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Abstract. Following recent important results of Moudafi [Journal of Optimization Theory and Applications
150(2011), 275-283] and other related results on variational problems, we introduce a new iterative algorithm
for approximating a solution of monotone variational inclusion problem involving multi-valued mapping.
The sequence of the algorithm is proved to converge strongly in the setting of Hilbert spaces. As application,
we solved split convex optimization problems.

1. Introduction

Let H be a real Hilbert space and C be a nonempty, closed and convex subset of H. A mapping S : C→ C is
said to be

(i) nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖ ∀ x, y ∈ C,

(ii) µ-strictly pseudocontractive in the sense of Browder and Petryshyn [12] if for 0 ≤ µ < 1,

‖Sx − Sy‖2 ≤ ‖x − y‖2 + µ‖(I − S)x − (I − S)y‖2 ∀ x, y ∈ C.

A point x ∈ C is called a fixed point of S if Sx = x. The set of fixed points of S is denoted by F(S), and
it is generally known that if F(S) , ∅, then F(S) is closed and convex. For more information on strictly
pseudocontrative mappings, see [1, 12, 32, 43] and references therein.
A mapping M : H→ H is said to be
(i) monotone, if

〈Mx −My, x − y〉 ≥ 0, ∀x, y ∈ H,

(ii) α-inverse strongly monotone, if there exists a constant α > 0 such that

〈Mx −My, x − y〉 ≥ α‖Mx −My‖2, ∀x, y ∈ H,
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(iii) firmly nonexpansive, if
〈Mx −My, x − y〉 ≥ ‖Mx −My‖2, ∀x, y ∈ H,

(iv) Lipschitz, if there exists a constant L > 0 such that

||Mx −My|| ≤ L||x − y||, ∀x, y ∈ H.

Remark 1.1. [9] It is well known that M is α-inverse strongly monotone if and only if it is 1
α -Lipschitz continuous.

If M is a multivalued mapping, i.e. M : H→ 2H, then M is called monotone if

〈x − y,u − v〉 ≥ 0 ∀x, y ∈ H, u ∈M(x), v ∈M(y),

and M is maximal monotone if the graph G(M) of M defined by

G(M) =: {(x, y) ∈ H ×H : y ∈M(x)}

is not properly contained in the graph of any other monotone mapping. It is generally known that M is
maximal if and only if for (x,u) ∈ H ×H, 〈x − y,u − v〉 ≥ 0 for all (y, v) ∈ G(M) implies u ∈M(x).
The resolvent operator JM

λ associated with a mapping M and λ is the mapping JM
λ : H→ 2H defined by

JM
λ (x) = (I + λM)−1x, x ∈ H, λ > 0. (1)

It is known that if the mapping M is monotone, then JM
λ is single valued and firmly nonexpansive (see [11]).

A mapping f : C → C is said to be averaged nonexpansive if ∀x, y ∈ C, f = (1 − β)I + βS holds for a
nonexpansive operator S : C→ C and β ∈ (0, 1). The term ”averaged mapping” was coined by Biallon et al
[8]. Recall that a mapping f is firmly nonexpansive if and only if f can be expressed as f = 1

2 (I + S), where
S is nonexpansive (see [34]). Thus, we make the following remark which can be easily verified.

Remark 1.2. In a Hilbert space, f is firmly nonexpansive if and only if it is averaged with β = 1
2 .

The metric projection PC is a map defined on H onto C which assigns to each x ∈ H, the unique point in C,
denoted by PCx such that

||x − PCx|| = inf{||x − y|| : y ∈ C}.

It is well known that PCx is characterized by the inequality 〈x − PCx, z − PCx〉 ≤ 0, ∀z ∈ C and PC is a
firmly nonexpansive mapping. Thus, PC is nonexpansive. For more information on metric projections, see
[19, 24].
Recall that the normal cone of C at the point z ∈ H is defined as

NCz := {d ∈ H : 〈d, y − z〉 ≤ 0, ∀ y ∈ C} if z ∈ C and ∅, otherwise.

In 1994, Censor and Elfving [17] introduced the following Split Feasibility Problem (SFP): Find a point

x ∈ C such that Ax ∈ Q, (2)

where C and Q are nonempty closed and convex subsets of Rn and Rm respectively, and A is an m × n real
matrix. The SFP is known to have wide applications in many fields such as phase retrieval, medical image
reconstruction, signal processing, radiation therapy treatment planning, among others (for example, see
[13, 16–18] and the references therein).
Byrne [14] applied the forward-backward method, a type of projected gradient method, thus, presenting
the so-called CQ-iterative procedure for approximating a solution of (2), which he defined as

xn+1 = PC(I − γA∗(I − PQ)A)xn, n ∈N, (3)

where γ ∈ (0, 2
λ ) with λ being the spectral radius of the operator A∗A. Byrne [14] proved that the sequence

generated by Algorithm 3 converges weakly to a solution of (2).
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In 2010, Censor et al. [20] introduced a new class of problem called the Split Variational Inequality Problem
(SVIP) by combining the Variational Inequality Problem (VIP) and the SFP. They defined the SVIP as follows:
Find x∗ ∈ C such that

〈 f (x∗), x − x∗〉 ≥ 0 ∀x ∈ C, (4)

and such that y∗ = Ax∗ ∈ Q solves

〈1(y∗), y − y∗〉 ≥ 0 ∀y ∈ Q, (5)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H1 and H2 respectively,
A : H1 → H2 is a bounded linear operator, f : H1 → H1 and 1 : H2 → H2 are two given operators. If (4)
and (5) are considered separately, we have that (4) is a VIP with its solution set VIP(C, f ) and (5) is a VIP
with its solution set VIP(Q, 1). To solve the SVIP (4)-(5), Censor et al. proposed the following algorithm and
obtained a weak convergence result. For x1 ∈ H1, the sequence {xn} is generated by

xn+1 = PC(I − λ f )(xn + γA∗(PQ(I − λ1) − I)Axn),n ≥ 1, (6)

where γ ∈ (0, 1
L ) with L being the spectral radius of the operator A∗A.

Based on the work of Censor et al. [20], Moudafi [34] recently introduced and studied a new type of split
problem called Split Monotone Variational Inclusion Problem (SMVIP), which is to find

x∗ ∈ H1 such that 0 ∈ f (x∗) + M1(x∗), (7)

and such that y∗ = Ax∗ ∈ H2 solves

0 ∈ 1(y∗) + M2(y∗), (8)

where M1 : H1 → 2H1 and M2 : H2 → 2H2 are multivalued mappings, A : H1 → H2 is a bounded linear
operator, f : H1 → H1 and 1 : H2 → H2 are single valued operators. We also note that if (7) and (8)
are considered separately, we have that (7) is a Monotone Variational Inclusion Problem (MVIP) with its
solution set (M1 + f )−1(0) and (8) is a MVIP with its solution set (M2 + 1)−1(0). In [34], Moudafi proved that
x∗ ∈ (M1 + f )−1(0) if and only if x∗ = JM1

λ (I−λ f )(x∗), ∀λ > 0. It was also shown in [34] that, if f is an α-inverse
strongly monotone mapping and M is a maximal monotone mapping, then JM1

λ (I − λ f ) is averaged with
0 < λ < 2α. Thus, JM1

λ (I − λ f ) is a nonexpansive mapping with 0 < λ < 2α. In addition, (M1 + f )−1(0) is
closed and convex.
To solve the SMVIP (7)-(8), Moudafi [34] proposed the following iterative algorithm and obtained weak
convergence results: For x1 ∈ H1, the sequence {xn} is generated by

xn+1 = JM1
λ (I − λ f )(xn + γA∗(JM2

λ (I − λ1) − I)Axn), n ∈N, (9)

where γ ∈ (0, 1
L ) with L being the spectral radius of the operator A∗A.

Remark 1.3. [34] As observed by Moudafi, setting M1 = NC and M2 = NQ in SMVIP (7)-(8), where NC and NQ
are the normal cones of C and Q respectively, we recover the SVIP (4)-(5). Thus, the SMVIP can be viewed as an
important generalization of the SVIP, SFP and other related problems (see also [33]).

Moreover, MVIP is generally known to be very useful in the study of wide classes of problems. It has been
an important tools for solving problems arising from mechanics, optimization, nonlinear programming,
economics, finance, applied sciences, among others (see for example [2–4, 21, 33] and the references therein).
Very recently, Tian and Jiang [39] proposed a class of SVIP which is to find x∗ ∈ C such that

〈 f (x∗), x − x∗〉 ≥ 0 ∀x ∈ C, and such that Ax∗ ∈ F(S), (10)

where C is a nonempty, closed and convex subset of H1, A : H1 → H2 is a bounded linear operator,
f : C→ H1 is a single valued operator and S : H2 → H2 is a nonlinear mapping. To approximate solutions
of (10), Tian and Jiang [39] proposed the following iterative algorithm by combining Algorithm (6) with the
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Korpelevich’s extra-gradient method (see [27]) and Byrne’s CQ algorithm: For arbitrary x1 ∈ C, define the
sequence {xn}, {yn} and {tn} by

yn = PC(xn − γnA∗(I − S)Axn),
tn = PC(yn − λn f (yn)),
xn+1 = PC(yn − λn f (tn)),

(11)

for each n ∈N, where {γn} ⊂ [a, b] for some a, b ∈ (0, 1
||A||2 ) and {λn} ⊂ [a, b] for some c, d ∈ (0, 1

k ), S : H2 → H2

is a nonexpansive mapping and f : C → H1 is a monotone and k-Lipschitz continuous mapping. They
proved that the sequence generated by Algorithm (11) converges weakly to a solution of (10). Furthermore,
Tian and Jian [39] showed that Algorithm (11) can be used to solve the SVIP of Censor et al. [20] by setting
S = PQ(I−λ1) in Algorithm (11), since PQ(I−λ1) is a nonexpansive mapping for λ ∈ (0, 2α). For more results
on VIPs and MVIPs, see [5–7, 15, 19, 23, 26, 29, 30, 35] and the references therein.
Motivated by the works of Moudafi [34], Tian and Jiang [39], and in view of Remark 1.3, we propose an
extension of the class of SVIP studied by Tian and Jiang [39] to the following class of SMVIP: Find

x∗ ∈ H1 such that 0 ∈ f (x∗) + M(x∗), and such that Ax∗ ∈ F(S), (12)

where M : H1 → 2H1 is a multivalued mapping, A : H1 → H2 is a bounded linear operator, f : H1 → H1
is a single valued operator and S : H2 → H2 is a nonlinear mapping. Furthermore, we propose an
iterative algorithm and using the algorithm, we state and prove some strong convergence results for
the approximation of solutions of (12) and (7)-(8). Finally, we applied our results to study split convex
minimization problems. Our results extend and improve the results of Censor et al. [20], Moudafi [34], Tian
and Jiang [39], and a host of other important results.

2. Preliminaries

We state some useful results which will be needed in the proof of our main theorem.

Lemma 2.1. [22] Let H be a Hilbert space, then for all x, y ∈ H and α ∈ (0, 1), the following hold:

(i) 2〈x, y〉 = ||x||2 + ||y||2 − ||x − y||2 = ||x + y||2 − ||x||2 − ||y||2,
(ii) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.

Lemma 2.2. [40] Let H be a Hilbert space and T : H→ H be a nonlinear mapping, then the following hold.

(i) f is nonexpansive if and only if the complement I − f is 1
2 -ism.

(ii) f is ν-ism and γ > 0, then γ f is ν
γ -ism.

(iii) f is averaged if and only if the complement I − f is ν-ism for some ν > 1
2 . Indeed, for β ∈ (0, 1), f is β-averaged

if and only if I − f is 1
2β -ism.

(iv) If f1 is β1-averaged and f2 is β2-averaged, where β1, β2 ∈ (0, 1), then the composite f1 f2 is β-averaged, where
β = β1 + β2 − β1β2.

(v) If f1 and f2 are averaged and have a common fixed point, then F( f1 f2) = F( f1) ∩ F( f2).

Lemma 2.3. [37] Let H1 and H2 be real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator with A , 0,
and S : H2 → H2 be a nonexpansive mapping. Then A∗(I − S)A is 1

2‖A‖2
-ism.

Lemma 2.4. [39] Let H1 and H2 be real Hilbert spaces. Let C be a nonempty, closed and convex subset of H1.
Let S : H2 → H2 be a nonexpansive mapping and let A : H1 → H2 be a bounded linear operator. Suppose that
C ∩ A−1F(T) , ∅. Let γ > 0 and x∗ ∈ H1. Then the following are equivalent.
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(i) x∗ = PC(I − γA∗(I − S)A)x∗;

(ii) 0 ∈ A∗(I − S)Ax∗ + NCx∗;

(iii) x∗ ∈ C ∩ A−1F(S).

Lemma 2.5. [41] Let H be a real Hilbert space and S : H → H be a nonexpansive mapping with F(S) , ∅. If {xn} is
a sequence in H converging weakly to x∗ and if {(I − S)xn} converges strongly to y, then (I − S)x∗ = y.

Lemma 2.6. [28] Let M : H → 2H be a maximal monotone mapping and f : H → H be a Lipschitz continuous
mapping. Then, the mapping (M + f ) : H→ 2H is maximal monotone.

Lemma 2.7. [42] Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 − γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(i)

∑
∞

n=0γn = ∞,
(ii) lim sup

n→∞
δn ≤ 0 or

∑
∞

n=0|δnγn| < ∞.

Then lim
n→∞

an = 0.

Lemma 2.8. [43] Let H be a real Hilbert space and S : H → H be µ-strictly pseudocontractive mapping with
µ ∈ [0, 1). Let Tγ := γI + (1 − γ)S, where γ ∈ [µ, 1), then

(i) F(T) = F(Tγ),
(ii) Tγ is a nonexpansive mapping.

Lemma 2.9. [31] Let {Γn} be a sequence of real numbers that does not decrease at infinity, in the sense that there
exists a subsequence {Γn j } j≥0 of {Γn}such that

Γn j < Γn j+1 ∀ j ≥ 0.

Also consider the sequence of integers {τ(n)}n≥n0 defined by

τ(n) = max{k ≤ n | Γk < Γk+1}.

Then {Γn}n≥n0 is a nondecreasing sequence such that τ(n) → ∞, as n → 0, and for all n ≥ n0, the following two
estimates hold:

Γτ(n) ≤ Γτ(n)+1, Γn ≤ Γτ(n)+1.

3. Main Results

Proposition 3.1. Let H be a real Hilbert space. Let M : H → 2H be a maximal monotone mapping and f : H → H
be an α-inverse strongly monotone mapping. Let z = JM

λ (I − λ f )x, then

||y − z||2 + ||x − z||2 ≤ ||y − x||2, ∀x ∈ H, y ∈ F(JM
λ (I − λ f )), and λ ∈ (0, 2α).

Proof. Let λ ∈ (0, 2α), since JM
λ (I−λ f ) is averaged, then it follows from Remark 1.2 that JM

λ (I−λ f ) is a firmly
nonexpansive mapping. Thus, for any x ∈ H and y ∈ F(JM

λ (I − λ f )), we have from Lemma 2.1 that

||z − y||2 = ||JM
λ (I − λ f )x − y||2

≤ 〈z − y, x − y〉

=
1
2

[
||z − y||2 + ||x − y||2 − ||z − x||2

]
,

which implies
||y − z||2 + ||x − z||2 ≤ ||y − x||2.
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Theorem 3.2. Let H1 and H2 be real Hilbert spaces and C be a nonempty closed and convex subset of H1. Let
A : H1 → H2 be a bounded linear operator such that A , 0. Let M : H1 → 2H1 be multivalued maximal
monotone mapping and f : H1 → H1 be an α-inverse strongly monotone mapping. Let S : H2 → H2 be µ-strictly
pseudocontractive mapping. Assume that Γ = {z ∈ (M + f )−1(0) : Az ∈ F(S)} , ∅ and the sequence {xn} be generated
for arbitrary x1,u ∈ H1 by

un = (1 − βn)xn + βnu,
yn = PC(un − γnA∗(I − Tγ)Aun),
xn+1 = JM

λ (I − λ f )yn, n ≥ 1,
(13)

where Tγ := γI + (1 − γ)S with γ ∈ [µ, 1), {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, λ ∈ (0, 2α) and {βn} ⊂ (0, 1) such

that lim
n→∞

βn = 0 and
∑
∞

n=1 βn = ∞. Then, the sequence {xn} converges strongly to an element of Γ.

Proof. From Lemma 2.8, Lemma 2.2 (ii), (iii), (iv) and Lemma 2.3, we obtain that PC(I − γnA∗(I − Tγ)A)

is 1+γn‖A‖2

2 -averaged. That is, PC(I − γnA∗(I − Tγ)A) = (1 − αn)I + αnTn, where αn =
1+γn‖A‖2

2 and Tn is a
nonexpansive mapping for each n ≥ 1. Thus, we can rewrite yn as

yn = (1 − αn)un + αnTnun. (14)

Let p ∈ Γ, then from (13), (14) and Lemma 2.1, we have

‖xn+1 − p‖2 = ‖JM
λ (I − λ f )yn − p‖

2

≤ ‖yn − p‖2

= ‖(1 − αn)(un − p) + αn(Tnun − p)‖2

= (1 − αn)‖un − p‖2 + αn‖Tnun − p‖2

−αn(1 − αn)‖un − Tnun‖
2

≤ ‖un − p‖2 − αn(1 − αn)‖un − Tnun‖
2 (15)

≤ ||(1 − βn)(xn − p) + βn(u − p)||2

≤ (1 − βn)‖xn − p‖2 + βn‖u − p‖2

≤ max{‖xn − p‖2, ‖u − p‖2}
...

≤ max{‖x1 − p‖2, ‖u − p‖2}.

Therefore, {||xn − p||2} is bounded. Consequently, {xn}, {yn} {un} and {Aun} are all bounded.
From (13), we obtain

lim
n→∞
||un − xn||

2 = lim
n→∞

βn||u − xn||
2 = 0. (16)

We now consider two cases:
Case 1: Suppose that {‖xn − p‖2} is monotone decreasing, then {‖xn − p‖2} is convergent. Thus,

lim
n→∞

(
||xn − p||2 − ||xn+1 − p||2

)
= 0. (17)

From (15), we obtain

αn(1 − αn)||un − Tnun||
2
≤ ||un − p||2 − ||xn+1 − p||2

≤ (1 − βn)||xn − p||2 + βn||u − p||2

−||xn+1 − p||2 → 0, as n→∞. (18)
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Since αn =
1+γn‖A‖2

2 , then by the condition on γn, we obtain

lim
n→∞
||un − Tnun||

2 = 0. (19)

Also, from (14) and (19), we have

lim
n→∞
||yn − un||

2 = lim
n→∞

αn||Tnun − un||
2 = 0. (20)

We obtain from (16) and (20) that

lim
n→∞
||yn − xn||

2 = 0. (21)

It follows from (13), (15) and Proposition 3.1 that

||xn+1 − yn||
2
≤ ||yn − p||2 − ||xn+1 − p||2

≤ ||un − p||2 − ||xn+1 − p||2

≤ (1 − βn)‖xn − p‖2 + βn‖u − p‖2 − ||xn+1 − p||2

=
(
‖xn − p‖2 − ||xn+1 − p||2

)
+βn(‖u − p‖2 − ‖xn − p‖2)→ 0, as n→∞. (22)

From (20) and (22), we have

lim
n→∞
||xn+1 − un||

2 = 0. (23)

Since {un} is bounded, there exists a subsequence {unk } of {un} that converges weakly to z. Without loss of

generality, the subsequence {γnk } of {γn} converges to a point γ̄ ∈
(
0, 1
‖A‖2

)
. By Lemma 2.3, A∗(I − Tγ)A is

inverse strongly monotone, thus {A∗(I−Tγ)Aunk } is bounded. It then follows from the firmly nonexpansivity
of PC that

‖PC(I − γnk A
∗(I − Tγ)A)unk − PC(I − γ̄A∗(I − Tγ)A)unk‖ ≤ |γnk − γ̄|‖A

∗(I − Tγ)Aunk‖ → 0, as k→∞.

That is,

lim
k→∞
‖ynk − PC(I − γ̄A∗(I − Tγ)A)unk‖ = 0,

which implies from (20) that

lim
k→∞
||unk − PC(I − γ̄A∗(I − Tγ)A)unk || = 0. (24)

It then follows from Lemma 2.5 that z ∈ F(PC(I − γ̄A∗(I − Tγ)A)). Thus, from Lemma 2.4, we obtain that

z ∈ C ∩ A−1F(Tγ).

Thus,
Az ∈ F(Tγ) = F(S).

Next we show that z ∈ (M + f )−1(0). Since f is α-inverse strongly monotone, f is 1
α−Lipschitz continuous

and monotone. It then follows from Lemma 2.6 that M + f is maximal monotone. Let (v,w) ∈ G(M + f ),
then w − f v ∈M(v). From xnk+1 = JM

λ (I − λ f )ynk , we obtain

(I − λ f )ynk ∈ (I + λM)xnk+1.

That is,
1
λ

(ynk − λ f ynk − xnk+1) ∈M(xnk+1).
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Since M + f is maximal monotone, it is monotone. Thus, we have

〈v − xnk+1,w − f v −
1
λ

(ynk − λ f ynk − xnk+1)〉 ≥ 0, (25)

which implies

〈v − xnk+1,w〉 ≥ 〈v − xnk+1, f v +
1
λ

(ynk − xnk+1) − f ynk〉

= 〈v − xnk+1, f v − f (xnk+1)〉 + 〈v − xnk+1, f (xnk+1) − f (ynk )〉

+〈v − xnk+1,
1
λ

(ynk − xnk+1)〉

≥ 〈v − xnk+1, f (xnk+1) − f (ynk )〉 + 〈v − xnk+1,
1
λ

(ynk − xnk+1)〉. (26)

From (22), we have

‖ f (xnk+1) − f (ynk )‖ ≤
1
α
||xnk+1 − ynk || → 0, as n→∞. (27)

Also, from (23), we have that {xnk+1} converges weakly to z. Thus, we obtain from (26) that

〈v − z,w〉 ≥ 0.

By the maximal monotonicity of M + f , we have that 0 ∈ (M + f )z. That is, z ∈ (M + f )−1(0). Therefore, z ∈ Γ.
We now show that {xn} converges strongly to z. From (15), we obtain

‖xn+1 − z‖2 ≤ ‖un − z‖2

= ‖(1 − βn)(xn − z) + βn(u − z)‖2

= (1 − β)2
||xn − z||2 + β2

n||u − z||2 + 2βn(1 − βn)〈xn − z,u − z〉

≤ (1 − βn)||xn − z||2 + βn

[
βn||u − z||2 + 2(1 − βn)〈xn − z,u − z〉

]
. (28)

Applying Lemma 2.7 to (28), we conclude that {xn} converges strongly to z.
Case 2. Assume that {||xn − x∗||2} is not monotone decreasing. Set Γn = ||xn − x∗||2 and let τ : N → N be a
mapping defined for all n ≥ n0 (for some large n0) by

τ(n) := max{k ∈N : k ≤ n,Γk ≤ Γk+1}.

Then, by Lemma 2.9, we have that {τ(n)} is a non-decreasing sequence such that τ(n)→∞, as n→∞ and

Γτ(n) ≤ Γτ(n)+1,∀n ≥ n0.

From (18), we have

ατ(n)(1 − ατ(n))||uτ(n) − Tτ(n)uτ(n)||
2
≤ ||xτ(n) − p||2 − ||xτ(n)+1 − p||2 + βτ(n)||u − p||2 − βτ(n)||xτ(n) − p||2

≤ βτ(n)(||u − p||2 − ||xτ(n) − p||2)→ 0, as n→∞. (29)

By condition on {ατ(n)}, we obtain

lim
n→∞
||uτ(n) − Tτ(n)uτ(n)||

2 = 0. (30)

Also, from (22), we have

||xτ(n)+1 − yτ(n)||
2
≤

(
‖xτ(n) − p‖2 − ||xτ(n)+1 − p||2

)
+ βτ(n)(‖u − p‖2 − ‖xτ(n) − p‖2)

≤ βτ(n)(‖u − p‖2 − ‖xτ(n) − p‖2)→ 0, as n→∞. (31)

Following the same line of argument as in Case 1, we can show that {xτ(n)} converges weakly to z ∈ Γ.
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Now for all n ≥ n0, we have from (28) that

0 ≤ ||xτ(n)+1 − z||2 − [||xτ(n) − z||2

≤ (1 − βτ(n))||xτ(n) − z||2 + βτ(n)[βτ(n)||u − z||2 + 2(1 − βτ(n))〈xτ(n) − z,u − z〉] − ||xτ(n) − z||2,

which implies

||xτ(n) − z||2 ≤ βτ(n)||u − z||2 + 2(1 − βτ(n))〈xτ(n) − z,u − z〉 → 0, as n→∞.

Hence
lim
n→∞
||xτ(n) − z||2 = 0.

Therefore,
lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0.

Moreover, for n ≥ n0, it is clear that Γτ(n) ≤ Γτ(n)+1 if n , τ(n) (that is τ(n) < n) because Γ j > Γ j+1 for
τ(n) + 1 ≤ j ≤ n.
Consequently for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

Thus, limn→∞ Γn = 0. That is {xn} converges strongly to z.

If S is a nonexpansive mapping defined on H2, then we obtain the following result.

Corollary 3.3. Let H1 and H2 be real Hilbert spaces and C be a nonempty closed and convex subset of H1. Let
A : H1 → H2 be a bounded linear operator such that A , 0. Let M : H1 → 2H1 be multivalued maximal monotone
mapping and f : H1 → H1 be an α-inverse strongly monotone mapping. Let S : H2 → H2 be a nonexpansive
mapping. Assume that Γ = {z ∈ (M + f )−1(0) : Az ∈ F(S)} , ∅ and the sequence {xn} be generated for arbitrary
x1,u ∈ H1 by

un = (1 − βn)xn + βnu,
yn = PC(un − γnA∗(I − S)Aun),
xn+1 = JM

λ (I − λ f )yn, n ≥ 1,
(32)

where {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, λ ∈ (0, 2α) and {βn} ⊂ (0, 1) such that lim

n→∞
βn = 0 and

∑
∞

n=1 βn = ∞.
Then, the sequence {xn} converges strongly to an element of Γ.

In view of Remark 1.3, we obtain the following result.

Corollary 3.4. Let H1 and H2 be real Hilbert spaces and C be a nonempty closed and convex subset of H1. Let A :
H1 → H2 be a bounded linear operator such that A , 0. Let f : C→ H1 be an α-inverse strongly monotone mapping
and S : H2 → H2 be µ-strictly pseudocontractive mapping. Assume that Γ = {z ∈ VIP(C, f ) : Az ∈ F(S)} , ∅ and
the sequence {xn} be generated for arbitrary x1,u ∈ C by

un = (1 − βn)xn + βnu,
yn = PC(un − γnA∗(I − S)Aun),
xn+1 = PC(I − λ f )yn, n ≥ 1,

(33)

where {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, λ ∈ (0, 2α) and {βn} ⊂ (0, 1) such that lim

n→∞
βn = 0 and

∑
∞

n=1 βn = ∞.
Then, the sequence {xn} converges strongly to an element of Γ.

Proof. From Theorem 3 of [36], we have that ( f + NC)−1(0) = VIP(C, f ), where NC is the normal cone of C.
Thus, by setting M = NC in Theorem 3.2, we obtain the desired result.

In the following Theorem, we study the class of SMVIP introduced by Moudafi [34].
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Theorem 3.5. Let H1 and H2 be real Hilbert spaces and C be a nonempty closed and convex subset of H1. Let
A : H1 → H2 be a bounded linear operator such that A , 0. Let M1 : H1 → 2H1 and M2 : H2 → 2H2 be multivalued
maximal monotone mappings. Let f : H1 → H1 be α-inverse strongly monotone mapping and 1 : H2 → H2 be
β-inverse strongly monotone mapping. Assume that Γ = {z ∈ (M1 + f )−1(0) : Az ∈ (M2 + 1)−1(0)} , ∅ and the
sequence {xn} be generated for arbitrary x1,u ∈ H1 by

un = (1 − βn)xn + βnu,
yn = PC(un − γnA∗(I − JM2

λ (I − λ1))Aun),
xn+1 = JM1

λ (I − λ f )yn, n ≥ 1,
(34)

where {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, 0 < λ < 2α, 2β and {βn} ⊂ (0, 1) such that lim

n→∞
βn = 0 and

∑
∞

n=1 βn = ∞.
Then, the sequence {xn} converges strongly to an element of Γ.

Proof. We know that, for any λ > 0, F(JM2
λ (I − λ1)) = (M2 + 1)−1(0) and for λ ∈ (0, 2β), JM2

λ (I − λ1) is
nonexpansive. Thus, setting S = JM2

λ (I − λ1) in Corollary 3.3, we obtain the desired result.

By setting M1 = NC and M2 = NQ in Theorem 3.5, where NC and NQ are the normal cones of C and Q
respectively, we obtain the following result.

Corollary 3.6. Let H1 and H2 be real Hilbert spaces and C be a nonempty closed and convex subset of H1. Let
A : H1 → H2 be a bounded linear operator such that A , 0. Let f : H1 → H1 beα-inverse strongly monotone mapping
and 1 : Q→ H2 be β-inverse strongly monotone mapping. Assume that Γ = {z ∈ VIP(C, f ) : Az ∈ VIP(Q, 1)} , ∅
and the sequence {xn} be generated for arbitrary x1,u ∈ C by

un = (1 − βn)xn + βnu,
yn = PC(un − γnA∗(I − PQ(I − λ1))Aun),
xn+1 = PC(I − λ f )yn, n ≥ 1,

(35)

where {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, 0 < λ < 2α, 2β and {βn} ⊂ (0, 1) such that lim

n→∞
βn = 0 and

∑
∞

n=1 βn = ∞.
Then, the sequence {xn} converges strongly to an element of Γ.

4. Application to Split convex minimization problems

Let F : H → R be a convex and differentiable function, and M : H → (−∞,+∞] be a proper convex and
lower semi-continuous function. We know that if ∇F is 1

α -Lipschitz continuous, then it is α-inverse strongly
monotone, where ∇F is the gradient of F (see Remark 1.1). It is also known that the subdifferential ∂M of M
is maximal monotone (see [36]). Moreover,

F(x∗) + M(x∗) = min
x∈H

[F(x) + M(x)]⇔ 0 ∈ ∇F(x∗) + ∂M(x∗).

Now, consider the following class of Split Convex Minimization Problem (SCMP): Find

x∗ ∈ H1 such that F(x∗) + M(x∗) = min
x∈H1

[F(x) + M(x)] , and such that Ax∗ ∈ F(S), (36)

where A : H1 → H2 is a bounded linear operator, F and M is as defined above, S : H2 → H2 is a strictly
pseudocontractive mapping. Suppose the solution set of problem (36) is Ω, then setting M = ∂M and f = ∇F
in Theorem 3.2, we obtain the following result.

Theorem 4.1. Let H1 and H2 be real Hilbert spaces, and C be a nonempty closed and convex subset of H1. Let
A : H1 → H2 be a bounded linear operator such that A , 0. Let F : H1 → R be a convex and differentiable function
such that ∇F is 1

α -Lipschitz continuous, and M : H1 → (−∞,+∞] be a proper convex and lower semi-continuous
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function. Let S : H2 → H2 be µ-strictly pseudocontractive mapping. Suppose Ω , ∅ and the sequence {xn} be
generated for arbitrary x1,u ∈ H1 by

un = (1 − βn)xn + βnu,
yn = PC(un − γnA∗(I − S)Aun),
xn+1 = J∂M

λ (I − λ∇F)yn, n ≥ 1,
(37)

where {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, 0 < λ < 2α, 2β and {βn} ⊂ (0, 1) such that lim

n→∞
βn = 0 and

∑
∞

n=1 βn = ∞.
Then, the sequence {xn} converges strongly to an element of Ω.

Next, we consider the following class of SCMP: Find

x∗ ∈ H1 such that F(x∗) + M1(x∗) = min
x∈H1

[F(x) + M1(x)] , (38)

and such that y∗ = Ax∗ ∈ H2, solves

G(x∗) + M2(x∗) = min
x∈H2

[G(x) + M2(x)] . (39)

Suppose the solution set of problem (38)-(38) is Ω, then setting M1 = ∂M1, M2 = ∂M2, f = ∇F and 1 = ∇G
in Theorem 3.5, we obtain the following result.

Theorem 4.2. Let H1 and H2 be real Hilbert spaces, and C be a nonempty closed and convex subset of H1. Let
A : H1 → H2 be a bounded linear operator such that A , 0. Let M1 : H1 → (−∞,+∞] and M2 : H2 → (−∞,+∞] be
proper convex and lower semi-continuous functions. Let F : H1 → H1 be convex and differentiable function such that
∇F is 1

α -Lipschitz continuous and G : H2 → H2 be convex and differentiable function such that ∇G is 1
β -Lipschitz

continuous. Assume that Ω , ∅ and the sequence {xn} be generated for arbitrary x1,u ∈ H1 by
un = (1 − βn)xn + βnu,
yn = PC(un − γnA∗(I − J∂M2

λ (I − λ∇G))Aun),
xn+1 = J∂M1

λ (I − λ∇F)yn, n ≥ 1,
(40)

where {γn} ⊂ [a, b] for some a, b ∈
(
0, 1
||A||2

)
, 0 < λ < 2α, 2β and {βn} ⊂ (0, 1) such that lim

n→∞
βn = 0 and

∑
∞

n=1 βn = ∞.
Then, the sequence {xn} converges strongly to an element of Ω.
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