X be a (nonempty) set and s ≥ 1 be a given real number. A function pb : X × X → R+ is a
partial b-metric if, for all x, y, z ∈ X, the following conditions are satisfied:

(pb1) x = y⇐⇒ pb(x, x) = pb(x, y) = pb(y, y),

(pb2) pb(x, x) ≤ pb(x, y),

(pb3) pb(x, y) = pb(y, x),

(pb4) pb(x, y) ≤ s(pb(x, z) + pb(z, y) − pb(z, z)) + ( 1−s
2 )(pb(x, x) + pb(y, y)).

The pair (X, pb) is called a partial b-metric space.

It is clear that every partial metric space is a partial b-metric space with coefficient s = 1 and every
b-metric space is a partial b-metric space with the same coefficient and zero self-distance. However, the
converses of these facts do not hold.

In [12], Parvaneh introduced the following notion which he called p-metric space.

Definition 1.4. Let X be a (nonempty) set. A function d : X × X → R+ is a p-metric if there exists a strictly
increasing continuous function Ω : [0,∞) → [0,∞) with t ≤ Ω(t) for t ∈ [0,+∞), such that for all x, y, z ∈ X, the
following conditions hold:

(1) d(x, y) = 0 iff x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) ≤ Ω(d(x, y) + d(y, z)).

In this case, the pair (X, d) is called a p-metric space, or, an extended b-metric space.

It should be noted that the class of p-metric spaces is considerably larger than the class of b-metric spaces,
since a b-metric is a p-metric with Ω(t) = st, while a metric is a p-metric, with Ω(t) = t.

Fixed point theorems in partially ordered metric spaces were firstly obtained in 2004 by Ran and Reurings
[13], and by Nieto and Lopez [10]. Later, many researchers used this approach.

In this paper, we introduce the notion of extended partial b-metric space (which we also call partial
p-metric space). We demonstrate a fundamental lemma for the convergence of sequences in such spaces.
Further, we prove some fixed point results for weakly contractive mappings in the setup of ordered extended
partial b-metric spaces. An example is provided to verify the effectiveness and applicability of our main
results. An application of these results to Volterra-type integral equations is given at the end.

2. Definition and basic properties of partial p-metric spaces

Definition 2.1. Let X be a (nonempty) set and Ω : [0,∞)→ [0,∞) be a strictly increasing continuous function with
Ω−1(t) ≤ t ≤ Ω(t) for t ∈ [0,+∞). A function pp : X × X → R+ is called an extended partial b-metric, or a partial
p-metric if, for all x, y, z ∈ X, the following conditions are satisfied:

(pp1) x = y⇐⇒ pp(x, x) = pp(x, y) = pp(y, y),

(pp2) pp(x, x) ≤ pp(x, y),
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(pp3) pp(x, y) = pp(y, x),

(pp4) pp(x, y) − pp(x, x) ≤ Ω(pp(x, z) + pp(z, y) − pp(z, z) − pp(x, x)).

The pair (X, pp) is called a partial p-metric space, or an extended partial b-metric space.

Note that condition (pp4), together with (pp3), implies that also the following holds for all x, y, z,∈ X:

pp(x, y) − pp(y, y) ≤ Ω(pp(x, z) + pp(z, y) − pp(z, z) − pp(y, y)).

It should be noted that the class of partial p-metric spaces is considerably larger than the class of partial
b-metric spaces, since a partial b-metric is a partial p-metric with Ω(t) = st, while a partial metric is a partial
p-metric, with Ω(t) = t. We present examples which show that a partial p-metric on X might be neither a
partial metric, nor a partial b-metric on X.

Example 2.2. Let (X, d) be a metric space and pp(x, y) = 1 + ξ
(
d(x, y)

)
where ξ : [0,+∞) → [0,+∞) is a strictly

increasing continuous function with t ≤ ξ(t) for t ∈ [0,+∞) and ξ(0) = 0. We will show that pp is a partial p-metric
with Ω(t) = ξ(t).

Obviously, conditions (pp1)–(pp3) of Definition 2.1 are satisfied. On the other hand, for each x, y, z ∈ X we obtain

pp(x, y) − pp(x, x) = 1 + ξ
(
d(x, y)

)
− 1

≤ ξ
(
d(x, z) + d(z, y)

)
≤ ξ

(
ξ
(
d(x, z)

)
+ ξ

(
d(z, y)

))
= ξ

(
1 + ξ

(
d(x, z)

)
+ 1 + ξ

(
d(z, y)

)
− 1 − 1

)
= Ω

(
pp(x, z) + pp(z, y) − pp(z, z) − pp(x, x)

)
.

Hence, condition (pp4) of Definition 2.1 is fulfilled and pp is a partial p-metric on X.
In particular, one can take ξ(t) = et

− 1. Then, pp(x, y) = ed(x,y) is a partial p-metric with Ω(t) = et
− 1.

Example 2.3. Let (X, d) be a metric space and pp(x, y) = 1+sinh[d(x, y)2]. We will show that pp is a partial p-metric
with Ω(t) = 2 cosh t sinh t = sinh 2t.

Obviously, conditions (pp1)–(pp3) of Definition 2.1 are satisfied. Using the elementary inequality (a + b)2
≤

2(a2 + b2) for all a, b ≥ 0, we obtain that, for each x, y, z ∈ X, the following holds

pp(x, y) − pp(x, x) = 1 + sinh
(
d(x, y)2

)
− 1

≤ sinh
[(

d(x, z) + d(z, y)
)2]
≤ sinh

[
2
(
d(x, z)2 + d(z, y)2

)]
≤ 2 sinh

[
sinh d(x, z)2 + sinh d(z, y)2

]
cosh

[
sinh d(x, z)2 + sinh d(z, y)2

]
= 2 sinh[1 + sinh d(x, z)2 + 1 + sinh d(z, y)2

− 1 − 1]

× cosh[1 + sinh d(x, z)2 + 1 + sinh d(z, y)2
− 1 − 1]

= Ω(pp(x, z) + pp(z, y) − pp(z, z) − pp(x, x)).

Hence, condition (pp4) of Definition 2.1 is fulfilled and pp is a partial p-metric on X.
Note that (X, pp) is not necessarily a partial metric space. For example, if X = R is the set of real numbers,

d(x, y) = |x− y|, then pp(x, y) = 1 + sinh(x− y)2 is a partial p-metric on X with Ω(t) = sinh 2t, but it is not a partial
metric on X. Indeed, the ordinary (partial) triangle inequality does not hold. To see this, let x = 2, y = 5 and z = 5

2 .
Then, pp(2, 5) ≈ 4052.54, pp(2, 5

2 ) ≈ 1.25 and pp( 5
2 , 5) ≈ 260.01, hence, pp(2, 5) � pp(2, 5

2 ) + pp( 5
2 , 5) − pp( 5

2 ,
5
2 ).

Also, pp is not a partial b-metric. Indeed, if pp were partial b-metric, then there would exist fixed s ≥ 1 for which
pp(x, y) ≤ s(pp(x, z) + pp(z, y) − pp(z, z)) + ( 1−s

2 )(pp(x, x) + pp(y, y)) for all x, y, z ≥ 0. However, taking y = 0 and
z = 1, we would have pp(x, 0) ≤ s(pp(x, 1)+1+sinh 1−1)+ ( 1−s

2 )(1+1). i.e., sinh x2
≤ s(1+sinh(x−1)2 +sinh 1)−s

which cannot hold for fixed s when x→ +∞.
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Recall that a real function f is called super-additive if

f (s + t) ≥ f (s) + f (t)

for all t, s ∈ D( f ). If f is a super-additive function, and if 0 ∈ D( f ), then f (0) ≤ 0. Indeed, super-additivity
of f yields that f (s) ≤ f (s + t) − f (t) for all s, t ∈ D( f ). Taking s = 0 one has f (0) ≤ f (0 + t) − f (t) = 0. Also, it
is easy to see that 2 f (t) ≤ f (2t) for each t ∈ D( f ).

Proposition 2.4. Every partial p-metric pp with a super-additive function Ω, defines a p-metric dpp , where

dpp (x, y) = 2pp(x, y) − pp(x, x) − pp(y, y)

for all x, y ∈ X.

Proof. Let x, y, z ∈ X. Then we have

dpp (x, y) = 2pp(x, y) − pp(x, x) − pp(y, y)

= pp(x, y) − pp(x, x) + pp(x, y) − pp(y, y)
≤ Ω[pp(x, z) + pp(z, y) − pp(z, z) − pp(x, x)]

+ Ω[pp(x, z) + pp(z, y) − pp(z, z) − pp(y, y)]
≤ Ω[2pp(x, z) + 2pp(z, y) − 2pp(z, z) − pp(x, x) − pp(y, y)]
= Ω[dpp (x, z) + dpp (z, y)].

Lemma 2.5. Let (X, pp) be a partial p-metric space. Then,

(A) if pp(x, y) = 0, then x = y;

(B) if x , y, then pp(x, y) > 0.

The concepts of pp-convergence, pp-Cauchyness and pp-completeness are the same as in the setting of
a partial b-metric [9]. The following lemma shows the relationship between these concepts in two spaces
(X, pp) and (X, dpp ). The proof is similar to the ones of Lemma 2.2 in [11] and Lemma 1 in [9].

Lemma 2.6. Let (X, pp) be a partial p-metric space with super-additive function Ω.

1. A sequence {xn} is a pp-Cauchy sequence in (X, pp) if and only if it is a p-Cauchy sequence in the p-metric space
(X, dpp ).

2. The space (X, pp) is pp-complete if and only if the p-metric space (X, dpp ) is p-complete. Moreover, limn→∞ dpp (x, xn) =
0 if and only if

lim
n→∞

pp(x, xn) = lim
n,m→∞

pp(xn, xm) = pp(x, x).

The following useful lemma (adapted according to [2]) will be applied in proving our main results.

Lemma 2.7. Let (X, pp) be a partial p-metric space and suppose that {xn} and {yn} are convergent to x and y,
respectively. Then we have

Ω−1
(
Ω−1[pp(x, y) − pp(x, x)] − 2pp(x, x)

)
− pp(y, y)

≤ lim inf
n→∞

pp(xn, yn) ≤ lim sup
n→∞

pp(xn, yn)

≤ Ω
(
2pp(x, x) + Ω[pp(x, y) + pp(y, y)]

)
+ pp(x, x).
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In particular, if pp(x, y) = 0, then we have lim
n→∞

pp(xn, yn) = 0.
Moreover, for each z ∈ X we have

Ω−1[pp(x, z) − pp(x, x)] − pp(x, x)
≤ lim inf

n→∞
pp(xn, z) ≤ lim sup

n→∞
pp(xn, z)

≤ Ω[pp(x, x) + pp(x, z)] + pp(x, x).

In particular, if pp(x, z) = 0, then we have lim
n→∞

pp(xn, z) = 0.

Proof. Using property (pp4) of the partial p-metric space and properties of function Ω, it is easy to see that

pp(x, y) − pp(x, x) ≤ Ω(pp(x, xn) + pp(xn, y))
≤ Ω(pp(x, xn) + Ω[pp(xn, yn) + pp(yn, y)] + pp(xn, xn))

and

pp(xn, yn) − pp(xn, xn) ≤ Ω(pp(xn, x) + pp(x, yn))

≤ Ω
(
pp(xn, x) + Ω[pp(x, y) + pp(y, yn)] + pp(x, x)

)
.

Taking the lower limit as n→∞ in the first inequality one has

pp(x, y) − pp(x, x) ≤ Ω
(
pp(x, x) + Ω[lim inf

n→∞
pp(xn, yn) + pp(y, y)] + pp(x, x)

)
,

which yields that

Ω−1
[
Ω−1[pp(x, y) − pp(x, x)] − 2pp(x, x)

]
− pp(y, y) ≤ lim inf

n→∞
pp(xn, yn).

Taking the upper limit as n→∞ in the second inequality we obtain

lim sup
n→∞

pp(xn, yn) ≤ Ω
(
pp(x, x) + Ω[pp(x, y) + pp(y, y)] + pp(x, x)

)
+ pp(x, x).

If pp(x, y) = 0, then pp(x, x) = 0 and pp(y, y) = 0. Therefore, we have lim
n→∞

pp(xn, yn) = 0.
Now, suppose that {xn} is convergent to x and z ∈ X. Again, using the triangle inequality in the partial

p-metric space, it is easy to see that

pp(x, z) − pp(x, x) ≤ Ω
(
pp(x, xn) + pp(xn, z)

)
and

pp(xn, z) − pp(xn, xn) ≤ Ω
(
pp(xn, x) + pp(x, z)

)
.

Taking the lower limit as n→∞ in the first inequality one has

Ω−1[pp(x, z) − pp(x, x)] − pp(x, x) ≤ lim inf
n→∞

pp(xn, z),

and taking the upper limit as n→∞ in the second inequality we obtain

lim sup
n→∞

pp(xn, z) ≤ Ω[pp(x, x) + pp(x, z)] + pp(x, x).

A triplet (X,�, pp) will be called an ordered partial p-metric space (ordered PPMS, for short) if (X,�) is a
partially ordered set and pp is a partial p-metric on X.

Recall that a function ψ : [0,∞) → [0,∞) is called an altering distance function [7], if the following
properties are satisfied:

1. ψ is continuous and nondecreasing;
2. ψ(t) = 0 if and only if t = 0.
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3. Fixed point results in ordered partial p-metric spaces

Definition 3.1. Let (X,�, pp) be an ordered partial p-metric space with function Ω and let f : X→ X be a mapping.
Set

M f (x, y) = max
{
pp(x, y), pp(x, f x) + pp(y, f y), pp(x, f y) − pp(x, x), pp(y, f x)

}
.

We say that f is a (ψ,ϕ)Ω-weakly contractive mapping, if there exist two altering distance functions ψ and ϕ such
that

ψ
(
Ω2(2pp( f x, f y))

)
≤ ψ(M f (x, y)) − ϕ(M f (x, y)) (1)

for all comparable elements x, y ∈ X.

First, we prove the following result.

Theorem 3.2. Let (X,�, pp) be an ordered pp-complete PPMS with super-additive function Ω. Let f : X → X be
a non-decreasing continuous mapping and suppose that f is a (ψ,ϕ)Ω-weakly contractive mapping. If there exists
x0 ∈ X such that x0 � f x0, then f has a fixed point.

Proof. Let x0 ∈ X be such that x0 � f x0. Let (xn) be the sequence in X such that xn+1 = f xn, for all n ≥ 0.
Since x0 � f x0 = x1 and f is non-decreasing, we have x1 = f x0 � x2 = f x1. By induction, we have

x0 � x1 � · · · � xn � xn+1 � · · · .

If xn = xn+1, for some n ∈ N, then xn = f xn and hence xn is a fixed point of f . So, we may assume that
xn , xn+1, for all n ∈N. By (1), we have

ψ(Ω2(2pp(xn, xn+1))) = ψ(Ω2(2pp( f xn−1, f xn)))

≤ ψ(M f (xn−1, xn)) − ϕ(M f (xn−1, xn)), (2)

where

M f (xn−1, xn) = max
{
pp(xn−1, xn), pp(xn−1, f xn−1) + pp(xn, f xn),

pp(xn−1, f xn) − pp(xn−1, xn−1), pp(xn, f xn−1)
}

= max
{
pp(xn−1, xn), pp(xn−1, xn) + pp(xn, xn+1),

pp(xn−1, xn+1) − pp(xn−1, xn−1), pp(xn, xn)
}

≤ max
{
pp(xn−1, xn) + pp(xn, xn+1),

Ω(pp(xn−1, xn) + pp(xn, xn+1)), pp(xn, xn)
}

= Ω(pp(xn−1, xn) + pp(xn, xn+1)). (3)

From (2) and (3) and the properties of ψ and ϕ, we get

ψ(Ω2(2pp(xn, xn+1))) ≤ ψ
(
Ω(pp(xn−1, xn) + pp(xn, xn+1))

)
− ϕ

(
max

{
pp(xn−1, xn), pp(xn−1, xn) + pp(xn, xn+1),

pp(xn−1, xn+1) − pp(xn−1, xn−1), pp(xn, xn)
})

< ψ
(
Ω(pp(xn−1, xn) + pp(xn, xn+1))

)
. (4)
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By the properties of functions ψ and Ω, it follows that

2pp(xn, xn+1) ≤ Ω(2pp(xn, xn+1)) < pp(xn−1, xn) + pp(xn, xn+1),

i.e.

pp(xn, xn+1) < pp(xn−1, xn).

Therefore, {pp(xn, xn+1) : n ∈ N ∪ {0}} is a decreasing sequence of positive numbers. So, there exists r ≥ 0
such that

lim
n→∞

pp(xn, xn+1) = r.

Letting n→∞ in (4), we get

ψ(Ω2(2r)) ≤ ψ(Ω(2r))

− ϕ
(

max
{
r, r + r, lim inf

n→∞
[pp(xn−1, xn+1) − pp(xn−1, xn−1)], lim inf

n→∞
pp(xn, xn)

})
≤ ψ(Ω(2r)),

which is only possible if Ω(2r) ≤ 2r. Thus, according to the assumptions on Ω, we have

r = lim
n→∞

pp(xn, xn) = lim
n→∞

pp(xn, xn+1) = 0. (5)

Next, we show that {xn} is a pp-Cauchy sequence in X. For this, we have to show that {xn} is a p-Cauchy
sequence in (X, dpp ) (see Lemma 2.6). Suppose the contrary, that is, {xn} is not a p-Cauchy sequence. Then
there exists ε > 0 for which we can find two subsequences {xmi } and {xni } of {xn} such that ni is the smallest
index for which

ni > mi > i and dpp (xmi , xni ) ≥ ε. (6)

This means that

dpp (xmi , xni−1) < ε. (7)

From (6) and using the triangular inequality, we get

ε ≤ dpp (xmi , xni ) ≤ Ω
(
dpp (xmi , xni−1) + dpp (xni−1, xni )

)
. (8)

Taking the upper limit as i→∞, and using (7), we get

Ω−1(ε) ≤ lim sup
i→∞

dpp (xmi , xni−1) ≤ ε. (9)

Also, from (8) and (9),

ε ≤ lim inf
i→∞

dpp (xmi , xni ) ≤ lim sup
i→∞

dpp (xmi , xni ) ≤ Ω(ε). (10)

Further,

dpp (xmi , xni ) ≤ Ω
(
dpp (xmi , xmi+1) + dpp (xmi+1, xni )

)
and hence,

lim sup
i→∞

dpp (xmi+1, xni ) ≥ Ω−1(ε). (11)
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Finally,

dpp (xmi+1, xni−1) ≤ Ω
(
dpp (xmi+1, xmi ) + dpp (xmi , xni−1)

)
and hence,

lim sup
i→∞

dpp (xmi+1, xni−1) ≤ Ω(ε). (12)

On the other hand, by the definition of dpp and (5)

lim sup
i→∞

dpp (xmi , xni−1) = 2 lim sup
i→∞

pp(xmi , xni−1). (13)

Hence, by (7), (9) and (13),

Ω−1(ε)
2

≤ lim sup
i→∞

pp(xmi , xni−1) ≤
ε
2
. (14)

Similarly, according to (10)–(12) and (13)

ε
2
≤ lim inf

i→∞
pp(xmi , xni ) ≤ lim sup

i→∞
pp(xmi , xni ) ≤

Ω(ε)
2
. (15)

lim sup
i→∞

pp(xmi+1, xni ) ≥
Ω−1(ε)

2
. (16)

lim sup
i→∞

pp(xmi+1, xni−1) ≤
Ω(ε)

2
. (17)

From (1), we have

ψ(Ω2(2pp(xmi+1, xni ))) = ψ(Ω2(2pp( f xmi , f xni−1)))

≤ ψ(M f (xmi , xni−1)) − ϕ(M f (xmi , xni−1)), (18)

where

M f (xmi , xni−1) = max
{
pp(xmi , xni−1), pp(xmi , f xmi ) + pp(xni−1, f xni−1),

pp(xmi , f xni−1) − pp(xmi , xmi ), pp( f xmi , xni−1)
}

= max
{
pp(xmi , xni−1), pp(xmi , xmi+1) + pp(xni−1, xni ),

pp(xmi , xni ) − pp(xmi , xmi ), pp(xmi+1, xni−1)
}
. (19)

Taking the upper limit as i→∞ in (19) and using (5), (14), (16) and (17), we get

lim sup
i→∞

M f (xmi , xni−1) = max
{

lim sup
i→∞

pp(xmi , xni−1), 0 + 0,

lim sup
i→∞

pp(xmi , xni ), lim sup
i→∞

pp(xmi+1, xni−1)
}

≤ max
{
ε
2
,
Ω(ε)

2
,
Ω(ε)

2

}
=

Ω(ε)
2
. (20)

Now, taking the upper limit as i→∞ in (18) and using (14) and (20), we have

ψ
(Ω(ε)

2

)
≤ ψ

(
Ω(ε)

)
≤ ψ

(
Ω2(2 lim sup

i→∞
pp(xmi+1, xni ))

)
≤ ψ(lim sup

i→∞
M f (xmi , xni−1)) − lim inf

i→∞
ϕ(M f (xmi , xni−1))

≤ ψ
(Ω(ε)

2

)
− ϕ

(
lim inf

i→∞
M f (xmi , xni−1)

)
,
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which further implies that

ϕ
(

lim inf
i→∞

M f (xmi , xni−1)
)

= 0,

so lim inf
i→∞

M f (xmi , xni−1) = 0, a contradiction with (19) and (15).

Thus, we have proved that {xn} is a p-Cauchy sequence in the p-metric space (X, dpp ). Since (X, pp) is
pp-complete, then from Lemma 2.6, (X, dpp ) is a p-complete p-metric space. Therefore, the sequence {xn}

converges to some z ∈ X, that is, limn→∞ dpp (xn, z) = 0. Again, from Lemma 2.6,

lim
n→∞

pp(z, xn) = lim
n→∞

pp(xn, xn) = pp(z, z).

On the other hand, (5) yields that

lim
n→∞

pp(z, xn) = lim
n→∞

pp(xn, xn) = pp(z, z) = 0.

Using the triangular inequality, we get

pp(z, f z) − pp(z, z) ≤ Ω
(
pp(z, f xn) + pp( f xn, f z)

)
.

Letting n→∞ and using the continuity of f and Ω, and pp(z, z) = 0, we get

pp(z, f z) ≤ Ω
(

lim
n→∞

pp(z, xn+1) + lim
n→∞

pp( f xn, f z)
)

= Ω(pp( f z, f z)). (21)

Note that from (1), we have

ψ
(
Ω(2pp( f z, f z))

)
≤ ψ

(
Ω2(2pp( f z, f z))

)
≤ ψ(M f (z, z)) − ϕ(M f (z, z)), (22)

where

M f (z, z) = max
{
pp(z, z), pp(z, f z) + pp(z, f z), pp(z, f z) − pp(z, z), pp(z, f z)

}
= 2pp( f z, z).

Suppose that f z , z, i.e., pp( f z, z) > 0. Then, by the properties of ϕ, we get from (22)

ψ(Ω(2pp( f z, f z))) < ψ(2pp( f z, z)).

Now, using properties of ψ and super-additivity of Ω, we have

2Ω(pp( f z, f z)) ≤ Ω(2pp( f z, f z)) < 2pp( f z, z).

Finally, (21) implies that 2Ω(pp( f z, f z)) < 2Ω(pp( f z, f z)), a contradiction. Hence, we have pp( f z, z) = 0, and
so f z = z. Thus, z is a fixed point of f .

An ordered PPMS (X,�, pp) is said to have sequential limit comparison (s.l.c.) property if for every
nondecreasing sequence {xn} in X, the convergence of {xn} to some x ∈ X yields that xn � x for all n ∈N. We
will show that the continuity of f in Theorem 3.2 can be replaced by s.l.c. property of (X,�, pp).

Theorem 3.3. Under the hypotheses of Theorem 3.2, without the continuity assumption on f , assume that (X,�, pp)
has the s.l.c. property. Then f has a fixed point in X.
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Proof. Following similar arguments as those given in the proof of Theorem 3.2, we construct a non-
decreasing sequence {xn} in X such that xn → z, for some z ∈ X. Using the s.l.c. property on X, we
have xn � z, for all n ∈N. Now, we show that f z = z. By (1), we have

ψ
(
Ω2(2pp(xn+1, f z))

)
= ψ

(
Ω2(2pp( f xn, f z))

)
≤ ψ(M f (xn, z)) − ϕ(M f (xn, z)), (23)

where

M f (xn, z)

= max
{
pp(xn, z), pp(xn, f xn) + pp(z, f z), pp(xn, f z) − pp(xn, xn), pp( f xn, z)

}
= max

{
pp(xn, z), pp(xn, xn+1) + pp(z, f z), pp(xn, f z) − pp(xn, xn), pp(xn+1, z)

}
. (24)

Letting n→∞ in (24) and using Lemma 2.7, we get

Ω−1[pp(z, f z)] = min
{
pp(z, f z),Ω−1[pp(z, f z) − pp(z, z)] − pp(z, z)

}
≤ lim inf

i→∞
M f (xn, z) ≤ lim sup

i→∞
M f (xn, z)

≤ max
{
pp(z, f z),Ω[pp(z, z) + pp(z, f z)] + pp(z, z)

}
= Ω[pp(z, f z)]. (25)

Again, taking the upper limit as n→∞ in (23) and using Lemma 2.7 and (25) we get

ψ(Ω2[Ω−1[pp(z, f z)]]) ≤ ψ(Ω2[lim sup
n→∞

pp(xn+1, f z)])

≤ ψ(Ω2[2 lim sup
n→∞

pp(xn+1, f z)])

≤ ψ(lim sup
n→∞

M f (xn, z)) − lim inf
n→∞

ϕ(M f (xn, z))

≤ ψ(Ω[pp(z, f z)]) − ϕ(lim inf
n→∞

M f (xn, z)).

Therefore, ϕ(lim inf
n→∞

M f (xn, z)) ≤ 0, i.e., lim inf
n→∞

M f (xn, z) = 0. Thus, from (25) we get f z = z and hence z is a

fixed point of f .

Corollary 3.4. Let (X,�, pp) be a pp-complete ordered PPMS with super-additive function Ω, and let f : X→ X be
a non-decreasing mapping. Let f be continuous, or (X,�, pp) possesses the s.l.c. property. Suppose that there exists
k ∈ [0, 1) such that

Ω2(2pp( f x, f y)) ≤ k max
{
pp(x, y), pp(x, f x) + pp(y, f y), pp(x, f y) − pp(x, x), pp(y, f x)

}
,

for all comparable elements x, y ∈ X. If there exists x0 ∈ X such that x0 � f x0, then f has a fixed point.

Proof. Follows from Theorems 3.2 and 3.3 by taking ψ(t) = t and ϕ(t) = (1 − k)t, for all t ∈ [0,+∞).

Corollary 3.5. Let (X,�, pp) be a pp-complete ordered PPMS with super-additive function Ω, and let f : X→ X be
a non-decreasing mapping. Let f be continuous, or (X,�, pp) possesses the s.l.c. property. Suppose that there exist
coefficients α, β, γ, δ ≥ 0 with α + β + γ + δ ∈ [0, 1) such that

Ω2(2pp( f x, f y)) ≤ αpp(x, y) + β[pp(x, f x) + pp(y, f y)] + γ[pp(x, f y) − pp(x, x)] + δpp(y, f x),

for all comparable elements x, y ∈ X. If there exists x0 ∈ X such that x0 � f x0, then f has a fixed point.
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Taking pp(x, y) = 1 + sinh(d(x, y)2) where (X,�, d) is a complete ordered metric space and according to
Example 2.3 and Corollary 3.6 we have the following result.

Corollary 3.6. Let (X,�, d) be a complete ordered metric space and let f : X→ X be a non-decreasing mapping. Let
f be continuous, or (X,�, d) possesses the s.l.c. property. Suppose that there exists a coefficient α ∈ [0, 1) such that

sinh
[
2 sinh

[
4 + 4 sinh(d( f x, f y)2)

]]
≤ α

[
1 + sinh(d(x, y)2)

]
,

for all comparable elements x, y ∈ X. If there exists x0 ∈ X such that x0 � f x0, then f has a fixed point.

Remark 3.7. In Theorems 3.2 and 3.3, it can be proved in a standard way that f has a unique fixed point provided
that all fixed points of f are comparable.

The usability of these results is demonstrated by the following example.

Example 3.8. Let X = {0, 1
2 , 1,

3
2 , 2} be equipped with the following partial order �:

�:= {(0, 0), ( 1
2 ,

1
2 ), (1, 1), ( 3

2 ,
3
2 ), (2, 1), (2, 2)}.

Define a partial p-metric pp : X × X→ R+ by

pp(x, y) =

0, if x = y,
1 + sinh[(x + y)2], if x , y.

It is easy to see that (X, pp) is a pp-complete PPMS, with Ω(t) = sinh 2t (which is super-additive).
Define a self-map f by

f =

(
0 1

2 1 3
2 2

0 1 1 1
2 1

)
.

We see that f is a non-decreasing mapping and that f is continuous.
Define ψ,ϕ : [0,∞) → [0,∞) by ψ(t) =

3√

t2 and ϕ(t) = 1
3

4√

t3. In order to check that f is a (ψ,ϕ)Ω-weakly
contractive mapping, only the cases x = 1, y = 2 and x = 1, y = 2 are nontrivial. Then,

M f (1, 2) = max
{
pp(1, 2), pp(1, f 1) + pp(2, f 2), pp(1, f 2) − pp(1, 1), pp(2, f 1)

}
= max

{
pp(1, 2), pp(1, 1) + pp(2, 1), 0, pp(2, 1)

}
= pp(1, 1) + pp(2, 1)
= 1 + sinh 9 ≈ 4052.54

= M f (2, 1).

On the other hand,

ψ(Ω2(2pp( f 1, f 2))) = ψ(Ω2(2 · 0)) = ψ(sinh 2(sinh 2 · 0)) = 0
≤ 254.23 − 169.34

≈ ψ(M f (1, 2)) − ϕ(M f (1, 2)).

Thus, all the conditions of Theorem 3.2 are satisfied and hence f has a fixed point. Indeed, 0 and 1 are two fixed points
of f . Note that the set ({0, 1},�) is not well ordered (i.e., elements 0 and 1 are not comparable).
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Note that if the same example is considered in the space without order, then the contractive condition is not
satisfied. For example,

M f (0, 3
2 ) = max

{
pp(0, 3

2 ), pp(0, f 0) + pp( 3
2 , f 3

2 ), pp(0, f 3
2 ), pp( 3

2 , f 0)
}

= max
{
pp(0, 3

2 ), pp(0, 0) + pp( 3
2 ,

1
2 ), pp(0, 1

2 ), pp( 3
2 , 0)

}
= pp( 3

2 ,
1
2 ) = 1 + sinh 4 ≈ 28.29.

On the other hand,

ψ(Ω2(2pp( f 0, f 3
2 ))) = ψ(Ω2(2 · [1 + sinh 1

4 ])) ≈ ψ(95942.58) = 2095.76
� 9.28 − 4.092

≈ ψ(M f (0, 3
2 )) − ϕ(M f (0, 3

2 ))

(the same effect would be obtained with arbitrary altering distance functions ψ and ϕ).

4. Existence theorem for solutions of a Volterra-type integral equation

Fixed point theorems for monotone operators in ordered metric spaces are widely investigated and have
found various applications in differential and integral equations (see [1, 6] and references therein). In this
section, we apply our result to the existence of a solution of an integral equation. Consider the integral
equation

x(t) = p(t) +

∫ t

0
f (t, r, x(r)) dr, t ∈ I = [0,T], (26)

where p : I → R and f : I × I × R → R are given functions. The purpose of this section is to provide an
existence theorem for solutions of the equation (26) that belongs to X = C(I,R) (the set of continuous real
functions defined on I), via the result obtained in Theorem 3.3.

We endow X with the partial order � given by

x � y⇐⇒ x(t) ≤ y(t), for all t ∈ I.

For x ∈ X define
‖x‖τ = max

t∈I
|x(t)|e−τt,

where τ ≥ 1 is taken arbitrary. Notice that ‖ · ‖τ is a norm equivalent to the maximum norm and (X, ‖ · ‖τ) is
a Banach space. The metric induced by this norm is given by

dτ(x, y) = ‖x − y‖τ = max
t∈I
|x(t) − y(t)|e−τt,

for all x, y ∈ X.
Now, let ξ : [0,+∞)→ [0,+∞) be a strictly increasing continuous function with t ≤ ξ(t) and consider X

endowed with the partial p-metric given by

ρτ(x, y) = 1 + ξ
(
dτ(x, y)

)
, for x, y ∈ X

(see Example 2.2). Obviously, (X, ρτ) is pp-complete. It is easy to prove (see, e.g., [10]) that (X,�, pp) has the
s.l.c. property.

Define F : X→ X by

F(x(t)) = p(t) +

∫ T

0
f (t, r, x(r)) dr, x ∈ X, t ∈ I.

Clearly, a function u ∈ X is a solution of (26) if and only if it is a fixed point of F.
We will consider the equation (26) under the following assumptions:
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(i) p : I→ R and f : I × I ×R→ R are continuous functions.

(ii) if x � y, then
f (t, r, x(r)) ≤ f (t, r, y(r)), for all t, r ∈ I.

(iii) For all x, y ∈ X with x � y, and for all t ∈ I,

ξ2
(
2 + 2ξ

(
eτT

∫ T

0

∣∣∣∣( f (t, r, x(r)) − f (t, r, y(r))
)
e−τt

∣∣∣∣ dr
))
≤ ln(1 + dτ(x, y)).

(iv) There exists a continuous function x0 : I→ R such that

x0(t) ≤ p(t) +

∫ t

0
f (t, r, x0(r)) dr, t ∈ I.

Theorem 4.1. Under assumptions (i)–(iv), the equation (26) has a solution in X, where X = C([0,T],R).

Proof. It follows from (ii) that the mapping F is non-decreasing w.r.t. �. Now, we have, for all t ∈ I,

ξ2
(
2 + 2ξ

(∣∣∣Fx(t) − Fy(t)
∣∣∣))

≤ ξ2
(
2 + 2ξ

( ∫ T

0

∣∣∣ f (t, r, x(r)) − f (t, r, y(r))
∣∣∣ dr

))
≤ ξ2

(
2 + 2ξ

(
eτT

∫ T

0

∣∣∣( f (t, r, x(r)) − f (t, r, y(r))
)
e−τt

∣∣∣ dr
))

≤ ln(1 + dτ(x, y)) ≤ ln(1 + ξ(dτ(x, y)))

≤ ln(1 + MF(x, y)) = MF(x, y) −
(
MF(x, y) − ln(1 + MF(x, y))

)
,

where

MF(x, y) = max
{
ρτ(x, y), ρτ(x,Fx) + ρτ(y,Fy), ρτ(y,Fx) − ρτ(Fx,Fx), ρτ(x,Fy)

}
.

Hence, taking ψ(t) = t, ϕ(t) = t − ln(1 + t) and Ω = ξ, we get that

ψ(Ω2(2ρτ(Fx,Fy))) ≤ ψ(MF(x, y)) − ϕ(MF(x, y)).

Let x0 be the function appearing in assumption (iv). Then we get x0 � F(x0). Thus, all the assumptions of
Theorem 3.3 are fulfilled and we deduce the existence of u ∈ X such that u = F(u).
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