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Abstract. This paper concerns sub-topolocales as a generalization of subspaces which are determined by
their lattice of open sets. We first study topolocales (dual of topoframes), and sub-topolocales with the
connectivity properties of them. Then we show that every sub-topolocale of a regular (resp., completely
regular) topolocale is regular (resp., completely regular). Finally, we show that sub-topolocales of a normal
topolocale are not necessary normal unless we rewrite this for the special cases.

1. Introduction

Modern topology originates, in principle, from Hausdorff’s “Mengenlehre” [16] in 1914. One year
earlier there was a paper by Caratheodory [7] containing the idea of a point as an entity localized by a
special system of diminishing sets; this is also of relevance for the modern point-free thinking. The category
of locales as a substitute for the category of topological spaces was introduced by John Isbell (see [17]).
Of course, the idea of regarding frames as generalized topological spaces is a good deal older than this
(see the works of Menger [19], and McKinsey and Tarski [21] in the 1940s). Then many authors [1–6, 8–
11, 14, 15, 20, 22] have worked on variants of the idea. Frames (pointfree topologies) are complete lattices
in which the meet distributes over all joins. In general, there are two different approaches to pointfree
spaces and subspaces. In [12] and [26], we developed the theory of frames (pointfree topology), since we
need it for introducing an f -ring. For this, by embedding a frame τ in a larger frame L in order that all
members of τ are complemented in L, we get a pair (L, τ) called a topoframe. This is the second version of
pointfree topology. In a topoframe (L, τ), we have both open and closed elements (the members of τ and
their complements, respectively). So the extensive category of topoframes is actually generalized pointfree
topology (see also [25]).

When one adopts a localic formulation of topology, sublocales of a locale are of central importance
because they correspond to subspaces. In locale theory, the class of all sublocales of a locale as an extension
of a subspace is more important; for instance, the closure of a sublocale S is defined as the least closed
sublocale containing S (see [23]). In this paper, we define a sub-topolocale whose definition is similar to
that of a sublocale (to compare, see 2.2(2) and 3.3(4)). But here, we regard a sub-topolocale as a class of
open elements, closed elements and others, and therefore a sub-topolocale is itself a new pointfree form
of subspaces. However, one might view the class of all sub-topolocales of a topolocale as an extension of
subspaces in future.
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We now briefly summarize the established topolocale theory.
In Section 2, we collect a few facts that will be relevant for our discussion.
In Section 3, we first define a sub-topolocale as the image of a topo-nucleus on a topoframe. Then, to

obtain two types of sub-topolocales, we divide the topo-nuclei on a topoframe according to whether they
are kernel or closure operators. This section terminates in the fact that the open and closed elements of a
sub-topolocale of a topolocale (L, τ) are signified by the open and closed element of (L, τ), respectively.

In Section 4, we define connective topoframes (topolocales) and connected elements of a topoframe.
Meanwhile, we find the relation between a dense topo-nucleus and a dense sub-topolocale so that this is in
some sense fairly well understood, that is dense sub-topolocales are actually a mirror of dense subspaces.

Finally, in Section 5, preserving some structural properties of a topolocale such as regularity, complete
regularity and normality by the respective topo-nuclei will be considered.

2. A Bit of Background

Recall that a frame L is a complete lattice in which the infinite distributive law

a ∧
∨

S =
∨
s∈S

(a ∧ s)

holds for all a ∈ L and S ⊆ L. We denote the top element and the bottom element of a frame L by 1L and 0L
respectively. A frame map is a map between frames which preserves finite meets, including the top element,
and arbitrary joins, including the bottom element. An element a of a frame L is said to be coprime if a , 0
and a ≤ x ∨ y implies a ≤ x or a ≤ y.

Definition 2.1. ([18]) A nucleus on a locale (frame) A is a function j : A −→ A satisfying
(i) j(a ∧ b) = j(a) ∧ j(b)
(ii) a ≤ j(a)
(iii) j( j(a)) ≤ j(a)

for all a, b ∈ A.

Proposition 2.2. ([18]). Let j : A −→ A be a nucleus on a locale A. Then

1. the members of A which are fixed under j are exactly the members of j(A), and denoted by A j. That is

j(A) = {a ∈ A | j(a) = a}.

2. A j is a frame called a sublocale of A and j : A −→ A j is a frame epimorphism.

A topoframe is a pair (L, τ), abbreviated Lτ, containing a frame L with a subframe τ all of whose elements
are complemented in L (see [12] and [26]). For any topological space X, (P(X),O(X)) is a topoframe, where
O(X) is the lattice of open sets of X considered as a subframe of the power set P(X). A Please, prepare the
paper in Filomat format STRICTLY following instructions in the attached template and upload (and send
to me, too) Please, prepare the paper in Filomat format STRICTLY following instructions in the attached
template and upload (and send to me, too) topoframe map f from a topoframe (L1, τ1) to a topoframe (L2, τ2)
is a frame map f from L1 to L2 with the property f (τ1) ⊆ τ2. Each member of τ is called open and each
member of τ′ := {t′ | t ∈ τ} is called closed.

Definition 2.3. ( [25]) If (L, τ) is a topoframe and p ∈ L, the closure of p in L is defined by

Cl(L,τ)(p) = p :=
∧
{q ∈ τ′ | p ≤ q} ,

and the interior of p is defined by

Int(L,τ)(p) = p◦ :=
∨
{t ∈ τ | t ≤ p} .
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Proposition 2.4. ([25]) Let Lτ be a topoframe. Then for every p, q ∈ L, the following properties hold.

1. 0 = 0◦ = 0 and 1 = 1◦ = 1.

2. If p ≤ q, then p ≤ q and p◦ ≤ q◦.

3. p ≤ p and p◦ ≤ p.

4. p = p and (p◦)◦ = p◦.

5. p ∈ τ′ if and only if p = p, and p ∈ τ if and only if p = p◦.

6. p ∨ q = p ∨ q and (p ∧ q)◦ = p◦ ∧ q◦.

Mimicking the contruction of the f -ring operations on R(τ) := HomFrm(O(R); τ) by Ball and others
[1, 2]-or those on the systematic version ofR(τ) by Banaschewski [3], we showed in [12] that the set of “real-
continuous functions” R(Lτ), consisting of all frame homomorphisms f : P(R) −→ L such that f (O(R)) ⊆ τ,
with the operator � ∈ {+, .,∧,∨} defined by

( f � 1)(X) =
∨
{ f (Y) ∧ 1(Z) | Y � Z ⊆ X},

where
Y � Z = {y � z | y ∈ Y, z ∈ Z} ,

or, equivalently,

( f � 1)(X) =
∨
{ f ({x}) ∧ 1({y}) | x � y ∈ X} (1)

is a sub- f -ring of R(τ).

Definition 2.5. ([13]) For every f ∈ R(Lτ), f ({0}) is called the zero-element of f and denoted by z( f ). Also the
cozero-element of f is defined by coz( f ) := z( f )′.

Let L be a lattice. We say that an element a ∈ L has a pseudo-complement if there exists a largest element
a∗ of L such that a ∧ a∗ = 0. An element a of L is said to be rather below an element b, written as a ≺ b, if
there is an element s such that a ∧ s = 0 and s ∨ b = 1; in other words, a∗ ∨ b = 1. For any x, t in a frame L,
we say that x interpolates t and write x ≺≺ t, if there exists a trail {ai}i∈[0,1]∩Q ⊆ L such that a0 = x, a1 = t and
for every p, q ∈ [0, 1] ∩Qwith p < q, ap ≺ aq.

Lemma 2.6. ([23]) For any frame homomorphism h : L −→M, a ≺ b in L implies h(a) ≺ h(b) in M, and consequently
a ≺≺ b⇒ h(a) ≺≺ h(b).

Definition 2.7. ([25]) Let τ be a topoframe on L. For any a ∈ L, define

a⊥ :=
∨
{t ∈ τ | a ∧ t = 0} .

Lemma 2.8. ([25]) Let Lτ be a topoframe. Then

1. for any a ∈ τ, a⊥ = a∗ = (a)′ = (a′)◦,
2. if a, b ∈ τ, then a ≤ b if and only if a ≺ b in τ,

where the peudo-complement of a is formed in τ.
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Proof. 1. Using Proposition 2.4, we have a ∧ (a)′ ≤ a ∧ (a)′ = 0. So (a)′ belongs to the set

{t ∈ τ | a ∧ t = 0} .

On the other hand, let t ∈ τ in order that a ∧ t = 0. Then a ≤ t′ by the distributiviy of L, and a ≤ t′ = t′ by
Proposition 2.4. So t ≤ (a)′, and hence a⊥ = a∗ = (a)′. Moreover,

(a′)◦ =
∨
{t ∈ τ | t ≤ a′} = (

∧
{t′ ∈ τ′ | a ≤ t′})′ = (a)′ .

2.Using part 1, we have a ≤ b if and only if (a)′∨ b = 1 if and only if a∗∨ b = 1 if and only if a ≺ b in τ.

The following well-known theorems are stored on the source files in Shahid Beheshti University by
M.M. Ebrahimi and M. Mahmoudi. Also, some results in the next section initiates from their counterparts
in those manuscripts.

Theorem 2.9. Let P,Q be posets considered as categories and let F : P → Q, G : Q → P be functors. Then the
following statements are equivalent:

1. F is a left adjoint to G.

2. For every (a, b) ∈ P ×Q, F(a) ≤ b if and only if a ≤ G(b).

3. For every (a, b) ∈ P ×Q, a ≤ GF(a) and FG(b) ≤ b.

Moreover, these conditions imply
4. FGF = F and GFG = G.

5. GF and FG are idempotent.

Theorem 2.10. Let P,Q be posets and f : P→ Q, 1 : Q→ P be order-preserving maps.

1. If P is a complete poset and f preserves all joins then f has a right adjoint (given by b 7→
∨
{a ∈ P : f (a) ≤ b}).

2. If Q is a complete poset and 1 preserves all meets then 1 has a left adjoint (given by a 7→
∧
{b ∈ Q : 1(b) ≥ a}).

3. Topolocales and Sub-topolocales

Let X be a topological space. It is known that a subspace of X can be written in exactly one way in the
form (E, {E∩V | V ∈ O(X)}) for some E ⊆ X. The subspace (E, {E∩V | V ∈ O(X)}) is actually a homomorphic
image of (P(X),O(X)) under the idempotent, monotone self-map j := E ∩ (−) on P(X) with j(A) ⊆ A for all
A ⊆ X. It gives the idea of regarding new topoframes as the homomorphic images of topoframes under
special maps. Such a generalization would yield any new topoframes called sub-topolocales which are
presented in this section.

Let (L,∨,∧, 0, 1) be a frame, M a set and j a map from L to M. Then evidently, j(L), under the partial
ordering inherited from L, is a bounded partially ordered set with the bottom element j(0) and top element
j(1). For every subset ∅ , S of L, define a join

∨ j(L)
{ j(a) | a ∈ S} := j(

∨L S) and a meet
∧ j(L)

{ j(a) | a ∈ S} :=
j(
∧L S), so that ( j(L),∨ j(L),∧ j(L), j(0), j(1)) is a complete lattice. The arguments for any order-preserving map

that assigns to each element of a poset (partially ordered set) an element of a topoframe are similar as
follows.

Lemma 3.1. Let (L, τ) be a topoframe. Let M be a poset and j be an order-preserving map from L to M. Then

1. j(L) with the definitions
∨ j(L),∧ j(L), j(0) and j(1) mentioned above is a frame;

2. j(τ) is a subframe of j(L);
3. ( j(L), j(τ)) is a topoframe, and hence we can say j is a topoframe map.
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Proof. By the preceding discussion, it suffices to prove part (3): every subset j(S) of j(τ), where S ⊆ τ, has
the join j(

∨L S) in j(τ), since
∨L S ∈ τ, and every finite subset j(F) of j(τ), where F ⊆ τ, has a meet j(

∧L F) in
j(τ), since

∧L F ∈ τ. Also, every element j(t) ∈ j(τ) has the complement j(t′) in j(L), since

j(t) ∧ j(L) j(t′) = j(t ∧L t′) = j(0) and j(t) ∨ j(L) j(t′) = j(t ∨L t′) = j(1)

for every t ∈ τ. Finally, on j(L) and consequently on j(τ) the binary meet distributes over arbitrary joins,
since for every a ∈ L and S ⊆ L, we have

j(a) ∧ j(L)
j(L)∨
s∈S

j(s) = j(a) ∧ j(L) j(
∨

S)

= j(a ∧L
L∨

S)

= j(
L∨
{a ∧L s | s ∈ S}) since τ is a frame

=

j(L)∨
{ j(a ∧L s) | s ∈ S}

=

j(L)∨
{ j(a) ∧ j(L) j(s) | s ∈ S} .

Generalizing the algebraic properties of the pair (P(X),O(X)) of a topological space X, we get the abstract
notion of a topoframe. But what we have overlooked is the fact that for any continuous map f : X −→ Y
between topological spaces X and Y we have the map f−1 : P(Y) −→ P(X), where f−1(A) = {x ∈ X | f (x) ∈ A}
for all A ∈ P(Y), of topoframes in the reverse direction. Because of this reversal direction, and to get a
more direct generalization of the notion of a topology, we consider the opposite of the category TFrm of
topoframes which is denoted by TLoc and its objects are called topolocales.

Since TLoc is the dual of the category TFrm, a topolocale is just a topoframe, but a map between
topolocales (also called a continuous map) is a topoframe map in the opposite direction. In other words, so
long as we are working only with objects, the terms “topoframe” and “topolocale” are synonymous.

Definition 3.2. A topo-nucleus on a topoframe (L, τ) is a function j : L −→ L satisfying
(i) j(a ∧ b) = j(a) ∧ j(b)
(ii) j( j(a)) = j(a)

for all a, b ∈ L. A topo-nucleus on a topoframe (L, τ) is called a ↗ topo-nucleus on (L, τ) (or a nucleus on L),
if a ≤ j(a) for all a ∈ L and a ↘ topo-nucleus on (L, τ), if j(a) ≤ a for all a ∈ L.

Proposition 3.3. Let (L, τ) be a topoframe. Suppose that j is a topo-nucleus on L. Then
1. j is order preserving;
2. the members of L fixed under j, denoted by L j, are exactly the members of j(L);
3. the members of j(τ) (resp. j(τ′)) are fixed under j;
4. (L j, j(τ)), with ∧L and the join induced by j, is a topoframe which in TLoc we call a sub-topolocale of (L, τ);
5. j : (L, τ) −→ (L j, j(τ)) is an epimorphism in TFrm (or a monomorphism in TLoc).

Proof. 1. Since j preserves finite meets.
2. Clearly {a ∈ L | j(a) = a} ⊆ j(L). Also, j(L) ⊆ {a ∈ L | j(a) = a}, since j( j(a)) = j(a) for every j(a) ∈ j(L). So

j(L) = {a ∈ L | j(a) = a}.
3. Since the members of j(L) are fixed under j and j(τ) ⊆ j(L), the members of j(τ) are also fixed under j

and similarly for j(τ′).
4. It follows from Lemma 3.1 and that j(a ∧ b) = j(a) ∧ j(b), for all a, b ∈ L.
5. By Lemma 3.1, j : (L, τ) −→ (L j, j(τ)) is a topoframe map. It is clear that j : (L, τ) −→ (L j, j(τ)) is onto,

so that j is an epimorphism of topoframes.
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Let P be a poset. It is known that an idempotent, monotone self-map π : P→ P is called a kernel operator
if and only if π(p) ≤ p, and a closure operator if and only if p ≤ π(p), where p stands for arbitrary element in
P.

Proposition 3.4. Let (L, τ) be a topoframe and j a ↗ topo-nucleus on (L, τ). Then

1. j is a closure operator;
2. j(1) = 1.

Proof. 1. Since for every a, b ∈ L, j(a ∧ b) = j(a) ∧ j(b), j is order-preserving and since j( j(a)) = j(a), for all
a ∈ L, j is idempotent. Finally, and most importantly, a ≤ j(a) for all a ∈ L. Hence j is a closure operator.

2. j(1) = 1, since, by definition, j(1) ≥ 1.

Proposition 3.5. Let (L, τ) be a topoframe and j a ↘ topo-nucleus on (L, τ). Then

1. j is a kernel operator;
2. j(0) = 0.

Proof. 1. Trivial.
2. j(0) = 0, since, by definition, j(0) ≤ 0.

Example 3.6. Let f : M −→ L be a monomorphism between topolocales (L,A) and (M,B). Let the cor-
responding frame map be f ∗ : L −→ M and let f∗ be the right adjoint of f . Then f ∗ f∗ : M −→ M is a
↘ topo-nucleus on M. The first two properties of a ↘ topo-nucleus for f ∗ f∗ follows from the fact that f ∗

is a left adjoint to f∗ (see Theorem 2.9). Further f ∗ f∗ preserves binary meets since both f∗ and f ∗ do (this is
because f ∗ is a frame map and f∗ is a right adjoint).

By the following example, we call a sub-topolocale (L j, j(τ)) induced by a ↗topo-nucleus j on (L, τ) a
↗sub-topolocale.

Example 3.7. For any e ∈ L, a sub-topolocale of a topolocale (L, τ), induced by the self-map e∨ (−) : L −→↑ e
that takes any x to e ∨ x is a ↗ sub-topolocale denoted by (↑ e, τe), where ↑ e := {x ∨ e | x ∈ L} and
τe = {t ∨ e | t ∈ τ}.

Similarly, by the following example, we call a sub-topolocale (L j, j(τ)) induced by a ↘topo-nucleus j
on (L, τ) a ↘sub-topolocale.

Example 3.8. For any e ∈ L, a sub-topolocale of a topolocale (L, τ), induced by the self-map e∧ (−) : L −→↓ e
sending any x to e ∧ x is a↘ sub-topolocale of (L, τ) denoted by (↓ e, τe), where ↓ e := {x ∧ e | x ∈ L} and
τe = {t ∧ e | t ∈ τ}. In this context, we call (↓ e, τe), a pointfree subspace of (L, τ).

Lemma 3.9. Let (τ;∧,
∨
, 1, 0) be a topoframe on (L;∧,

∨
, 1, 0). Then

(
∨
i∈I

ai)′ =
∧
i∈I

a′i ,

where {ai}i∈I ⊆ τ.

Proof. Straightforward.

Proposition 3.10. In a sub-topolocale (L j, j(τ)) of a topolocale (L, τ),

1. b ∈ L j is open in L j if and only if b = j(t), for some open element t in L;
2. b ∈ L j is closed in L j if and only if b = j(t′), for some closed element t′ in L;
3. if (L j, j(τ)) is a ↗ sub-topolocale, then for every b ∈ L j,

Int(L j, j(τ))(b) = j(Int(L,τ)(b)) .
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4. if (L j, j(τ)) is a↘ sub-topolocale, then for every b ∈ L j,

Cl(L j, j(τ))(b) = j(Cl(L,τ)(b)) .

Proof. 1. It is just the definition of a sub-topolocale on L j.
2. Since L (and consequently L j) is distributive, it follows directly from the uniqueness of complements

in L j.
3. For every b ∈ L j,

Int(L j, j(τ))(b) =
∨ j(τ)

{q ∈ j(τ) | q ≤ b}
=
∨ j(τ)

{ j(t) | t ∈ τ, j(t) ≤ b} by part (1)
= j(

∨
{t | t ∈ τ, j(t) ≤ b})

= j(
∨
{t | t ∈ τ, t ≤ b}) since t ≤ j(t) and j(b) = b

= j(Int(L,τ)(b)) .

4. For every b ∈ L j, we have

Cl(L j, j(τ))(b) =
∧ j(τ)′

{q ∈ j(τ)′ | b ≤ q}
=
∧ j(τ)′

{ j(t′) | t ∈ τ, b ≤ j(t′)} by part (2)
=
∧ j(τ)′

{ j(t)′ | t ∈ τ, b ≤ j(t′)}
= (

∨ j(τ)
{ j(t) | t ∈ τ, b ≤ j(t′)})′ by Lemma 3.9

= ( j(
∨
{t ∈ τ | b ≤ j(t′)}))′

= j((
∨
{t ∈ τ | b ≤ j(t′)})′)

= j(
∧
{t′ | t ∈ τ, b ≤ j(t′)}) by Lemma 3.9

= j(
∧
{t′ | t ∈ τ, b ≤ t′}) since j(t′) ≤ t′ and j(b) = b

= j(Cl(L,τ)(b)) .

The open elements in a↘ sub-topolocale (↓ e, τe) of (L, τ) are the meets with e of the open elements in
L. Most, but not all, of the related topoframe notions are introduced into e in the same way, by meet, as
follows.

Corollary 3.11. Let (L, τ) be a topolocale and e ∈ L. Then for the↘ sub-topolocale (↓ e, τe) and the ↗ sub-topolocale
(↑ e, τe), the following statements hold.

1. b ∈↓ e is open in (↓ e, τe) if and only if b = t ∧ e, where t is open in L;
2. c ∈↓ e is closed in (↓ e, τe) if and only if c = t′ ∧ e where t′ is closed in L;
3. b ∈↑ e is open in (↑ e, τe) if and only if b = t ∨ e, where t is open in L;
4. c ∈↑ e is closed in (↑ e, τe) if and only if c = t′ ∨ e where t′ is closed in L;
5. For every b ≥ e, Int(↑e,τe)(b) = e ∨ Int(L,τ)(b).
6. For every b ≤ e, Cl(↓e,τe)(b) = e ∧ Cl(L,τ)(b).

4. Connectedness in Topoframes (Topolocales)

The topological study of connectedness is heavily geometric (or visual). But the viewpoint of topoframes
of connectedness in lattice theory makes it algebraic. All known examples and counterexamples given in
topological spaces are true for the analogous statement in topoframes. Henceforth we avoid presenting
them, as much as possible. By the way, almost all of the material developed in this section are analogous to
those of general topology stated in [24].

The elements a and b in a bounded lattice L are called disjoint if and only if a ∧ b = 0. We say that a is
non-zero if and only f a , 0. A convenient way of expressing the relation a ≤ b in words is to say that a is
below b, and that b is above a, or that b dominates a. An element a in a topoframe is called clopen if it is both
open and closed.
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Definition 4.1. A topoframe (L, τ) is called disconnected if and only if there are disjoint non-zero elements
a, b ∈ τ such that a ∨ b = 1. Clearly, such a and b are clopen and a′ = b. We then say that 1 is disconnected
by two clopen elements a and a′. When no such disconnection exists, Lτ is called connected.

Definition 4.2. A topoframe map h : (L,A) −→ (M,B) is called dense if and only if the frame map h|A : A −→ B
is dense; that is x = 0 whenever h(x) = 0, for all x ∈ A. The notion of a codense topoframe map is defined
dually; that is x = 1 whenever h(x) = 1, for all x ∈ A.

The definition of a dense function in frames and topoframes arise from dense images of continuous
functions in topological spaces, by the well-known fact that a continuous map f : X −→ Y is dense if and
only if f−1 : O(Y) −→ O(X) is dense as a frame map.

Proposition 4.3. The image of a disconnected topoframe under a dense topoframe map is disconnected.

Proof. Let (L1, τ1) and (L2, τ2) be topoframes. Suppose (L1, τ1) is disconnected and f is a dense topoframe
map from (L1, τ1) onto (L2, τ2). If 1L1 were disconnected by a and b, then 1L2 would be disconnected by f (a)
and f (b), because f (a) and f (b) are clopen by the continuity of f , and non-zero by the density of f . So (L2, τ2)
must be disconnected.

Definition 4.4. Let (L, τ) be a topoframe. Non-zero elements a and b in L are mutually separated in (L, τ) if
and only if

a ∧ b = a ∧ b = 0 .

Lemma 4.5. A topoframe (L, τ) is connected if and only if there are no mutually separated elements a and b in L with
1 = a ∨ b.

Proof. If 1 is disconnected by non-zero clopen elements a and b in (L, τ), then a and b are mutually separated
in (L, τ), since a and b are closed in (L, τ) and hence a ∧ b = a ∧ b = a ∧ b = 0.

Conversely, if a and b are mutually separated in (L, τ) with 1 = a∨ b, then 1 = a∨ b ≤ a∨ b and 0 = a∧ b.
So b = a′ ∈ τ and hence b is open in L. Similarly we can show that a is open in L, so that a and b are non-zero
disjoint open elements in L with 1 = a ∨ b.

Remark 4.6. It is an immediate consequence of Lemma 4.5 that if (L, τ) is a topoframe (topolocale) and j is
a topo-nucleus on L, then the following statements are equivalent.

1. (L j, j(τ)) is disconnected.
2. There are mutually separated elements a and b in L j with a ∨L j b = j(1).

Let (L, τ) be a topoframe. An element e ∈ L is called disconnected if there are disjoint non-zero elements
a, b ∈ τe such that a ∨ b = e. By the following proposition, we use sometimes the topological term “e is
connected (resp. disconnected)” instead of “(↓ e, τe) is connected (resp. disconnected)”.

Proposition 4.7. Let (L, τ) be a topoframe and e ∈ L. Then the following statements are equivalent.

1. (↓ e, τe) is connected.
2. e is connected.
3. There are no mutually separated elements a and b in L with e = a ∨ b.

Proof. By definition, parts (1) and (2) are equivalent. Also, by Remark 4.6, Parts (1) and (3) are equivalent.

Corollary 4.8. If a and b are mutually separated in (L, τ) and e is a connected element below a ∨ b, then e ≤ a or
e ≤ b.
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Proof. Since a and b are mutually separated in (L, τ), we have e ∧ a∧b∧e ≤ a∧b = 0 and e ∧ b∧a∧e ≤ b∧a = 0,
and since e is connected, we have e ∧ a = 0 or e ∧ b = 0, unless e ∧ a and e ∧ b are mutually separated in
(L, τ) with e = e ∧ (a ∨ b) = (e ∧ a) ∨ (e ∧ b). By using Proposition 4.7, we contradict the assumption that e is
connected. If e ∧ a = 0, then e = e ∧ (a ∨ b) = e ∧ b, and if e ∧ b = 0 then e = e ∧ (a ∨ b) = e ∧ a. Hence e ≤ b or
e ≤ a.

The last proposition and its corollary provides us with some neat ways of proving a given topoframe
(L, τ) is connected. For this purpose consider, first, the following lemma.

Lemma 4.9. Let (L, τ) be a topoframe, and let a1 and a2 be connected elements of L with a1 ∧ a2 , 0. Then a1 ∨ a2 is
connected.

Proof. Let c := a1 ∨ a2. Using Proposition 4.7, we suppose that, to the contrary, c = a ∨ b, where a and b are
mutually separated in (L, τ). Then, since ai is a connected element below a ∨ b for each i = 1, 2, we have
ai ≤ a or ai ≤ b, by Corollary 4.8. Since the ai’s are not disjoint, while a and b are, we must have ai ≤ a for
i = 1, 2 or ai ≤ b for i = 1, 2; say the latter. Then c ≤ b, so a = 0, since a = a ∧ c = a ∧ b ≤ a ∧ b = 0. Thus c can
never be the join of two (non-trivial) mutually separated elements in (L, τ), and so c is connected.

In a topoframe, the meet of any two connected elements need not necessarily be connected. However,
by Lemma 4.9, the join of two connected elements a and b is connected if and only if a ∧ b is non-zero.

Proposition 4.10. Let (L, τ) be a topoframe. Suppose that {aλ}λ∈Λ and {bn}n∈N are subsets of L. Then

1. if
∨

aλ = 1,
∧

aλ , 0, and for each λ the pointfree subspace (↓ aλ, τaλ ) is connected, then (L, τ) is connected;
2. if

∨
∞

n=1 bn = 1, where for each n ∈ N, (↓ bn, τbn ) is connected and bn−1 ∧ bn , 0 for each n ≥ 2, then (L, τ) is
connected.

Proof. 1. Suppose a and b are mutually separated in (L, τ) with 1 = a ∨ b. Then, since aλ is a connected
element below a ∨ b for each λ, we have aλ ≤ a or aλ ≤ b, by Corollary 4.8. Since the aλ’s are not disjoint,
while a and b are, we must have aλ ≤ a for all λ or aλ ≤ b for all λ; say the latter. Then 1 ≤ b, so that a = 0,
because a = a ∧ 1 = a ∧ b ≤ a ∧ b = 0. Thus 1 can never be the join of two (non-trivial) mutually separated
elements in (L, τ), and so (L, τ) is connected.

2. b1 is connected, and if b1 ∨ ... ∨ bn−1 is connected, so is an = b1 ∨ ... ∨ bn by Lemma 4.9. Thus, by
Proposition 4.7, (↓ an, τan ) is connected, for n = 1, 2, ... . Since

∧
an = b1 is non-zero and

∨
an = 1, (L, τ) is

connected, by part (1).

A sub-topolocale (L j, j(τ)) of a topolocale (L, τ) is called dense if and only if j is a dense map, and the
element e is dense in (L, τ) if and only if e⊥ = 0, or equivalently, e = 1.

Remark 4.11. In a topoframe (L, τ), if e ∈ L is a dense element, then the pointfree subspace (↓ e, τe) is dense,
because whenever j(t) = 0, for some t ∈ τ, then t ∧ e = 0 and hence 1 = e ≤ t′ = t′, that is t = 0. Conversely,
let (↓ e, τe) is a dense pointfree subspace. Then, by definition, e⊥∧ e = 0, i.e., j(e⊥) = 0. Consequently, e⊥ = 0,
since j is a dense map and e⊥ ∈ τ. Thus e is a dense element, as desired.

The following proposition states that if a topolocale (L, τ) has at least a connected dense ↘ sub-
topolocale, then (L, τ) is connected.

Proposition 4.12. Every dense↘ sub-topolocale of a disconnected topolocale is disconnected. In particular, every
dense pointfree subspace of a disconnected topoframe (topolocale) is disconnected.

Proof. Suppose (L, τ) is disconnected and (L j, j(τ)) a dense↘ sub-topolocale of (L, τ). Assume that 1 = c∨d,
where c and d are disjoint, (non-trivial) clopen elements in L. Then j(1) = j(c) ∨L j j(d). Also j(c) and j(d) are
disjoint since j(c) ∧ j(d) = j(c ∧ d) = j(0) = 0, and clopen elements in L j, by parts (1) and (2) of Proposition
3.10. To show that j(c) and j(d) are non-trivial, assume, to the contrary, that j(c) = 0, say. Then c = 0, by the
density of j. This contradicts the fact that c is non-zero. Thus j(c) and j(d) are non-zero and so (L j, j(τ)) is
disconnected.
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Corollary 4.13. Let (L, τ) be a topoframe . If e is a connected element of L and e ≤ a ≤ e, then a is connected.

Proof. Suppose, to the contrary, that a is disconnected. To derive a contradiction, by using Proposition 4.12
and Remark 4.11, it is enough to show e is dense in (↓ a, τa). Since a ≤ e, we have a ≤ e ∧ a, and, by part (6)
of Proposition 3.11, a ≤ Cl(↓a,τa)(e). On the other hand, since e ≤ a, we infer Cl(↓a,τa)(e) ≤ a. So Cl(↓a,τa)(e) = a,
that is e is disconnected, by definition.

If one needs connectedness of a topoframe which is not itself connected, one can usually just look at the
individual “components” (maximal connected pieces) of 1, as described now.

Let (L, τ) be a topoframe. For any a ∈ L and a connected element 0 < x ≤ a, if it exists, the largest
connected element c of L with x ≤ c ≤ a is called a component of a dominating x. In particular, for any
coprime element p ∈ L as a connected element below a member a, if it exists, the largest connected element
c of L with p ≤ c ≤ a is a component of a dominating p. In a topoframe (L, τ) a component of 1L dominating
a coprime element p, if it exists, is the supremum of all connected elements dominating p. If c1 and c2 are
two different components of a member a, whenever they exist, then c1 ∧ c2 = 0; otherwise, by Lemma 4.9,
c1 ∨ c2 would be a connected element greater than c1 and c2 , which is impossible. Applying this argument,
we infer that if {aλ}λ∈Λ is the family of all components of 1L, whenever this exists, then aλ1 ∧ aλ2 = 0 for each
λ1 , λ2 in Λ.

Remark 4.14. Let (L, τ) be a topoframe. The components of 1L (when they exist) are closed elements. For
this, let c be a component of 1L in L. Then, by Corollary 4.13, c is a connected element which dominates c.
Since c is a component of 1L, this implies c = c. Hence c is closed.

5. Special Sub-topolocales

In this section, we show that any sub-topolocale of a regular (resp. completely regular) topolocale is
also regular (resp. completely regular). Then we show that some special kind of sub-topolocales of normal
topolocales are normal.

As is defined in [27], a topoframe (topolocale) Lτ is said to be regular if and only if for every t ∈ τ,

t =
∨
{x ∈ τ | x ≤ t} ,

and Lτ is said to be completely regular if and only if for every t ∈ τ, there exists { fi}i∈I ⊆ R(Lτ) such that

t =
∨

coz( fi)≤t

coz( fi) .

Proposition 5.1. Each sub-topolocale of a regular topolocale is regular.

Proof. Let (L, τ) be a regular topolocale and j a topo-nucleus on (L, τ). Let j(t) ∈ j(τ) for some t ∈ τ. Then for
such t, we have

t =
∨
{x ∈ τ | x ≺ t in τ} ,

by Lemma 2.8. Hence

j(t) = j(
∨
{x ∈ τ | x ≺ t})

=
∨L j
{ j(x) | x ∈ τ, x ≺ t in τ} by definition

≤
∨L j
{ j(x) | x ∈ τ, j(x) ≺ j(t) in j(τ)} by Lemma 2.6

=
∨L j
{ j(x) | x ∈ τ,Cl(L j, j(τ)) j(x) ≤ j(t)} by Lemma 2.8

≤ j(t) .

Hence the sub-topolocale (L j, j(τ)) is a regular topolocale.
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Consider now the following assertion.

Proposition 5.2. Each sub-topolocale of a completely regular topolocale is completely regular.

Proof. Let (L, τ) be a completely regular topolocale and j a topo-nucleus on (L, τ) and let j(t) ∈ j(τ) for some
t ∈ τ. Since Lτ is completely regular, there exists { fi}i ⊆ R(Lτ) such that

t =
∨

i

{coz( fi) | coz( fi) ≤ t} .

Note that for any i, the composite j ◦ fi of two topoframe map j and fi is a topoframe map belonging to
R((L j) j(τ)). Hence

j(t) = j(
∨

i{coz( fi) | coz( fi) ≤ t})

=
∨L j
{ j(coz( fi)) | coz( fi) ≤ t}

≤
∨L j
{ j(coz( fi)) | j(coz( fi)) ≤ j(t)}

=
∨L j
{coz( j ◦ fi) | j ◦ fi ∈ R((L j) j(τ)), coz( j ◦ fi) ≤ j(t)}

≤ j(t)

and so the sub-topolocale (L j, j(τ)) is completely regular.

Finally, we show that certain types of sub-topolocales of a normal topolocale are normal. A topoframe
(topolocale) Lτ is normal if and only if whenever a and b are disjoint closed elements in L, there are disjoint
open elements u and v with a ≤ u and b ≤ v. The next lemma presents an equivalence statement for
normality that will be needed later.

Lemma 5.3. A topoframe (topolocale) Lτ is normal if and only if for any closed element k and open element t in L
with k ≤ t, there exists an open element v such that

k ≤ v ≤ v ≤ t .

Proof. Let k ∈ τ′ and t ∈ τ with k ≤ t. Then k ∧ t′ = 0 in τ′ and hence there are u, v ∈ τ with u ∧ v = 0, t′ ≤ u
and k ≤ v. Therefore k ≤ v ≤ u′ ≤ t. Consequently,

k ≤ v ≤ v ≤ u′ ≤ t ,

since u′ is closed.
For the converse, let a, b ∈ τ′ with a ∧ b = 0. Then a ≤ b′ and hence there exists an open element v such

that
a ≤ v ≤ v ≤ b′ .

So that a ≤ v, b ≤ v′ and v ∧ v′ ≤ v ∧ v′ = 0.

Theorem 5.4. Let (L, τ) be a normal topolocale and let j be a topo-nucleus on L. Then the following statements hold.

1. If j is a↘ topo-nucleus with j(τ′) ⊆ τ′, then (L j, j(τ)) is a normal topolocale.
2. If j is a↗topo-nucleus with j(τ) ⊆ τ, then (L j, j(τ)) is a normal topolocale.

Proof. 1. Let j(k), for some k ∈ τ′, be a closed element in L j and let j(t), for some t ∈ τ, be an open element
in L j with j(k) ≤ j(t). Then j(k) ≤ t, since j(t) ≤ t, and j(k) is closed, since j(τ′) ⊆ τ′. Using Lemma 5.3, for
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closed element j(k) in L, and open element t in L with j(k) ≤ t, there exists an open element v in L such that
j(k) ≤ v ≤ v ≤ t. Now, using part (2) of Lemma 2.8, we have the equivalence

v ≤ t if and only if v ≺ t in τ ,

and, by Lemma 2.6, we have the implication

v ≺ t in τ implies j(v) ≺ j(t) in j(τ) .

Again, using part (2) of Lemma 2.8, we have

j(v) ≺ j(t) in j(τ) implies Cl(L j, j(τ)) j(v) ≤ j(t) .

On the other hand, j(k) ≤ v implies j(k) ≤ j(v), so that

j(k) ≤ j(v) ≤ Cl(L j, j(τ)) j(v) ≤ j(t) ,

as desired.
2. The proof of the second assertion is similar.

Consider, finally, the following result.

Corollary 5.5. Let (L, τ) be a normal topolocale. Then the following statements hold.

1. If e is a closed element in L, then (↓ e, τe) is a normal topolocale, and
2. If e is an open element in L, then (↑ e, τe) is a normal topolocale.

Proof. 1. Since e is a closed element in L, for any closed element a ∈ L, a ∧ e is also closed in L. So the
↘ topo-nucleus j := e ∧ (−) restricted to τ′ takes value in τ′ and thus, by part (1) of Theorem 5.4, (↓ e, τe) is
a normal topolocale.

2. Since e is an open element in L, for each open element a ∈ L, a ∨ e is also open in L. So the closed
topo-nucleus j := e ∨ (−) restricted to τ takes value in τ and thus, by part (2) of Theorem 5.4, (↑ e, τe) is a
normal topolocale.
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[7] C. Caratheodory, Über die Begrenzung einfach zusamenhängender Gebiete, Math. Ann. 73 (1913).
[8] C.H. Dowker, D. Papert, Quotient frames and subspaces, Proc. London Math. Soc. (3) 16 (1966) 275–296.
[9] T. Dube, Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, Algebra Universalis 61 (2009) 115–138.

[10] T. Dube, Some ring-theoretic properties of almost P-frames, Algebra Universalis 60 (2009) 145–162.



M. Zarghani, A. A. Estaji / Filomat 32:8 (2018), 2721–2733 2733

[11] C. Ehresmann, Gattungen von lokalen strukturen, Jber. Deutsch. Math. Verein 60 (1957) 59–77.
[12] A.A. Estaji, A. Karimi Feizabadi, M. Zarghani, The ring of real-continuous functions on a topoframe, Categ. Gen. Algebr. Struct.

Appl. 4 (2016) 75–94.
[13] A.A. Estaji, A. Karimi Feizabadi, M. Zarghani, Zero elements and z-ideals in modified pointfree topology, Bull. Iranian Math.

Soc., accepted.
[14] C.R.A. Gilmour, Realcompact spaces and regular σ-frames, Math. Proc. Camb. Phil. Soc. 96 (1984) 73–79.
[15] A.P. Gomes, Introduction to the notion of functional in spaces without points, Portugaliae Math. 5 (1946) 1–120.
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