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Abstract. In this note, we point out several gaps in the paper “On the lower bound for a class of harmonic
functions in the half space” by Zhang, Deng and Kou (Acta Math. Sci. Ser. B Engl. Ed., 32(4), 2012) and
give the main results under weaker conditions.

The origin of our work lies in Zhang, Deng and Kou [5]. In [5] Lemmas 1 and 2 and therefore also
Theorem 1 are erroneous. We give now the correction of these statements. The present notation and
terminology in the same as used in [5].

To this end, we start with an auxiliary proposition. Actually, this proposition is a direct corollary of [2,
p. 3296], in which harmonic majorization Theorems with respect to a half-space and their applications were
introduced. But it plays an important role in our discussions.

Proposition 1. Let H be an admissible domain with boundary ∂H in Rn. If u and v are two harmonic functions in
H, then we have ∫

∂H

(
u(x)

∂v(x)
∂n
− v(x)

∂u(x)
∂n

)
dσ(x) = 0,

where dσ(x) is the surface element of sphere in H and ∂/∂n denotes differentiation along the inward normal into H.

We now return to [5, Lemma 1] and give a corrected proof of it. This result does not seem easy to be
proved, hence we refer to utilize a slightly different approach. For more details about this procedure we
refer to [1], where a different problem is studied by a similar argument.

Lemma 1. Let u(x) be a harmonic function in the upper half space Rn
+ and continuous on ∂Rn

+ . Then∫
{x∈Rn

+:|x|=R}
u(x)

nxn

Rn+1 dσ(x) +

∫
{x∈Rn

+:r<|x′ |<R}
u(x′)

( 1
|x′|n
−

1
Rn

)
dx′ = c1(r) +

c2(r)
Rn (1)

for 0 < r < R, where

c1(r) =

∫
{x∈Rn

+:|x|=r}

( (n − 1)xn

rn+1 u(x) +
xn

rn
∂u(x)
∂n

)
dσ(x)

and
c2(r) =

∫
{x∈Rn

+:|x|=r}

(xn

r
u(x) − xn

∂u(x)
∂n

)
dσ(x).
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Remark 1. In [5, Lemma 1] the definition of ∂u/∂n is inaccurate, the expressions of c1(r) and c2(r) are incorrect.

Proof. Put

v(x) =
xn

|x|n
−

xn

Rn

in
B+(r,R) = {x ∈ Rn

+ : r < |x| < R}.

It is easy to see that v(x) is a harmonic function in B+(r,R). It follows that

v(x) = 0,
∂v(x)
∂n

=
nxn

Rn+1 (2)

on the half sphere {x ∈ Rn
+ : |x| = R},

∂v(x)
∂n

= −
xn

r

(n − 1
rn +

1
Rn

)
(3)

on the half sphere {x ∈ Rn
+ : |x| = r} and

v(x) = 0,
∂v(x)
∂n

=
1
|x|n
−

1
Rn (4)

on the set {x ∈ Rn
+ : r < |x′| < R}.

By applying Proposition 1 to two harmonic functions u(x) and v(x) in B+(r,R), we obtain that

U1 + U2 + U3 = 0, (5)

where

U1 =

∫
{x∈Rn

+:|x|=R}

(
u(x)

∂v(x)
∂n
− v(x)

∂u(x)
∂n

)
dσ(x),

U2 =

∫
{x∈Rn

+:|x|=r}

(
u(x)

∂v(x)
∂n
− v(x)

∂u(x)
∂n

)
dσ(x)

and

U3 =

∫
{x∈Rn

+:r<|x|<R}

(
u(x)

∂v(x)
∂n
− v(x)

∂u(x)
∂n

)
dσ(x).

It follows that

U1 =

∫
{x∈Rn

+:|x|=R}
u(x)

nxn

Rn+1 dσ(x), U2 = −c1(r) −
c2(r)
Rn

and

U3 =

∫
{x∈Rn

+:r<|x|<R}
u(x′)

( 1
|x′|n
−

1
Rn

)
dx′,

from (2), (3) and (4), respectively, which together with (5) give that (1) holds.
This lemma is proved.

The proof of [5, Lemma 2] fails at Line 3, p. 1491. The formula

G+
R(x, y) = G+

R(x, y) − G+
R(x∗, y)

should read
G+

R(x, y) = G+
R(x∗, y) − G+

R(x, y∗).

More importantly, the definition of the set B+
R is incorrect. Moreover, the hypothesis n > 2 should be added

in Lemma 2.
A correction of Lemma 2 reads as follows, which improve the corresponding one established by Kuran

in [2].
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Lemma 2. Let n > 2 and u(x) be defined as in Lemma 1. Then

u(x) =

∫
{y∈Rn

+: |y|=R}

R2
− |x|2

ωnR
(

1
|y − x|n

−
1

|y − x∗|n
)u(y)dσ(y)

+
2xn

ωn

∫
{y∈Rn

+:|y′ |<R}
(

1
|y′ − x|n

−
Rn

|x|n
1

|y′ − x̃|n
)u(y′)dy′

for any
x ∈ {x ∈ Rn

+ : |x| ≤ R},

where x̃ = R2x/|x|2 and x∗ = (x′,−xn).

Finally, what we get instead of [5, Theroem 1] is the following. The proof of it is carried out in the same
way as for Theorem 1 in [5], except that instead of the erroneous Lemmas 1 and 2 their corrected versions
above are used.

Theorem 1. Let u(x) be a harmonic function in Rn
+ and continuous on ∂Rn

+. Suppose that

u(x) ≤ Krρ, x ∈ Rn
+, r = |x| > 1, ρ > 1 (6)

and

u(x) ≥ −K, |x| ≤ 1, xn ≥ 0. (7)

Then the result in [5, Theorem 1] holds.

Remark 2. Conditions (6) and (7) are weaker than conditions (1) and (2) in [5, Theorem 1]. For the conical version
of Theorem 1, we refer the reader to the paper by Armitage [1] and Li & Vetro [3].
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[2] Ü. Kuran, Harmonic majorizations in half-balls and half-spaces, Proceedings of the London Mathematical Society 21 (1970)
614–636.

[3] Z. Li, M. Vetro, Levin’s type boundary behaviors for functions hamonic and admitting certain lower bounds, Boundary Value
Problems 2015 (2015) 139.

[4] D. H. Armitage, S. J. Gardiner, Classical Potential Theory, Springer Monographs in Mathematics, Springer-Verlag London Ltd.,
London, 2001.

[5] Y. Zhang, G. Deng, K. Kou, On the lower bound for a class of harmonic functions in the half space, Acta Mathematica Sinica,
English Series 32 (2012) 1487–1494.


