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On Positive Solution to Multi-point Fractional h-Sum Eigenvalue
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Abstract. In this article, we study the existence of at least one positive solution to a multi-point fractional
h-sum eigenvalue problem for Caputo fractional h-difference equation, by using the Guo-Krasnoselskii’s
fixed point theorem. Moreover, we present some examples to display the importance of these results.

1. Introduction

Fractional calculus is an emerging field recently drawing attention from both theoretical and applied
disciplines. Fractional order differential equations play a vital role in describing many phenomena related to
chemistry, physics, mechanics, flow in porous media, control systems, electrical networks and mathematical
biology. For a reader interested in the systematic development of the topic, we refer to the books [1]-[3]. A
variety of results on initial and boundary value problems of fractional differential equations and inclusions
can easily be found in the literature on the topic. For some recent results, we can refer to [4]-[11] and
references cited therein.

Fractional difference equations have arttracted the attention of many mathematicians since they can be
used for describing many problems in the real-world phenomena such as physics, mechanics, chemistry,
control systems, electrical networks, and flow in porous media. In recent years, mathematicians have used
this fractional calculus to model and solve various related problems. In particular, fractional calculus is a
powerful tool for the processes which appear in nature, e.g. biology, ecology and other areas ( research
works can be found in [12]-[13], and the references therein). Some good papers dealing with boundary
value problems for fractional difference equations have helped to build up some of the basic theory of
this field (see for example the textbooks [14] and the papers [15]-[45] and references cited therein). Some
recent works about the monotonicity of some new class of fractional difference operators with discrete
exponential and Mittag-Leffler kernels (see [52] and [53]), Lyapunov type and Gronwalls inequalities for
such operators (see[54] and [55]). The paper [56] is recent and develop the theory of fractional difference
variational calculus.

Presently, there are many research presenting discrete fractional calculus on Z, they focus on the
difference operator with step size 1. Our knowledge, there is a gap in the literature about the details of this
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operation. To make it more general and flexible in the sense that it has the freedom to choose the step size.
However, the development of discrete fractional calculus on hZ are rare (see [57]-[62]).

The eigenvalue problem for h-difference equations has not been studied. These are the motivation for
this research. In this paper, we consider a multi-point fractional h-sum eigenvalue problems for Caputo
fractional h-difference equations of the form

C∆α
h u(t) + λF

[
t + (α −N) h,u (t + (α −N) h)

]
= 0, t ∈ (hN)0,Th

u
(

(α −N − 1) h
)

= C∆βi u
( (
α − βi

)
h
)

= 0, i ∈N1,N−1, (1)

u
(

(T + α −N + 1) h
)

= µ∆
−γ
h u

( (
T + α + γ −N + 1

)
h
)
,

where (hN)0,Th := {0, h, 2h, . . . ,Th}; α ∈ (N,N + 1], N ∈ N2 := {2, 3, ...}; βi ∈ (i, i + 1]; γ ∈ (0, 1]; 0 < µ <
Γ(γ)

h
∑T+α−N+1

s=α−2N s
(

(T+α+γ−N+1)h−σh(s)
)γ−1

h

and

F ∈ C
(

(hN)(α−2N)h,(T+α−N+1)h × [0,∞), [0,∞)
)
. For example, the particular case of system (1) when 2 < α < 3,

we have

C∆α
h u(t) + λF

[
t + (α − 2) h,u (t + (α − 2) h)

]
= 0, t ∈ (hN)0,Th

u
(

(α − 3) h
)

= C∆β1 u
( (
α − β1

)
h
)

= 0, (2)

u
(

(T + α − 1) h
)

= µ∆
−γ
h u

( (
T + α + γ − 1

)
h
)
,

where N = 2, β1 ∈ (1, 2], and the domain of F,u are (hN)(α−4)h,(T+α−1)h. In the case of system (1) when
3 < α < 4, we have

C∆α
h u(t) + λF

[
t + (α − 3) h,u (t + (α − 3) h)

]
= 0, t ∈ (hN)0,Th

u
(

(α − 3) h
)

= C∆β1 u
( (
α − β1

)
h
)

= C∆β2 u
( (
α − β2

)
h
)

= 0, (3)

u
(

(T + α − 2) h
)

= µ∆
−γ
h u

( (
T + α + γ − 2

)
h
)
,

where N = 3, β1 ∈ (1, 2], β2 ∈ (2, 3], and the domain of F,u are (hN)(α−6)h,(T+α−2)h.

The aim of this paper is to give some results for the existence of at least one positive solution to (1).
For the positive solution of (1), we mean that a function u(t) : (hN)(α−2N)h,(T+α−N+1)h → [0,∞) and satisfies
the problem (1). The plan of this paper is as follows. In Section 2 we recall some definitions and basic
lemmas. Also, we derive a representation for the solution to (1) by converting the problem to an equivalent
summation equation. In Section 3, we show the existence of at least one positive solution to (1) by the
following well-known Guo-Krasnoselskii’s fixed point theorem in a cone.

Theorem 1.1. [63] Let E be a Banach space, and let K ⊂ E be a cone. Assume Ω1, Ω2 are open subsets of E with
0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \Ω1) −→ K

be a completely continuous operator such that
(i) ‖Au‖ 6 ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ > ‖u‖, u ∈ K ∩ ∂Ω2.
(ii) ‖Au‖ > ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ 6 ‖u‖, u ∈ K ∩ ∂Ω2 or
Then, A has a fixed point in K ∩ (Ω2 \Ω1).

Lemma 1.2. [64] (Arzelá-Ascoli theorem) A set of functions in C[a, b] with the sup norm, is relatively compact if
and only it is uniformly bounded and equicontinuous on [a, b].

Lemma 1.3. [64] If a set is closed and relatively compact then it is compact.
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2. Preliminaries

In the following, there are notations, definitions, and lemmas which are used in the main results.

Definition 2.1. [57] For any t, α ∈ R and h > 0, the h-falling function is defined by

tαh := hα
Γ
(

t
h + 1

)
Γ
(

t
h + 1 − α

) = hα
( t

h

)α
,

where t
h + 1 < Z− ∪ {0}, and we use the convention that division at a pole yields zero. If h = 1, then tαh = tα.

Definition 2.2. [57] For α, h > 0 and f defined on (hN)a := {a, a + h, a + 2h, . . .}, the α-order fractional h-sum of f
is defined by

∆−αh f (t) :=
h

Γ(α)

t
h−α∑
s= a

h

(
t − σh(hs)

)α−1

h
f (hs),

where t ∈ (hN)a+αh := {a +αh, a + (α+ 1)h, a + (α+ 2)h, ...} and σh(hs) = (s + 1)h. If h = 1, then ∆−αh f (t) = ∆−α f (t).

Definition 2.3. [60] For α > 0 and f defined on (hN)a, the α-order Caputo fractional h-difference of f is defined by

C∆α
h f (t) := ∆−(N−α)

h ∆N
h f (t) =

h
Γ(N − α)

t
h−(N−α)∑

s= a
h

(
t − σh(hs)

)N−α−1

h
∆N

h f (sh),

where t ∈ (hN)a+(N−α)h and N ∈ N is chosen so that 0 ≤ N − 1 < α < N. If α = N then C∆α
h f (t) = ∆N

h f (t), and if
h = 1 then C∆α

h f (t) = ∆α
C f (t).

To define the solution of the boundary value problem (1) we need the following lemma that deals with
a linear variant of the boundary value problem (1) and gives a representation of the solution.

Lemma 2.4. Let α ∈ (N,N + 1], N ∈ N2 := {2, 3, ...}; βi ∈ (i, i + 1], i ∈ N1,N−1; γ ∈ (0, 1]; 0 < µ <
(T+2)Γ(γ)

h
∑T+α−N+1

s=α−2N [s−α+N+1]
(

(T+α+γ−N+1)h−σh(s)
)γ−1

h

and f ∈ C
(

(hN)(α−2N)h,(T+α−N+1)h , [0,∞)
)

be given. Then, the problem

C∆α
h u(t) + f

[
t + (α −N) h

]
= 0, t ∈ (hN)0,Th , (4)u

(
(α −N − 1) h

)
= C∆

βi

h u
( (
α −N − βi

)
h
)

= 0,
u
(

(T + α −N + 1) h
)

= µ∆
−γ
h u

( (
T + α + γ −N + 1

)
h
)
,

(5)

has the unique solution

u(t) = −
h

Γ(α)

t
h−α∑
s=0

(
(t − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+

[ t
h − (α −N − 1)

T + 2

]
× (6)

[
h

Γ(α)

T−N+1∑
s=0

(
(T + α −N + 1)h − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+ µA(u)

]
,
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where the functionalA(u) is defined by

A(u) :=
h2

ΛΓ(α)Γ(γ)

T+α−N+1∑
s=α−2N

(
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
×

[ ( s − α + N + 1
T + 2

) T−N+1∑
x=0

(
(T + α −N + 1)h − σh(x)

)α−1

h
f
(
(x + α −N)h

)
−

s−α∑
x=0

(
sh − σh(x)

)α−1

h
f
(
(x + α −N)h

)]
, (7)

and

Λ = 1 −
µh

Γ(γ)

T+α−N+1∑
s=α−2N

[ s − α + N + 1
T + 2

] (
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
. (8)

Proof. Using the fractional h-sum of order α for (4), we obtain

u(t) = −C0 −

N∑
k=1

Cktk
h −

h
Γ(α)

t
h−α∑
s=0

(
t − σh(s)

)α−1

h
f
(
(s + α −N)h

)
, (9)

for t ∈ (hN)(α−2N)h,(T+α−N+1)h.

By substituting t = (α −N − 1) h into (9) and employing the condition of (5): u
(

(α −N − 1) h
)

= 0, we have

C0 +

N∑
k=1

Ck

(
(α −N − 1)h

)k

h
= 0. (10)

Using the Caputo fractional h-difference of order βi, i ∈N1,N−1 for (9), we have

C∆
βi

h u(t) =
h

Γ(i + 1 − βi)

t
h−(i+1−βi)∑
s=α−2N

(
t − σh(s)

)i−βi

h s∆
i+1
h u(sh), (11)

for t ∈ (hN)(α−2N+i+1−βi)h,(T+α−N+i+2−βi)h.

By substituting t =
(
α −N − βi

)
h into (11) and using (9), we have

h
Γ(i + 1 − βi)

α−i−N−1∑
s=α−2N

(
(α −N − βi)h − σh(s)

)i−βi

h s∆
i+1
h u(sh)

= −
h

Γ(i + 1 − βi)

α−i−N−1∑
s=α−2N

(
(α −N − βi)h − σh(s)

)i−βi

h
×

s∆
i+1
h

 N∑
k=1

Ck(sh)k
h +

h
Γ(α)

s−α∑
x=0

(
sh − σh(x)

)α−1

h
f
(
(x + α −N)h

)
= −

h
Γ(i + 1 − βi)

α−i−N−1∑
s=α−2N

(
(α −N − βi)h − σh(s)

)i−βi

h s∆
i+1
h

 N∑
k=1

Ck(sh)k
h

 . (12)

Employing the condition of (5): C∆
βi

h u
( (
α −N − βi

)
h
)

= 0 for i = N − 1, ..., 2, 1, we have the system of N − 1
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equations:

(E1) −
hN! CN

Γ(N − βN−1)

(
(N − 1 − βN−1)h

)N−1−βN−1

h
= 0, so CN = 0,

· · ·

(EN−2) −
h3! C3

Γ(3 − β2)

α−N−3∑
s=α−2N

(
(α −N − β2)h − σh(s)

)2−β2

h
= 0, so C3 = 0,

(EN−1) −
h2! C2

Γ(2 − β1)

α−N−2∑
s=α−2N

(
(α −N − β1)h − σh(s)

)1−β1

h
= 0, so C2 = 0.

Substituting the constants Ci, i = 2, 3, ...,N into (10), we have

C0 + (α −N − 1)h C1 = 0. (13)

Next, taking the fractional h-sum of order γ for (9), weget

∆
−γ
h u(t) =

h
Γ(γ)

t
h−γ∑

s=α−2N

(
t − σh(s)

)γ−1

h
u(sh), (14)

for t ∈ (hN)(α−2N+γ)h,(T+α−N+γ+1)h.

Employing the last condition of (5), we obtain

C0 + C1[T + α −N + 1]h (15)

= −
h

Γ(α)

T−N+1∑
s=0

(
(T + α −N + 1)h − σh(s)

)α−1

h
f
(
(s + α −N)h

)
−
µh

Γ(γ)

T+α−N+1∑
s=α−2N

(
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
u
(
sh

)
.

The constants C0 and C1 can be obtained by solving the system of equations (13) and (15) as given by

C0 =
(
α −N − 1

T + 2

) [ h
Γ(α)

T−N+1∑
s=0

(
(T + α −N + 1)h − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+
µh

Γ(γ)

T+α−N+1∑
s=α−2N

(
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
u
(
sh

)]
, (16)

C1 = −
1

(T + 2)h

[
h

Γ(α)

T−N+1∑
s=0

(
(T + α −N + 1)h − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+
µh

Γ(γ)

T+α−N+1∑
s=α−2N

(
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
u
(
sh

)]
. (17)
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Substituting all constants Ci, i = 0, 1, 2, ...,N into (10), we get

u(t) = −
h

Γ(α)

t
h−α∑
s=0

(
(t − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+

( t
h − (α −N − 1)

T + 2

)
[

h
Γ(α)

T−N+1∑
s=0

(
(T + α −N + 1)h − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+
µh

Γ(γ)

T+α−N+1∑
s=α−2N

(
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
u
(
sh

)]
. (18)

Letting

A(u) =
h

Γ(γ)

T+α−N+1∑
s=α−2N

(
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
u
(
sh

)
then, from (17), we deduce that

A(u) =
h

Γ(γ)

T+α−N+1∑
s=α−2N

(
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
× (19)

{
−

h
Γ(α)

s−α∑
x=0

(
sh − σh(x)

)α−1

h
f
(
(x + α −N)h

)
+

( s − α + N + 1
T + 2

)
×

[
h

Γ(α)

T−N+1∑
x=0

(
(T + α −N + 1)h − σh(x)

)α−1

h
f
(
(x + α −N)h

)
+ µA(u)

]}

which implies (7). Substituting this value into (17), we obtain (6). This completes the proof. �

Lemma 2.5. Problem (4) has the unique solution in the from

u(t) =

T−N+1∑
s=0

G
( t

h
− α, s

)
f
(
(s + α −N)h

)
(20)

for t ∈ (hN)(α−2N)h,(T+α−N+1)h ,
where

G
( t

h
− α, s

)
:=

h
Γ(α)


−(t − σh(s)

)α−1

h
+

[
( t

h−α)+N+1
(T+2)Λ

]
K (s), s ∈N0, t

h−α[
( t

h−α)+N+1
(T+2)Λ

]
K (s), s ∈N t

h−α+1,T−N+1,
(21)

with

K (s) :=
(
(T + α −N + 1)h − σh(s)

)α−1

h
− (1 −Λ), (22)

and Λ is defined by (8).
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Proof. Unique solution of problem (4) can be written as

u(t) = −
h

Γ(α)

t
h−α∑
s=0

(
(t − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+

[ t
h − (α −N − 1)

T + 2

]
×

{
h

Γ(α)

T−N+1∑
s=0

(
(T + α −N + 1)h − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+
µhΦ

ΛΓ(α)

T−N+1∑
x=0

(
(T + α −N + 1)h − σh(x)

)α−1

h
f
(
(x + α −N)h

)
−

µh2

ΛΓ(α)Γ(γ)

T+α−N+1∑
s=α−2N

s−α∑
x=0

(
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
×

(
sh − σh(x)

)α−1

h
f
(
(x + α −N)h

)}
, (23)

where the constant Φ is defined as

Φ :=
h

Γ(γ)

T−N+1∑
x=s

(
(T + γ −N + 1)h − σh(x)

)γ−1

h

(
(x + α)h − σh(s)

)α−1

h

=
1 −Λ

µ
> 0. (24)

By the properties of summation, we obtain

u(t) = −
h

Γ(α)

t
h−α∑
s=0

(
(t − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+

[ t
h − (α −N − 1)

T + 2

]
×

{
h

Γ(α)

T−N+1∑
s=0

(
(T + α −N + 1)h − σh(s)

)α−1

h
f
(
(s + α −N)h

)
+
µhΦ

ΛΓ(α)

T−N+1∑
s=0

(
(T + α −N + 1)h − σh(s)

)α−1

h
f
(
(s + α −N)h

)
−

µh2

ΛΓ(α)Γ(γ)

T−N+1∑
s=0

T−N+1∑
x=s

(
(T + γ −N + 1)h − σh(x)

)γ−1

h
×

(
(x + α)h − σh(s)

)α−1

h
f
(
(s + α −N)h

)}

=
h

Γ(α)

t
h−α∑
s=0

{
−

(
(t − σh(s)

)α−1

h
+

( t
h − (α −N − 1)

(T + 2)Λ

)
×

[(
(T + α −N + 1)h − σh(s)

)α−1

h
−
µh

Γ(γ)

T−N+1∑
x=s

(
(x + α)h − σh(s)

)α−1

h
×

(
(T + γ −N + 1)h − σh(x)

)γ−1

h

]}
f
(
(s + α −N)h

)



S. Chasreechai et al. / Filomat 32:8 (2018), 2933–2951 2940

+
h

Γ(α)

T−N+1∑
s= t

h−α+1

{ ( t
h − (α −N − 1)

(T + 2)Λ

) [(
(T + α −N + 1)h − σh(s)

)α−1

h

−
µh

Γ(γ)

T−N+1∑
x=s

(
(T + γ −N + 1)h − σh(x)

)γ−1

h

(
(x + α)h − σh(s)

)α−1

h

]}
×

f
(
(s + α −N)h

)
=

T−N+1∑
s=0

G
( t

h
− α, s

)
f
(
(s + α −N)h

)
.

This completes the proof. �

Lemma 2.6. Let G be the Green’s function related to problem (4)-(5) given by (2.18). For 0 < µ <
1
Φ

where Φ is
defined on (24), the following property holds:

(
t
h − α

)
+ N + 1

T + 2

 G(T −N + 1, s) ≤ G
( t

h
− α, s

)
≤

1
Θ

G(T −N + 1, s),

where

Θ :=
µΦ

[(
(α − 1)h

)α−1

h
− 1

]
(
(T −N + α)h

)α−1

h

. (25)

Proof. Assume that 0 ≤ t
h − α ≤ s < T −N + 1. In such a case:

H

( t
h
− α, s

)
=

G
(

t
h − α

)
G(T −N + 1, s)

=

[
( t

h−α)+N+1
(T+2)Λ

]
K (s)

K (s)
Λ −

(
(T −N + α + 1)h − σh(s)

)α−1

h

=

[
( t

h−α)+N+1
T+2

]
K (s)

µΦ
[(

(T −N + α + 1)h − σh(s)
)α−1

h
− 1

] ,
for all 0 < t

h − α ≤ s < T −N + 1.

Now, it is immediate to verify the following inequalities:(
t
h − α

)
+ N + 1

T + 2
<

1
µΦ


(

t
h − α

)
+ N + 1

T + 2

 ≤ H ( t
h
− α, s

)
,

and

H

( t
h
− α, s

)
≤

K (0)

µΦ
[(

(T −N + α + 1)h − σh(T −N + 1)
)α−1

h
− 1

]
<

(
(T −N + α)h

)α−1

h

µΦ
[(

(α − 1)h
)α−1

h
− 1

] =
1
Θ
,

for all 0 < t
h − α ≤ s < T −N + 1.
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On the contary, if 0 ≤ s ≤ t
h − α ≤ T −N + 1 we obtain

H

( t
h
− α, s

)
=

[
( t

h−α)+N+1
T+2

]
K (s) −Λ

(
t − σh(s)

)α−1

h

K (s) −Λ
(
(T −N + α + 1)h − σh(s)

)α−1

h

,

for all 0 < s ≤ t
h − α < T −N + 1.

We next consider

t∆
2
hG

( t
h
− α, s

)
= −Λ(α − 2)(α − 3)

(
t − σh(s)

)α−3

h
< 0, (26)

for all 0 < s ≤ t
h − α < T −N + 1.

Since H (T −N + 1, s) = 1, furthermore

H (s, s) =

[
s+N+1

T+2

]
K (s)

K (s) −Λ
(
(T −N + α + 1)h − σh(s)

)α−1

h

>
s + N + 1

T + 2
, (27)

for all 0 < s < T −N + 1.

From the fact that

t∆
2
hG

( t − 1
h
− α, s

)
=

1
h2

[
G

( t + 1
h
− α, s

)
− 2G

( t
h
− α, s

)
+ G

( t − 1
h
− α, s

)]
,

together with (26)-(27), allow us to conclude that

G
( t

h
− α, s

)
≥

1
2

[
G

( t + 1
h
− α, s

)
+ G

( t − 1
h
− α, s

)]
, (28)

so

G
(

t+1
h − α, s

)(
t+1

h − α
)

+ N + 1
<

G
(

t−1
h − α, s

)(
t−1

h − α
)

+ N + 1
, (29)

for all 0 < s < t
h − α < T −N + 1,

it implies that

H

( t
h
− α, s

)
=

G
(

t
h − α

)
G(T −N + 1, s)

>

(
t
h − α

)
+ N + 1

T + 2
, (30)

for all 0 < s < t
h − α < T −N + 1.

Finally, it is easy to verify that

H

( t
h
− α, s

)
=

G
(

t
h − α

)
G(T −N + 1, s)

<
1
Θ
, (31)

for all 0 < s < t
h − α < T −N + 1.

This completes the proof. �
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3. Existence and Nonexistence of Positive Solution

In this section, we wish to establish the existence of at least one positive solution to (1). To accomplish
this, we denote C = C

(
(hN)(α−2N)h,(T+α−N+1)h ,R

)
. The Banach space of all function u with the norm is

defined by ‖u‖ = max
t∈(hN)(α−2N)h,(T+α−N+1)h

|u(t)|. For this purpose, we consider the cone

P =

u ∈ C : u > Θ


(

t
h − α

)
+ N + 1

T + 2

 ‖u‖
 ,

where Θ is defined as (25).

Suppose that u is a solution of problem (1). It is clear from Lemma 2.4 that

u(t) = λ
T−N+1∑

s=0

G
( t

h
− α, s

)
F
[(

s + α −N)h,u
(
(s + α −N)h

)]
,

for all t ∈ (hN)(α−2N)h,(T+α−N+1)h .

Next, define the operator Sλ : P → C as follow:

(Sλu) (t) = λ
T−N+1∑

s=0

G
( t

h
− α, s

)
F
[(

s + α −N)h,u
(
(s + α −N)h

)]
, (32)

for all t ∈ (hN)(α−2N)h,(T+α−N+1)h.

Lemma 3.1. The operator Sλ is completely continuous.

Proof. Since 0 < µ < 1
Φ or 0 < 1 −Λ < 1, it is clearly that G

(
t
h − α, s

)
≥ 0.

So, we have

‖(Sλu)‖

= λ max
t∈(hN)(α−2N)h,(T+α−N+1)h

T−N+1∑
s=0

G
( t

h
− α, s

)
F
[(

s + α −N)h,u
(
(s + α −N)h

)]
≤ λ

T−N+1∑
s=0

1
Θ

G (T −N + 2, s) F
[(

s + α −N)h,u
(
(s + α −N)h

)]
, (33)

and

(Sλu)

≥ λΘ


(

t
h − α

)
+ N + 1

T + 2

 T−N+1∑
s=0

G (T −N + 1, s)
Θ

F
[(

s + α −N)h,u
(
(s + α −N)h

)]
≤ Θ


(

t
h − α

)
+ N + 1

T + 2

 ‖(Sλu)‖ . (34)

Hence, Sλ(P) ⊂ P.
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Obviously, Sλ : P → P is continuous. Letting Ω ⊂ C be bounded, there exists a constant R > 0 such that
‖u‖ ≤ R for all u ∈ Ω. Define

L := 1 + max
(t,u)∈(hN)(α−2N)h,(T+α−N+1)h×[0,R]

|F(t,u)| .

Thus, for all u ∈ Ω, it is satisfies that

|Sλu(t)| ≤ λ
T−N+1∑

s=0

G
( t

h
− α, s

)
F
[(

s + α −N)h,u
(
(s + α −N)h

)]
≤ Lλ

T−N+1∑
s=0

G
( t

h
− α, s

)
, (35)

for all t ∈ (hN)(α−2N)h,(T+α−N+1)h, which implies Sλ(Ω) is bounded in C.

On the other hand, for each u ∈ Ω we have

|t∆h (Sλu) (t)|

≤

∣∣∣∣∣∣ − λh
Γ(α)

T−N+1∑
s=0

(α − 1) (t − σh(s))α−2
h F

[(
s + α −N)h,u

(
(s + α −N)h

)]
+
λ

Γ(α)

T−N+1∑
s=0

K (s)
T + 2

F
[(

s + α −N)h,u
(
(s + α −N)h

)]∣∣∣∣∣∣
≤

λh
Γ(α − 1)

T−N+1∑
s=0

(t − σh(s))α−2
h

∣∣∣∣∣∣F[(s + α −N)h,u
(
(s + α −N)h

)]∣∣∣∣∣∣
+

λ
(T + 2)Γ(α)

T−N+1∑
s=0

K (s)

∣∣∣∣∣∣F[(s + α −N)h,u
(
(s + α −N)h

)]∣∣∣∣∣∣
≤ λL

[
h

Γ(α − 1)

T−N+1∑
s=0

((T + α −N + 1)h − σh(s))α−2
h +

1
(T + 2)Γ(α)

T−N+1∑
s=0

K (s)
]

≤
Lλ

Γ(α)

[
((T + α −N + 1)h)α−1

h − Γ(α)hα−1 +
((T + α −N + 1)h)αh

αh(T + 2)

+ [1 −Λ]
(T −N + 2

T + 2

) ]
:= M. (36)

For any ε > 0, there exists δ > 0 such that

|t2 − t1| < δ =
h

M
ε for all t1, t2 ∈ (hN)(α−2N)h,(T+α−N+1)h .

Hence, for each u ∈ Ω and t1, t2 ∈ (hN)(α−2N)h,(T+α−N+1)h with t1 < t2, we have

∣∣∣∣∣∣ (Sλu) (t2) − (Sλu) (t1)

∣∣∣∣∣∣ ≤
t2
h −α∑

s= t1
h −α+1

|t∆h (Sλu) (t)| ≤
M
h
|t2 − t1| < ε. (37)

So, Sλ is equicontinuous. Form the Arzela-Ascoli theorem, it implies that Sλ : P →: P is completely
continuous. �
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We next establish some sufficient conditions for the existence and nonexistence of positive solution for
problem (1). For convenience, we set the notation:

F0 = lim
u→0+

 max
t∈(hN)(α−2N)h,(T+α−N+1)h

F
(
t,u(t)

)
u

 ,
F∞ = lim

u→∞

 max
t∈(hN)(α−2N)h,(T+α−N+1)h

F
(
t,u(t)

)
u

 ,
f0 = lim

u→0+

 min
t∈(hN)(α−2N)h,(T+α−N+1)h

F
(
t,u(t)

)
u

 ,
f∞ = lim

u→∞

 min
t∈(hN)(α−2N)h,(T+α−N+1)h

F
(
t,u(t)

)
u

 . (38)

Theorem 3.2. Let τ ∈ (0, 1) be a constant. Then for each

λ ∈


τΘ f∞

T−N+1∑
s=0

s G(T −N + 1, s)


−1

,

F0

Θ

T−N+1∑
s=0

G(T −N + 1, s)


−1 , (39)

problem (1) has at least one positive solution.

Proof. First, for any ε > 0, from (39) we obtainτΘ( f∞ − ε)
T−N+1∑

s=0

s G(T −N + 1, s)


−1

≤ λ ≤

 (F0 + ε)
Θ

T−N+1∑
s=0

G(T −N + 1, s)


−1

. (40)

By the definition of F0, there exists a constant ρ1 > 0 such that, for 0 < u 6 ρ1, we have

F(t,u) ≤ (F0 + ε)u.

Let Ωρ1 = {u ∈ C : ‖u‖ < ρ1}, then for u ∈ P ∩ ∂Ωρ1 we get

‖Sλu‖ = max
t∈t∈(hN)(α−2N)h,(T+α−N+1)h

λ
T−N+1∑

s=0

G
( t

h
− α, s

)
(F0 + ε) u(s)

≤
λ
Θ

(F0 + ε) ‖u‖
T−N+1∑

s=0

G (T −N + 1, s)

≤ ‖u‖. (41)

On the other hand, by the definition of f∞, there exists ρ2 > ρ1 such that, for any u > ρ2, we have

F(t,u) > ( f∞ − ε)u.

Let Ωρ2 = {u ∈ C : ‖u‖ < ρ2}. Then, for u ∈ P ∩ ∂Ωρ2 we get

‖Sλu‖ ≥ τ (Sλu) ≥ λ
T−N+1∑

s=0

τG (T −N + 1, s)
(

f∞ − ε
)

u(s)

≥ τλΘ f∞‖u‖
T−N+1∑

s=0

s G (T −N + 1, s)

≥ ‖u‖. (42)
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According to (41),(42) and the first part of Theorem 1.1, imply thatSλ has a fixed point u ∈ P∩( Ωρ2 \Ωρ1 ),
such that ρ1 6 ‖u‖ 6 ρ2. Therefore, the problem (1) has at least one positive solution. �

Corollary 3.3. If F0 = 0 and f∞ = ∞, then problem (1) has at least one positive solution.

Proof. Since F0 = 0 and f∞ = ∞, we can get

F0

Θ

T−N+1∑
s=0

G (T −N + 1, s) = 0

and τΘ f∞
T−N+1∑

s=0

s G (T −N + 1, s) = +∞.

By Theorem 3.2 implies that, for λ ∈ (0,∞), problem (1) has at least one positive solution. �

Theorem 3.4. Let τ ∈ (0, 1) be a constant. Then for eachτΘ( f0 − ε)
T−N+1∑

s=0

s G(T −N + 1, s)


−1

≤ λ ≤

 (F∞ + ε)
Θ

T−N+1∑
s=0

G(T −N + 1, s)


−1

, (43)

problem (1) has at least one positive solution.

Proof. First, for any ε > 0, from (43) we obtainτΘ f0
T−N+1∑

s=0

s G(T −N + 1, s)


−1

≤ λ ≤

F∞
Θ

T−N+1∑
s=0

G(T −N + 1, s)


−1

. (44)

By the definition of f0, there exists a constant ρ1 > 0 such that, for 0 < u 6 ρ1, we have

F(t,u) > ( f0 − ε)u. (45)

Let Ωρ1 = {u ∈ C : ‖u‖ < ρ1}. Then, for u ∈ P ∩ ∂Ωρ1 we get ‖u‖ = ρ1. Similary to the proof in Theorem 3.2,
it holds from (44) and ((45)) that

‖Sλu‖ ≥ τ (Sλu) ≥ τλΘ f0‖u‖
T−N+1∑

s=0

s G (T −N + 1, s) ≥ ‖u‖. (46)

On the other hand, by the definition of F∞, there exists ρ̂2 > ρ1 such that

F(t,u) 6 (F∞ + ε)u, for all u > ρ̂2.

We consider F on two cases:

Case I. Suppose F is bounded. There exists K > 0, such that

F(t,u) 6 K, for all u > ρ̂2.

Choose ρ3 = max

ρ̂2,
λK
Θ

T−N+1∑
s=0

G (T −N + 1, s)

 .
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Let Ωρ3 = {u ∈ C : ‖u‖ ≤ ρ3}. Then, for u ∈ P ∩ ∂Ωρ3 we get

‖Sλu‖ ≤
λ
Θ

T−N+1∑
s=0

G (T −N + 1, s) F
[(

s + α −N)h,u
(
(s + α −N)h

)]
≤

λK
Θ

T−N+1∑
s=0

G (T −N + 1, s)

≤ ρ3 = ‖u‖. (47)

Case II. Suppose F is unbounded. There exists ρ4 > ρ̂2 such that

F(t,u) 6 u, for all u > ρ4.

Let Ωρ4 = {u ∈ C : ‖u‖ ≤ ρ4}. Then, for u ∈ P ∩ ∂Ωρ4 we get

‖Sλu‖ ≤
λ
Θ

T−N+1∑
s=0

G (T −N + 1, s) F
[(

s + α −N)h,u
(
(s + α −N)h

)]
≤

λ
Θ
‖u‖

T−N+1∑
s=0

G (T −N + 1, s)

≤ ‖u‖. (48)

Combining (47) and (48) and letting

Ωρ2 = {u ∈ C : ‖u‖ ≤ ρ2} where ρ2 = max
{
ρ3, ρ4

}
,

for u ∈ P ∩ ∂Ωρ2 we have

‖Sλu‖ ≤ ‖u‖. (49)

Hence, from (46) and (49) together with the second part of Theorem 1.1, it implies that Sλ has a fixed
point in P ∩ (Ω2 \Ω1). Therefore, the problem (1) has at least one positive solution. �

Corollary 3.5. If f0 = ∞ and F∞ = 0, then problem (1) has at least one positive solution.

Proof. Since f0 = ∞ and F∞ = 0, we can get

τΘ f0
T−N+1∑

s=0

s G (T −N + 1, s) = +∞

and
F∞
Θ

T−N+1∑
s=0

G (T −N + 1, s) = 0.

By Theorem 3.4, it implies that, for λ ∈ (0,∞), problem (1) has at least one positive solution. �

Theorem 3.6. Assume F0 < +∞ and F∞ < +∞. Then problem (1) has no positive solution when the following
condition is provided

λ <

ωΘ
T−N+1∑

s=0

G(T −N + 1, s)


−1

, (50)

where ω is a constant defined by (51).
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Proof. Since F0 < +∞ and F∞ < +∞, together with the definitions of F0 and F∞, there exist positive
constants ω1, ω2, ρ1, ρ2 satisfying ρ1 < ρ2 such that, for 0 < u 6 ρ1, we have

F(t,u) ≤ ω1u, for all u ∈ [0, ρ1],
F(t,u) ≤ ω2u, for all u ∈ [ρ2,∞).

Let

ω := max
{
ω1, ω2, max

(t,u)∈t∈(hN)(α−2N)h,(T+α−N+1)h×(ω1,ω2)

F(t,u)
u

}
. (51)

It follows that F(t,u) ≤ ωu for any u ∈ (0,∞). Suppose that x(t) is a positive solution of problem (1). That
is,

(Sλx) (t) = x(t), for all t ∈ (hN)(α−2N)h,(T+α−N+1)h .

In sequence,

‖x‖ = ‖Sλx‖

= max
t∈(hN)(α−2N)h,(T+α−N+1)h

λ
T−N+1∑

s=0

G
( t

h
− α, s

)
F
[(

s + α −N)h, x
(
(s + α −N)h

)]
≤

λ
Θ

T−N+1∑
s=0

G (T −N + 1, s) F
[(

s + α −N)h, x
(
(s + α −N)h

)]
≤

λω
Θ
‖x‖

T−N+1∑
s=0

G (T −N + 1, s) < ‖x‖,

which is a contradiction. Hence, problem (1) has at least one positive solution. �

Theorem 3.7. Assume f0 > 0 and f∞ > 0. Then problem (1) has no positive solution when the following condition
is provided

λ >

`Θ T−N+1∑
s=0

s G(T −N + 1, s)


−1

, (52)

where ` is a constant defined by (53).

Proof. Since f0 > 0 and f∞ > 0, together with the definitions of f0 and f∞, there exist positive constants
`1, `2, ρ1, ρ2 satisfying ρ1 < ρ2 such that, for 0 < u 6 ρ1, we have

F(t,u) ≥ `1u, for all u ∈ [0, ρ1],
F(t,u) ≥ `2u, for all u ∈ [ρ2,∞).

Let

` := min
{
`1, `2, min

(t,u)∈t∈(hN)(α−2N)h,(T+α−N+1)h×(κ1,κ2)

F(t,u)
u

}
. (53)

It follows that F(t,u) ≥ `u for any u ∈ (0,∞). Suppose that x(t) is a positive solution of problem (1). That
is,

(Sλx) (t) = x(t), for all t ∈ (hN)(α−2N)h,(T+α−N+1)h .
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In sequence,

‖x‖ = ‖Sλx‖ ≥ λ
T−N+1∑

s=0

s G (T −N + 1, s) F
[(

s + α −N)h, x
(
(s + α −N)h

)]
≥ λ`Θ‖x‖

T−N+1∑
s=0

s G (T −N + 1, s) > ‖x‖,

which is a contradiction. Hence, problem (1) has at least one positive solution. �

4. Some examples

In this section, in order to illustrate our results, we consider the problem

C∆
10
3

2 u(t) + λF
[
t −

4
3
,u

(
t −

4
3

)]
= 0, t ∈ (2N)0,30 , (54)u

(
−

10
3

)
= C∆

3
2
2 u

(
−

13
6

)
= C∆

7
3
2 u

(
− 6

)
= C∆

15
4

2 u
(
−

53
6

)
= 0,

u
(

92
3

)
= e−8∆

−
2
5

2 u
(

472
15

)
.

(55)

Setting α = 10
3 , N = 4, T = 15, β1 = 3

2 , β2 = 7
3 , β3 = 15

4 , γ = 2
5 , µ = e−8, we get that

µ <
Γ(γ)

h
∑T+α−N+1

s=α−2N s
(
(T + α + γ −N + 1)h − σh(s)

)γ−1

h

= 0.00079,

Φ =
h

Γ(γ)

T+α−N+1∑
s=α−2N

[ s − α + N + 1
T + 2

] (
(T + α + γ −N + 1)h − σh(s)

)γ−1

h
= 1265.823,

Θ =
µΦ

[(
(α − 1)h

)α−1

h
− 1

]
(
(T −N + α)h

)α−1

h

= 0.0058,

T−N+1∑
s=0

G(T −N + 1, s) =
h

Γ(α)

12∑
s=0

K (s)
Λ
−

(92
3
− σh(s)

) 7
3

2

 = 31153.39,

T−N+1∑
s=0

G(T −N + 1, s) =
h

Γ(α)

12∑
s=0

s

K (s)
Λ
−

(92
3
− σh(s)

) 7
3

2

 = 8719.62.

(i) If F(t,u(t)) =
(200u2 + u)(5 + t2)

u + 10
for t ∈ (2N)

−
28
3 ,

92
3

, then we have

F0 = lim
u→0+

 max
t∈− 28

3 ,
92
3

F
(
t,u(t)

)
u

 = 94.544,

f∞ = lim
u→∞

 min
t∈− 28

3 ,
92
3

F
(
t,u(t)

)
u

 = 1088.889.
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Choosing τ = 1
300 , we obtain

τΘ f∞
T−N+1∑

s=0

s G(T −N + 1, s)


−1

≤ 0.00544

F0

Θ

T−N+1∑
s=0

G(T −N + 1, s)


−1

≥ 1.945.

By Theorem 3.2, we can conclude that the problem (54)-(55) has at least one positive solution for λ ∈
(0.00544, 1.945). �
(ii) If F(t,u(t)) = u2(10 + t) for t ∈ (2N)

−
28
3 ,

92
3

, then we have

F0 = 0 and f∞ = +∞.

By Corollary 3.3, we can conclude that the problem (54)-(55) has at least one positive solution for λ ∈ (0,∞).
�

(iii) If F(t,u(t)) =
(πu2 + eu)(u + t2)

e20u2 + 2π
for t ∈ (2N)

−
28
3 ,

92
3

, then we have

f0 = lim
u→0+

 min
t∈− 28

3 ,
92
3

F
(
t,u(t)

)
u

 = 0.192,

F∞ = lim
u→∞

 max
t∈− 28

3 ,
92
3

F
(
t,u(t)

)
u

 = πe−20.

Choosing τ = 1
20 , we obtain

τΘ f0
T−N+1∑

s=0

s G(T −N + 1, s)


−1

≤ 2.059,

F∞
Θ

T−N+1∑
s=0

G(T −N + 1, s)


−1

≥ 284.191.

By Theorem 3.4, we can conclude that the problem (54)-(55) has at least one positive solution for λ ∈
(2.059, 284.191). �

(iv) If F(t,u(t)) =
(π sin u + 2(π + t) cos u)

u2 for t ∈ (2N)
−

28
3 ,

92
3

, then we have

f0 = +∞ and F∞ = 0.

By Corollary 3.5, we can conclude that the problem (54)-(55) has at least one positive solution for λ ∈ (0,∞).
�
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