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Available at: http://www.pmf.ni.ac.rs/filomat

Beyond Gevrey Regularity: Superposition
and Propagation of Singularities
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aDepartment of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia
bFaculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

Abstract. We propose the relaxation of Gevrey regularity condition by using sequences which depend on
two parameters, and define spaces of ultradifferentiable functions which contain Gevrey classes. It is shown
that such a space is closed under superposition, and therefore inverse closed as well. Furthermore, we
study partial differential operators whose coefficients are less regular then Gevrey-type ultradifferentiable
functions. To that aim we introduce appropriate wave front sets and prove a theorem on propagation of
singularities. This extends related known results in the sense that assumptions on the regularity of the
coefficients are weakened.

1. Introduction

Gevrey classes serve as an important reservoir of functions related to different aspects of general theory of
linear partial differential operators such as hypoellipticity, local solvability and propagation of singularities,
since they describe regularities stronger than smoothness and weaker than analyticity [1, 7, 14]. For example,
the Cauchy problem for weakly hyperbolic linear partial differential equations (PDEs) is well-posed for
certain values of the Gevrey index t, while it is ill-posed in the class of analytic functions, cf. [3, 21] and the
references given there.

Since the union of Gevrey classes is strictly contained in the class of smooth functions, it is of interest
to study intermediate spaces of smooth functions by introducing appropriate regularity conditions. This is
done in [18] by replacing Gevrey sequences {p!t}p∈N, t > 1 with two-parameter dependent sequences of the
form Mτ,σ

p = pτpσ , p ∈ N , τ > 0, σ > 1. The corresponding spaces of ultradifferentiable functions denoted by
Eτ,σ(U) extend Gevrey regularity, see Section 2 for the definition, and [18, 24, 25] for the main properties.

The spaces Eτ,σ(U) can be used e.g. in situations when hypoellipticity of a PDE is better than C∞ but
worse than Gevrey hypoellipticity. In particular, the space E{1,2}(U) is recently explicitly used in the study
of strictly hyperbolic equations to capture the regularity of the coefficients in the space variable (with low
regularity in time), which ensures that the corresponding Cauchy problem is well posed in appropriate
solution spaces. We refer to [4] for details.
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S. Pilipović et al. / Filomat 32:8 (2018), 2763–2782 2764

In this paper we give a further insight to the extended Gevrey regularity by proving superposition
theorem for Eτ,σ(U), Theorem 2.2, which immediately implies the inverse closedness property. In contrast
to the proof of inverse closedness of Carleman classes based on almost increasing property of defining
sequences (see [9, 22, 23]), here use a modified Faá di Bruno property of the sequence Mτ,σ

p , see Lemma
2.3. The proof of Theorem 2.2 holds even if σ = 1 and τ ≥ 1, so that we recover the well known result of
superposition in Gevrey classes.

Then we proceed with microlocal analysis related to the extended Gevrey regularity by introducing
appropriate wave-front sets WFτ,σ(u), u ∈ D′(U). In particular, in Theorem 3.1 we show that one can use a
single cut-off function for the definition of WFτ,σ(u), u ∈ D′(U), instead of admissible sequences of cut-off
functions which were used in [18]. We refer to [18] for a discussion on different types of wave-front sets
adjusted to the problem under consideration. For example, in time-frequency analysis it is convenient to
use wave front sets related to modulation spaces, see [15, 16] and the references given there.

Finally, we prove the propagation of singularities in the case when the coefficients aα(x) of the partial
differential operator P(x,D) =

∑
|α|≤m aα(x)Dα belong to Eτ,σ(U), see Theorem 4.1. We recall that analytic

coefficients were treated in [6, Theorem 8.6.1], while [18, Theorem 1.1] treats constant coefficients. It turns
out that an additional information is needed in the study of operators with variable coefficients, since it is
not possible to use the commutativity properties which hold true when the coefficients are constants. To
overcome these difficulties in the proof of Theorem 4.1 we use the inverse closedness property, investigation
of summands in generalized Faá-di Bruno’s formula, and explicit construction of approximate solutions,
cf. Subsection 4.1.

We summarize the paper as follows. In Section 2 we discuss regularity conditions related to the sequences
of the form Mτ,σ

p = pτpσ , τ > 0, σ > 1, p ∈ N (cf. [17, 18]), and introduce the spaces of ultradifferentiable
functions Eτ,σ(U). We prove the superposition theorem and inverse closedness in Eτ,σ(U) which will be
used in Section 4. In Section 3 we introduce wave front sets WFτ,σ(u), u ∈ D′(U), in the context of extended
Gevrey regularity and explain enumeration, an important technical tool in our analysis. The main result
there is Theorem 3.1 which gives a convenient equivalent definition of the wave front set WFτ,σ(u). Finally,
in Section 4 we prove the propagation of singularities, Theorem 4.1. The proof is given in details since it
contains new nontrivial observations and facts in comparison with the proof of [18, Theorem 1.1].

1.1. Notation
Throughout the paper the notation is standard. For example, N,Z+, R+ denote the sets of nonnegative

integers, positive integers, and positive real numbers, respectively, and Lebesgue spaces over an open set
Ω ⊂ Rd are denoted by Lp(Ω), 1 ≤ p < ∞. For x ∈ Rd we put 〈x〉 = (1+ |x|2)1/2. The integer parts (the floor and
the ceiling functions) of x ∈ R+ are denoted by bxc := max{m ∈ N : m ≤ x} and dxe := min{m ∈ N : m ≥ x}.
For a multi-index α = (α1, . . . , αd) ∈ Nd we write ∂α = ∂α1 . . . ∂αd , Dα = (−i)|α|∂α, and |α| = |α1| + . . . |αd|. Open
ball of radius r > 0 centered at x0 ∈ Rd is denoted by Br(x0), and card A denotes the cardinal number of A.
The closure of the open set U in Rd is denoted by U. The Fourier transform of u ∈ L1(Rd) is normalized as

Fx→ξu(x) = û(ξ) =

∫
Rd

u(x)e−2πi〈x,ξ〉 dx =

∫
Rd

u(x)e−2πixξ dx, ξ ∈ Rd,

and the convolution of f , 1 ∈ L1(Rd) is given by f ∗1(x) =
∫

Rd f (x− y)1(y)dy. Both transforms can be extended
in different ways.

We denote by C∞(K) the set of smooth functions on a regular compact set K, andD(U) and E(U) denote
test function spaces for the space of Schwartz distributionsD′(U), and for the space of compactly supported
distributions E′(U), respectively.

We will use the Stirling formula: N! = NNe−N
√

2πNe
θN
12N , for some 0 < θN < 1, N ∈ Z+, and formulas for

multinomial coefficients:(
|a|

a1, a2, . . . am

)
:=

(
|a|
a1

)(
|a| − a1

a2

)
. . .

(
|a| − a1 − · · · − am−2

am−1

)
=

|a|!
a1!a2! . . . am!

=

m∑
k=1

(
|a| − 1

a1, ..., ak − 1, ...am

)
,

where |a| = a1 + a2 + · · · + am, ak ∈ N, k ≤ m.
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2. Classes Eτ,σ(U) and their superposition property

In this section we introduce test function spaces denoted by Eτ,σ(U) via defining sequences of the form
Mτ,σ

p = pτpσ , p ∈ N, depending on parameters τ > 0 and σ > 1. The flexibility obtained by introducing the
two-parameter dependence enables the study of smooth functions which are less regular than the Gevrey
functions. When τ > 1 and σ = 1, we recapture the Gevrey classes.

The spaces Eτ,σ(U) are recently introduced and studied in [17, 18, 24, 25]. Here we recall their basic
properties which are used in the rest of the paper, and collect new results in Subsection 2.1. We employ
Komatsu’s approach [10] to spaces of ultradifferentiable functions. Another widely used approach is that
of Braun, Meise, Taylor, Vogt and their collaborators, see e.g. [2] and the recent contribution [19]. These
two approaches are equivalent in many interesting situations, cf. [12] for more details.

Essential properties of the defining sequences are given in the following lemma. We refer to [17] for the
proof.

Lemma 2.1. Let τ > 0, σ > 1 and Mτ,σ
p = pτpσ , p ∈ Z+, Mτ,σ

0 = 1. Then there exists an increasing sequence of
positive numbers Cq, q ∈ N, and a constant C > 0 such that:

(M.1) (Mτ,σ
p )2
≤Mτ,σ

p−1Mτ,σ
p+1, p ∈ Z+

(M.2) Mτ,σ
p+q ≤ Cpσ+qσMτ2σ−1,σ

p Mτ2σ−1,σ
q , p, q ∈ N,

(M.2)′ Mτ,σ
p+q ≤ Cpσ

q Mτ,σ
p , p, q ∈ N,

(M.3)′
∞∑

p=1

Mτ,σ
p−1

Mτ,σ
p

< ∞. Moreover,
Mτ,σ

p−1

Mτ,σ
p
≤

1
(2p)τ(p−1)σ−1 , p ∈ N.

Let τ, h > 0, σ > 1 and K ⊂⊂ Rd a regular compact set. By Eτ,σ,h(K) we denote the Banach space of
functions φ ∈ C∞(K) such that

‖φ‖Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|∂αφ(x)|
h|α|σMτ,σ

|α|

< ∞, (2.1)

and obviously,
Eτ1,σ1,h1 (K) ↪→ Eτ2,σ2,h2 (K), 0 < h1 ≤ h2, 0 < τ1 ≤ τ2, 1 < σ1 ≤ σ2,

where ↪→ denotes the strict and dense inclusion.
The set of functions from Eτ,σ,h(K) with support contained in K is denoted byDK

τ,σ,h . If U is an open set
Rd and K ⊂⊂ U then we define families of spaces by introducing the following projective and inductive
limit topologies,

E{τ,σ}(U) = lim
←−−

K⊂⊂U

lim
−−→
h→∞

Eτ,σ,h(K),

E(τ,σ)(U) = lim
←−−

K⊂⊂U

lim
←−−
h→0

Eτ,σ,h(K),

D{τ,σ}(U) = lim
−−→

K⊂⊂U

D
K
{τ,σ} = lim

−−→
K⊂⊂U

( lim
−−→
h→∞

D
K
τ,σ,h) ,

D(τ,σ)(U) = lim
−−→

K⊂⊂U

D
K
(τ,σ) = lim

−−→
K⊂⊂U

(lim
←−−
h→0

D
K
τ,σ,h).

We will use abbreviated notation τ, σ for {τ, σ} or (τ, σ). The spaces Eτ,σ(U),DK
τ,σ andDτ,σ(U) are nuclear, cf.

[17].
If τ > 1 and σ = 1, then E{τ,1}(U) = E{τ}(U) is the Gevrey class, andD{τ,1}(U) = D{τ}(U) is its subspace of

compactly supported functions in E{τ}(U). If 0 < τ ≤ 1 then Eτ,1(U) consists of quasianalytic functions. In
particular,Dτ,1(U) = {0}when 0 < τ ≤ 1, and E{1,1}(U) = E{1}(U) is the space of analytic functions on U.



S. Pilipović et al. / Filomat 32:8 (2018), 2763–2782 2766

The space E{1,2}(U) appears in [4] in the study of strictly hyperbolic equations to describe the regularity
of coefficients in the space variable (with low regularity in time), which is sufficient to ensure that the
corresponding Cauchy problem is well posed in appropriate solution spaces.

In the following Proposition, we capture the main embedding properties between the above introduced
families.

Proposition 2.1. [18] Let σ1 ≥ 1. Then for every σ2 > σ1 and τ > 0

lim
−−→
τ→∞

Eτ,σ1 (U) ↪→ lim
←−−
τ→0+

Eτ,σ2 (U).

Moreover, if 0 < τ1 < τ2, then

E{τ1,σ}(U) ↪→ E(τ2,σ)(U) ↪→ E{τ2,σ}(U), σ ≥ 1,

and
lim
−−→
τ→∞

E{τ,σ}(U) = lim
−−→
τ→∞

E(τ,σ)(U),

lim
←−−
τ→0+

E{τ,σ}(U) = lim
←−−
τ→0+

E(τ,σ)(U), σ ≥ 1.

We conclude that

Eτ0,σ1 (U) ↪→
⋂
τ>τ0

Eτ,σ1 (U) ↪→ Eτ0,σ2 (U),

for any τ0 > 0 whenever σ2 > σ1 ≥ 1, and in particular,

lim
−−→
t→∞
E{t}(U) ↪→ Eτ,σ(U) ↪→ C∞(U), τ > 0, σ > 1,

so that the regularity in Eτ,σ(U) can be thought of as an extended Gevrey regularity.
Non-quasianalyticity condition (M.3)′ provides the existence of partitions of unity in E{τ,σ}(U) which we

formulate in the next Lemma.

Lemma 2.2. Let τ > 0 and σ > 1. Then there exists a compactly supported function φ ∈ E{τ,σ}(U) such that
0 ≤ φ ≤ 1 and

∫
Rd φ dx = 1.

A compactly supported Gevrey function from E{τ}(U) belongs to D{τ,σ}(U). However, in the proof of
Lemma 2.2 given in [17] we constructed a compactly supported function inD{τ,σ}(U) which does not belong
toD{t}(U), for any t > 1.

Note that the additional exponent σ which appears in the power of term h in (2.1) makes the definition
of E{τ,σ}(U) different from the definition of Carleman class CL, cf. [6]. This difference is essential for many
calculations. For example, defining sequences for Carleman classes satisfy Komatsu’s condition (M.2)’
known as “stability under differential operators“, while Mτ,σ

p do not satisfy (M.2)’ for τ > 0 and σ > 1.
However, we have the following “stability properties“.

If P =
∑
|α|≤m

aα(x)∂α is a partial differential operator of order m with aα ∈ Eτ,σ(U), then P : Eτ,σ(U)→ Eτ,σ(U)

is a continuous linear map with respect to the topology of Eτ,σ(U). In particular, Eτ,σ(U) is closed under
pointwise multiplications and finite order differentiation, see [24, Theorem 2.1]. For operators of “infinite
order“ continuity properties are slightly different.

Let τ > 0, σ > 1, and let aα ∈ E(τ,σ)(U) (resp. aα ∈ E{τ,σ}(U)) where U is an open set in Rd. Then

P(x, ∂) =

∞∑
|α|=0

aα(x)∂α
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is of class (τ, σ) (resp. {τ, σ}) on U if for every K ⊂⊂ U there exists constant L > 0 such that for any h > 0
there exists A > 0 (resp. for every K ⊂⊂ U there exists h > 0 such that for any L > 0 there exists A > 0) such
that,

sup
x∈K
|∂βaα(x)| ≤ Ah|β|

σ

|β|τ|β|
σ L|α|σ

|α|τ2σ−1 |α|σ
, α, β ∈ Nd.

If τ > 1 and σ = 1, then P(x, ∂) of class (τ, 1) (resp. {τ, 1}) is Komatsu’s ultradifferentiable operator of
class (p!τ) (resp. {p!τ}), see [11].

The following theorem gives the continuity properties of such differential operators on Eτ,σ(U), cf. [18,
Theorem 2.1] for the proof.

Theorem 2.1. Let P(x, ∂) be a differential operator of class (τ, σ) (resp. {τ, σ}). Then

P(x, ∂) : Eτ,σ(U) −→ Eτ2σ−1,σ(U)

is a continuous linear mapping, and the same holds for

P(x, ∂) : lim
−−→
τ→∞

Eτ,σ(U) −→ lim
−−→
τ→∞

Eτ,σ(U).

2.1. Superposition in Eτ,σ(U)

We prove in this subsection that the classes Eτ,σ(U), τ > 0, σ > 1, are stable under superposition, and
conclude that they are inverse closed. We refer to [5, 8, 19] for related results. We emphasize here that the
inverse-closedness of Eτ,σ(U) plays an essential role in the proof our main result, Theorem 4.1.

Recall, an algebra A is inverse-closed in C∞(U) if for any ϕ ∈ A for which ϕ(x) , 0 on U it follows that
ϕ−1
∈ A. It is proved in [23] that a Carleman class defined by a sequence Mp is inverse closed in C∞(U) if

there exists C > 0 such that(
Mp

p!

)1/p

≤ C
(

Mq

q!

)1/q

, p ≤ q, and lim
p→∞

M1/p
p = ∞, (2.2)

where the condition on the left hand side of (2.2) is equivalent to the statement that (Mp/p!)1/p is an almost
increasing sequence, cf. [9, 22, 23].

By the Stirling formula (Mp/p!)1/p is an almost increasing sequence if and only if

M1/p
p

p
≤ C

M1/q
q

q
, p ≤ q.

For example, Gevrey classes E{τ}(U), τ ≥ 1 are inverse-closed algebras.

Since
(Mτ,σ

p

pp

)1/p
= pτpσ−1

−1 when Mτ,σ
p = pτpσ , τ > 0, σ > 1, and

pτpσ−1
−1 < qτqσ−1

−1, d(1/τ)1/(σ−1)
e < p < q,

we conclude that
(Mτ,σ

p

pp

)1/p
is an almost increasing sequence and for any choice of indices ki, i = 1, . . . , j, and

k =
∑ j

i=1 ki, we have

Mτ,σ
ki

ki!
≤ Cki

(Mτ,σ
k

k!

)ki/k

, so that
j∏

i=1

Mτ,σ
ki

ki!
≤ Ck

Mτ,σ
k

k!
. (2.3)
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In other words
j∏

i=1

k
τkσi
i ≤ Ck k1! · · · k j!

k!
kτkσ , k =

j∑
i=1

ki.

We will use Faá di Bruno formula as presented in [13]. Let us first fix the notation. A multiindex α ∈ Nd

is said to be decomposed into parts p1, . . . , ps ∈ Nd with multiplicities m1, . . . ,ms ∈ N, respectively, if

α = m1p1 + m2p2 + · · · + msps, s ≤ |α|, (2.4)

where mi ∈ {0, 1, . . . , |α|}, |pi| ∈ {1, . . . , |α|}, i = 1, . . . , s.
If pi = (pi1 , . . . , pid ), i ∈ {1, . . . , s}, we put pi < p j when i < j, that is when there exists k ∈ {1, . . . , d} such

that pil = p jl , l ∈ {1, . . . , k − 1}, and pik < p jk . With m = m1 + · · · + ms we denote the total multiplicity and note
that m ≤ |α|. Therefore any decomposition of α can be identified with the triple (s, p,m), and the set of all
decompositions of the form (2.4) is denoted by π.

Let f : U → C and 1 : V → U be smooth functions, where U,V are open in R and Rd, respectively. The
generalized Faa di Bruno formula is given by

∂α( f (1)) = α!
∑

(s,p,m)∈π

f (m)(1)
s∏

k=1

1
mk!

( 1
pk!
∂pk1

)mk
. (2.5)

A sequence Mp, p ∈ N of positive numbers satisfies the Faá di Bruno property if there exist a constant
C > 0 such that for every j ∈ Z+ and ki ∈ Z+ we have

M j

j∏
i=1

Mki ≤ C
∑ j

i=1 ki M∑ j
i=1 ki

. (2.6)

By [19, Lemma 2.2] if Mp satisfies (M.2)′ and if M1/p
p is an almost increasing sequence, then Mp satisfies

the Faá di Bruno property. Since Mτ,σ
p = pτpσ , τ > 0, σ > 1, does not satisfy (M.2)′ we first prove a modified

version of the Faá di Bruno property.

Lemma 2.3. Let τ > 0, σ > 1 and let Mτ,σ
p = pτpσ , p ∈ N. Then there exist a constant C > 0 such that for every

j ∈ Z+ and ki ∈ Z+, i = 1, . . . , j, we have

Mτ,σ
j

j!

j∏
i=1

Mτ,σ
ki

ki!
≤ Ckσ

Mτ,σ
k

k!
, (2.7)

where
∑ j

i=1 ki = k.

Proof. We follow the ideas from the proof of [19, Theorem 4.11.].
The assertion is trivial when j = k since then ki = 1 for all 1 ≤ i ≤ j and therefore

Mτ,σ
j

j!

j∏
i=1

Mτ,σ
ki

ki!
=

Mτ,σ
k

k!

(Mτ,σ
1

1!

)k
=

Mτ,σ
k

k!
.

When j < k, we put I = {i | 1 ≤ i ≤ j, ki ≥ 2} and k̃i = ki − 1, i ∈ I. Note that

k =

j∑
i=1

ki =
∑
i∈I

ki +
∑

i<I, 1≤i≤ j

ki =
∑
i∈I

ki + j − card I =
∑
i∈I

k̃i + j, (2.8)
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and since
(Mτ,σ

p

p!

)1/p
is almost increasing, then (2.3) implies that

Mτ,σ
j

j!

∏
i∈I

Mτ,σ

k̃i

k̃i!
≤ Ck

Mτ,σ
k

k!
, (2.9)

Moreover, from (M.2)′ and ki = k̃i + 1, i ∈ I, we obtain

Mτ,σ
ki

ki!
≤ Ck̃i

σ

1

Mτ,σ

k̃i

k̃i!
, (2.10)

for some constant C1 > 0.
By combining (2.8), (2.9) and (2.10) we obtain

Mτ,σ
j

j!

j∏
i=1

Mτ,σ
ki

ki!
≤

(Mτ,σ
1

1!

) j−card I Mτ,σ
j

j!

∏
i∈I

Mτ,σ
ki

ki!
≤

Mτ,σ
j

j!

∏
i∈I

Ck̃i
σ

1

Mτ,σ

k̃i

k̃i!

≤ C(k− j)σ

1

Mτ,σ
j

j!

∏
i∈I

Mτ,σ

k̃i

k̃i!
≤ Ckσ

2

Mτ,σ
k

k!
,

for some constant C2 > 0 and the Lemma is proved.

The main result of this section reads as follows.

Theorem 2.2. Let τ > 0, σ > 1, and let U and V be open sets in R and Rd, respectively. If f ∈ Eτ,σ(U) and
1 ∈ Eτ,σ(V) is such that 1 : V → U, then f ◦ 1 ∈ Eτ,σ(V).

Proof. For simplicity, we show that if f ∈ E{τ,σ}(U) and1 ∈ E{τ,σ}(V) is such that1 : V → U, then f◦1 ∈ E{τ,σ}(V).
We leave the (so-called Beurling) case f ∈ E(τ,σ)(U) and 1 ∈ E(τ,σ)(V) to the reader.

Let K ⊂⊂ V and h > 0 be fixed so that 1 ∈ Eτ,σ,h(K). Put I = {1(x), x ∈ K} and note that I is a compact set,
I ⊂⊂ U. Therefore f ∈ Eτ,σ,h1 (I) for some h1 > 0. By the Faá di Bruno formula (2.5), for any x ∈ K we have
the following estimate

|∂α( f ◦ 1)(x)| ≤ |α|!
∑

(s,p,m)∈π

| f (m)(1(x))|
s∏

k=1

1
mk!

( 1
pk!
|∂pk1(x)|

)mk

≤ A|α|+1
|α|!

∑(
hmσ

1

s∏
k=1

hmk |pk |
σ
) m!
m1! . . .ms!

mτmσ

m!

s∏
k=1

( |pk|
τ|pk |

σ

|pk|!

)mk
(2.11)

for some A > 0, and the second sum being taken over all decompositions |α| =
s∑

k=1

mk|pk| where m =

s∑
k=1

mk,

mk ∈ {0, 1, . . . , |α|}, |pk| ∈ {1, . . . , |α|}, k = 1, . . . , s and s ≤ |α|.
By Lemma 2.3 we have

mτmσ

m!

s∏
k=1

( |pk|
τ|pk |

σ

|pk|!

)mk
≤ C|α|

σ |α|τ|α|
σ

|α|!
. (2.12)

Moreover,

mσ +

s∑
k=1

mk|pk|
σ
≤ |α|σ + |α|σ−1

s∑
k=1

mk|pk| = 2|α|σ
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wherefrom

hmσ

1

s∏
k=1

hmk |pk |
σ
≤ Cmσ+

∑s
k=1 mk |pk |

σ

1 ≤ C2|α|σ

1 , (2.13)

where C1 = max{h, h1}. From (2.12), (2.13) and (2.11) we conclude that there is a constant C2 > 0 such that

|∂α( f ◦ 1)(x)| ≤ C|α|
σ+1

2 |α|τ|α|
σ
∑ m!

m1! . . .ms!
, x ∈ K. (2.14)

It remains to estimate
∑ m!

m1! . . .ms!
. Without loss of generality we may assume that s = |α| (for s < |α|

we may put mk = 0, for s < k ≤ |α|). Since |pk| ∈ {1, . . . , |α|}, we can write

|α| =
|α|∑

k=1

mk|pk| =

|α|∑
k=1

km′k,

where m =
∑
|α|
k=1 m′k. Hence, we conclude that the summation in (2.14) can be taken over all (m1, . . . ,ms) ∈ Ns,

s = |α|, such that |α| =
|α|∑

k=1

kmk and m =

|α|∑
k=1

mk. Therefore,

∑ m!
m1! . . .ms!

= 2m1+2m2+···+|α|m|α|−1 = 2|α|−1,

and the proof is completed.

As an immediate consequence of Theorem 2.2, we conclude the following:

Corollary 2.1. Let U ⊆ Rd be open. Classes Eτ,σ(U), τ > 0, σ > 1, are inverse-closed in C∞(U).

We refer to [25] for a direct proof of Corollary 2.1.
Note that the proof of Theorem 2.2 holds even if σ = 1 and τ ≥ 1, so that we recover the well known

superposition property of Gevrey classes (see [5, 8, 9, 19]).

3. Wave front sets related to Eτ,σ(U)

Let τ > 0, σ > 1, Ω ⊆ K ⊂⊂ U ⊆ Rd, where Ω and U are open in Rd.
Let u ∈ D′(U). We studied in [17] the nature of regularity related to the condition

|̂uN(ξ)| ≤ A
hNN!τ/σ

|ξ|bN1/σc
, N ∈ N, ξ ∈ Rd

\{0}. (3.1)

where {uN}N∈N is bounded sequence in E′(U) such that uN = u in Ω and A, h are some positive constants.
Note that (3.1) can be replaced by another condition when instead of N we use another positive,

increasing sequence aN such that aN →∞, N→∞. This change of variables called enumeration, “speeds up“
or “slows down“ the decay estimates of single members of the corresponding sequences, without changing
the asymptotic behavior of the whole sequence when N→∞. After applying the enumeration N→ aN we
can write again uN instead of uaN , since we are only interested in the asymptotic behavior.

For example, Stirling’s formula and enumeration N → Nσ applied to (3.1) give an equivalent estimate
of the form

|̂uN(ξ)| ≤ A1
hNσ

1 NτNσ

|ξ|N
, N ∈ N, ξ ∈ Rd

\{0}, (3.2)
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for some constants A1, h1 > 0. We refer to [18] for more details on enumeration.
Wave-front sets WF{τ,σ}(u) (see Remark 3.2 for WF(τ,σ)(u)) are introduced in [18] in the study of local

regularity in E{τ,σ}(U) . Together with enumeration we used sequences of cutoff functions in a similar way
as it is done in [6] in the context of analytic wave front set WFA. We recall the definition of WF{τ,σ}(u).

Definition 3.1. Let u ∈ D′(U), τ > 0, σ > 1, and (x0, ξ0) ∈ U×Rd
\{0}. Then (x0, ξ0) <WF{τ,σ}(u) if there exists an

open neighborhood Ω of x0, a conic neighborhood Γ of ξ0 and a bounded sequence {uN}N∈N in E′(U) such that uN = u
on Ω and (3.1) holds for all ξ ∈ Γ and for some constants A, h > 0.

Let u ∈ D′(U). Then, immediately follows that WF{τ,σ}(u) is a closed subset of U × Rd
\{0}. Note that for

τ > 0 and σ > 1
WF{τ,σ}(u) ⊆WF{1,1}(u) = WFA(u), u ∈ D′(U),

where WFA(u) denoted the analytic wave front set of a distribution u ∈ D′(U), cf. [6].
Next, we prove that in the definition of WF{τ,σ}(u) a bounded sequence of cut-off functions {uN}N∈N ⊂

E
′(U) can be replaced by a single function from D{τ,σ}(U). First, we give an example of φ ∈ D{τ,σ}(U) such

that φ = 1 on particular open sets.

Example 3.1. Let x0 ∈ Rd, τ > 0, σ > 1, and let d =

∞∑
p=1

1
(2(p + 1))τpσ−1 . By Lemma 2.2 and [6, Theorem 1.4.2],

there exists ψ ∈ DBd/2(x0)
{τ,σ}

such that
∫
ψ(x) dx = 1. If χ denotes the characteristic function of

{y ∈ Rd
| |x − y| ≤ d/2, x ∈ Bd/2(x0)},

then φ = χ ∗ ψ = 1 on an open neighborhood Ω of Bd/2(x0). In particular, if U is an open set such that

inf{|x − y| : x ∈ Uc, y ∈ Bd/2(x0)} > d,

then φ ∈ D{τ,σ}(U).

Remark 3.1. In the sequel we will use the following Paley-Wiener type estimates. If u ∈ E′(U), then |̂u(ξ)| ≤
C〈ξ〉M, ξ ∈ Rd, for some constant C > 0.

Similarly, if φ ∈ DK
{τ,σ}

, where K is a compact set in Rd, then

|φ̂(ξ)| ≤ Ah|α|
σ
|α|τ|α|

σ
〈ξ〉−|α|, α ∈ Nd, ξ ∈ Rd, (3.3)

for some constants A, h > 0.

Theorem 3.1. Let u ∈ D′(U), τ > 0, σ > 1, and let (x0, ξ0) ∈ U × Rd
\{0}. Then (x0, ξ0) <WF{τ,σ}(u) if and only if

there exists a conic neighborhood Γ0 of ξ0, a compact set K ⊂⊂ U and φ ∈ DK
{τ,σ}

such that φ = 1 on a neighborhood
of x0, and such that

|φ̂u(ξ)| ≤ A
hNσNτNσ

|ξ|N
, N ∈ N , ξ ∈ Γ0 , (3.4)

for some A, h > 0.

Proof. The necessity is trivial, since if there is a φ ∈ DK
{τ,σ}

, K ⊂⊂ U, φ = 1 on a neighborhood Ω of x0 and
such that (3.4) holds in a conic neighborhood Γ0 of ξ0, then putting uN = φu, for every N ∈ N, it follows
that (x0, ξ0) <WF{τ,σ}(u).

Now assume that (x0, ξ0) < WF{τ,σ}(u), i.e. that there exists an open neighborhood Ω of x0, a conic
neighborhood Γ of ξ0 and a bounded sequence {uN}N∈N in E′(U) such that uN = u on Ω and such that

|ûN(ξ)| ≤ A
hNσNτNσ

|ξ|N
, N ∈ N, ξ ∈ Γ. (3.5)
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Choose φ ∈ D
Kx0
{τ,σ}

, Kx0 ⊂⊂ Ω, φ = 1 on some neighborhood of x0, and choose a conic neighborhood Γ0 of
ξ0 with the closure contained in Γ. Let ε > 0 be chosen so that ξ − η ∈ Γ when ξ ∈ Γ0 and |η| < ε|ξ|.

Since φu = φuN,

φ̂u(ξ) =
( ∫
|η|<ε|ξ|

+

∫
|η|≥ε|ξ|

)
φ̂(η)ûN(ξ − η) dη = I1 + I2 , ξ ∈ Γ0.

In order to estimate I1, we use that |η| < ε|ξ| implies |ξ−η| ≥ |ξ|−|η| > (1−ε)|ξ|.By (3.5) and |φ̂(η)| ≤ B〈η〉−d−1

for some B > 0, we have

|I1| =
∣∣∣∣ ∫
|η|<ε|ξ|

φ̂(η)ûN(ξ − η) dη
∣∣∣∣ ≤ ∫

|η|<ε|ξ|
|φ̂(η)|A

hNσNτNσ

|ξ − η|N
dη

≤ AB
hNσNτNσ

((1 − ε)|ξ|)N

∫
Rd
〈η〉−d−1dη ≤ A1

hNσ

1 NτNσ

|ξ|N
, ξ ∈ Γ0,N ∈ N, (3.6)

for some constants A1, h1 > 0. For the last estimate we have used (1 − ε)−N < (1 − ε)−Nσ
when σ > 1.

To estimate I2, we use that |η| ≥ ε|ξ| implies |ξ − η| ≤ |ξ| + |η| ≤ (1 + 1/ε)|η|. For a given N ∈ N, we put
|α| = N + M + d + 1. Then, by (3.3) there exist constants A, h > 0 such that

|I2| =
∣∣∣∣ ∫
|η|≥ε|ξ|

φ̂(η)ûN(ξ − η) dη
∣∣∣∣

≤
Ah(N+M+d+1)σ (N + M + d + 1)τ(N+M+d+1)σ

(ε|ξ|)N ·

∫
|η|≥ε|ξ|

〈η〉−M−d−1C〈ξ − η〉M dη

≤
A1hNσ

1 NτNσ

|ξ|N
ξ ∈ Γ0,N ∈ N, (3.7)

where h1 = max{h, h2σ−1
}, A1 = A max{1, h2σ−1(M+d+1)

}.
In the last inequality we used

|α|σ + |β|σ ≤ |α + β|σ ≤ 2σ−1(|α|σ + |β|σ), α, β ∈ Nd,

and (M.2)′ property of Mτ,σ
p = pτpσ .

Thus (3.4) follows and the theorem is proved.

Remark 3.2. In the Beurling case, for u ∈ D′(U), τ > 0, σ > 1, and (x0, ξ0) ∈ U × Rd
\{0} we have that

(x0, ξ0) <WF(τ,σ)(u) if there exists open neighborhood Ω of x0, a conic neighborhood Γ of ξ0 and a bounded sequence
{uN}N∈N in E′(U) such that uN = u on Ω and such that for every h > 0 there exists A > 0 such that

|̂uN(ξ)| ≤ A
hNN!τ/σ

|ξ|bN1/σc
, N ∈ N, ξ ∈ Γ.

Note that Theorem 3.1 can be formulated for the Beurling case as well withφ ∈ DK
(τ,σ) such that (3.4) holds for every

h > 0 and for some A = A(h) > 0. More precisely, for any h > 0 we can choose φ ∈ DK
τ,σ,Ch

where Ch = min{h, h
1

2σ−1 }

and obtain φ ∈ DK
(τ,σ) with the desired properties.

Thus, the results concerning WF(τ,σ)(u) are analogous to those for WF{τ,σ}(u), and we will consider only the later
wave-front sets in the sequel.

We end this section by an auxiliary result which will be used in the proof of Theorem 4.1.
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Lemma 3.1. Let u ∈ D′(U), τ > 0, σ > 1, Ω ⊂ K ⊂⊂ U, where U and Ω are open. If F is a closed cone such that
WF{τ,σ}(u) ∩ (K × F) = ∅ and φ ∈ DK

{τ,σ}
, φ = 1 on Ω, then for some A, h > 0,

|φ̂u(ξ)| ≤ A
hNσNτNσ

|ξ|N
, N ∈ N , ξ ∈ F . (3.8)

Proof. Let (x0, ξ0) ∈ K × F, and set r0 := rx0,ξ0 > 0. Furthermore, let φ ∈ D{τ,σ}(Br0 (x0)), Br0 (x0) ⊆ Ω ⊆ K.
Since (x0, ξ0) <WF{τ,σ}(u), by Theorem 3.1 there exists ψ ∈ D{τ,σ}(U), ψ = 1 on Ω, and a conical neighbor-

hood Γ of ξ0, such that

|ψ̂u(ξ)| ≤ A
hNσNτNσ

|ξ|N
, N ∈ N, ξ ∈ Γ, (3.9)

for some A, h > 0.
Let Γ0 be an open conical neighborhood of ξ0 with the closure contained in Γ. We write

φ̂u(ξ) =
( ∫
|η|<ε|ξ|

+

∫
|η|≥ε|ξ|

)
φ̂(η)ψ̂u(ξ − η) dη = I1 + I2 , ξ ∈ Γ0, ,

and arguing in a similar way as in the proof of Theorem 3.1, we obtain (3.8) for (x, ξ) ∈ Br0 (x0) × Γ0.
In order to extend the result to K × F, we use the same idea as in the proof of [6, Lemma 8.4.4]. Since the

intersection of F with the unit sphere is a compact set, there exists a finite number n of balls Brx0 ,ξ j
(x0), such

that F ⊂ ∪n
j=1Γ j. Note that (3.8) remains true if φ is chosen so that suppφ ⊆ Brx0

:=
n⋂

j=1

Brx0 ,ξ j
(x0), ξ j ∈ Γ j.

Moreover, since K is compact set, it can be covered by a finite number m of balls Brxk
, k ≤ m. Since

Mτ,σ
p = pτpσ satisfies (M.1) and (M.3)′, then there exist non-negative functions φk ∈ D{τ,σ}(Brxk

), k ≤ n, such

that
n∑

k=1
φk = 1 on a neighborhood of K (cf. [10, Lemma 5.1.]).

To conclude the proof, we note that if φ ∈ DK
{τ,σ}

then φφk ∈ D{τ,σ}(Brxk
) and therefore (3.8) holds if φ is

replaced by φφk. Since
n∑

k=1
φφk = φ, the proof is finished.

4. The propagation of singularities

To set the stage we recall the notion of the characteristic set of an operator and the main property of its
principal symbol, cf. [20].

If P(x,D) =
∑
|α|≤m aα(x)Dα is a differential operator of order m on U and aα ∈ C∞(U), |α| ≤ m, then its

characteristic variety at x ∈ U is given by

Charx(P) = {(x, ξ) ∈ U × Rd
\{0} |Pm(x, ξ) = 0},

and its characteristic set on U is given by

Char(P) =
⋃
x∈U

Charx(P).

Here Pm(x, ξ) =
∑
|α|=m

aα(x)ξα ∈ C∞(U × Rd
\{0}) is the principal symbol of P(x,D).

By the homogeneity of the principal symbol, it follows that Char(P) is a closed conical subset of U×Rd
\{0}.

If (x0, ξ0) < Char(P), then there exists an open neighborhood Ω of x0 and a conical neighborhood Γ of ξ0
such that Pm(x, ξ) , 0, x ∈ Ω and ξ ∈ Γ. Moreover, since the principal symbol is homogeneous we have∣∣∣∣Pm(x,

ξ
|ξ|

)
∣∣∣∣ =

1
|ξ|m
|Pm(x, ξ)| ≥ C, x ∈ Ω, ξ ∈ Γ,
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so that for any compact set K ⊂⊂ Ω there are constants 0 < C1 < C2 such that

C1|ξ|
m
≤ |Pm(x, ξ)| ≤ C2|ξ|

m, x ∈ K, ξ ∈ Γ.

Next we extend [18, Theorem 1.1] to operators with variable coefficients. We recall that in [6, Theorem
8.6.1] operators with real analytic coefficients are observed, while in Theorem 4.1 we allow extended Gevrey
regular coefficients. In particular, by the inspection of the proof, we conclude that Theorem 4.1 remains
true even if σ = 1 and τ > 1, that is, if the coefficients are Gevrey regular. We refer to [21, Corollary 3.4.14.]
for a related result in the context of pseudo-differential operators.

Theorem 4.1. Let τ > 0, σ > 1, u ∈ D′(U) and let P(x,D) =
∑
|α|≤m

aα(x)Dα be partial differential operator of order m

such that aα(x) ∈ E{τ,σ}(U), |α| ≤ m. Then

WF{2σ−1τ,σ}( f ) ⊆WF{2σ−1τ,σ}(u) ⊆WF{τ,σ}( f ) ∪ Char(P(x,D)), (4.1)

where P(x,D)u = f inD′(U). In particular,

WF0,∞( f ) ⊆WF0,∞(u) ⊆WF0,∞( f ) ∪ Char(P(x,D)), (4.2)

where WF0,∞(u) =
⋃
σ>1

⋂
τ>0 WF{τ,σ}(u).

Proof. The pseudolocal property WF{2σ−1τ,σ}( f ) ⊆ WF{2σ−1τ,σ}(u) is already proved in [24], see also [18], so it
remains to prove the second inclusion in (4.1).

Assume that (x0, ξ0) <WF{τ,σ}( f ) ∪ Char(P(x,D)). Then, there exists a compact set K containing x0 and a
closed cone Γ containing ξ0 such that Pm(x, ξ) , 0 when (x, ξ) ∈ K × Γ and such that

(K × Γ) ∩
(

WF{τ,σ}( f ) ∪ Char(P(x,D))
)

= ∅.

Let φ ∈ DK
{τ,σ}

such that φ = 1 on some neighborhood of x0. By Theorem 3.1 it is enough to prove that

|φ̂u(ξ)| ≤ A
hNσN2σ−1τNσ

|ξ|N
, ξ ∈ Γ, N ∈ N.

We divide the proof in several steps.
Step 1. Note that the Paley-Wiener type estimate (see Remark 3.1) implies

|ξ|N |φ̂u(ξ)| ≤ A(N2σ−1τNσ−1
)N(N2σ−1τNσ−1

)M
≤ AhNσ

N2σ−1τNσ
, N ∈ N,

where A, h > 0 do not depend on N, and the last inequality follows from M2σ−1τNσ−1 ln N ≤M2σ−1τNσ after
taking the exponentials. This gives the desired estimate when |ξ| ≤ N2σ−1τNσ−1

, ξ ∈ Γ.
Step 2. It remains to estimate |φ̂u(ξ)| when ξ ∈ Γ, |ξ| > N2σ−1τNσ−1

and for N ∈ N large enough. We refer
to Subsection 4.1 for the calculations which lead to

φ(x) = eix·ξPT(x,D)
(

e−ix·ξ

Pm(x, ξ)
wN(x, ξ)

)
+ eN(x, ξ), x ∈ K, ξ ∈ Γ, (4.3)

where

wN(x, ξ) =
∑
k∈K1

N−m∑
Sk=0

(R j1 R j2 . . .R jkφ)(x, ξ), (4.4)

eN(x, ξ) =
∑
k∈K2

N∑
Sk=N−m+1

(R j1 R j2 . . .R jkφ)(x, ξ), (4.5)
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Sk = j1 + j2 + · · · + jk, ji ∈ {1, . . . ,m}, 1 ≤ i ≤ k, and we put

K1 = {k ∈ N | 0 ≤ mk ≤ N −m}, (4.6)

and

K2 = {k ∈ N |N −m < mk ≤ N}. (4.7)

Functions R j in (4.4) and (4.5) can be written as

R j(x, ξ) =
∑
|α|≤ j

cα, j(x, ξ)Dα, (4.8)

for suitable functions cα, j(x, ξ) which are homogeneous of order − j (with respect to ξ) and such that

|Dβcα, j(x, ξ)| ≤ |ξ|− jAh|β|
σ
|β|τ|β|

σ
, β ∈ Nd, x ∈ K, ξ ∈ Γ

for some A, h > 0 and for all |α| ≤ j, see Subsections 4.1 and 4.2.
From (4.3) it follows that

φ̂u(ξ) =

∫
u(x)eN(x, ξ)e−ixξdx +

∫
u(x)PT(x,D)

(
e−ix·ξwN(x, ξ)

Pm(x, ξ)

)
dx

=

∫
u(x)eN(x, ξ)e−ixξdx +

∫
P(x,D)u(x)

(
e−ix·ξwN(x, ξ)

Pm(x, ξ)

)
dx, (4.9)

x ∈ K, ξ ∈ Γ, and in the next steps we estimate terms on the right hand side of (4.9).

Remark 4.1. Since the number of summands in wN(x, ξ) and eN(x, ξ) is the same as in the case when R j have constant
coefficients we refer to [18, Subsection 4.1] where it is shown that the upper bound for the number of summands is
of the form A · CN for suitable constants A,C > 0. In fact, from [18, Subsection 4.1] it follows that the number of
summands in

eN(x, ξ) =
∑
k∈K2

b(N/τ̃)1/σ
c∑

Sk=b(N/τ̃)1/σc−m+1

(R j1 R j2 . . .R jkφ)(x, ξ)

is bounded by A · Cb(N/τ̃)1/σ
c and the calculations remain the same after replacing b(N/τ̃)1/σ

c by N.

Step 3. Note that the operators R j, 1 ≤ j ≤ m, given in (4.8) do not commute. For that reason we
must use different arguments than those given in [18] where the operators with constant coefficients were
studied. The estimates of Dβ(R j1 ...R jkφ) from Subsection 4.3 (cf. (4.29)) imply

|〈u(x), eN(x, ξ)e−ix·ξ
〉| ≤ A

∑
|α|≤M

|Dα
x (eN(x, ξ)e−ixξ)|

= A
∑
|α|≤M

|Dα
x (

∑
k∈K2

N∑
Sk=N−m+1

(R j1 R j2 . . .R jkφ)(x, ξ)e−ixξ)|

≤ A1|ξ|
M
|ξ|m−NhNσ

(N + M)τ(N+M)σ = A1
hNσ

(N + M)τ(N+M)σ

|ξ|N−m−M , (4.10)

x ∈ K, ξ ∈ Γ, for suitable constants A1, h > 0, and N ∈ N large enough. After enumeration N → N + m + M
we conclude that (4.10) is equivalent to

|〈u(x), eN(x, ξ)e−ix·ξ
〉| ≤ A1

h(N+m+N)σ (N + m + 2M)τ(N+m+2M)σ

|ξ|N

≤ A2
hNσ

1 NτNσ

|ξ|N
, x ∈ K, ξ ∈ Γ,



S. Pilipović et al. / Filomat 32:8 (2018), 2763–2782 2776

for some A2 > 0 where for the last inequality we used (M.2)′ of the sequence Mτ,σ
p = pτpσ . This is the estimate

for the first term on the righthand side of (4.9).

Step 4. It remains to estimate the second term on the righthand side of (4.9) for |ξ| > N2σ−1τNσ−1
. Since

(x0, ξ0) < WF{τ,σ}( f ), by Lemma 3.1, there exists a compact set K̃ ⊂⊂ U such that ψ ∈ D{τ,σ}(U), ψ = 1 on a
neighborhood of K̃, and a conical neighborhood V of ξ0 such that Γ ⊂ V and

|F (ψ f )(η)| ≤ A
hNσNτNσ

|ξ|N
, η ∈ V,N ∈ N, (4.11)

for some A, h > 0. In the sequel we write v = ψ f . Since wN f = wNv inD′(U), we have

〈 f (·)e−iξ·,wN(·, ξ)/Pm(·, ξ)〉 = Fx→η(v(x)
wN(x, ξ)
Pm(x, ξ)

)(ξ)

=

∫
Rd
F (v)(ξ − η)Fx→η(

wN(x, ξ)
Pm(x, ξ)

)(η, ξ) dη = I1 + I2,

where

I1 =

∫
|η|<ε|ξ|

F (v)(ξ − η)Fx→η(
wN(x, ξ)
Pm(x, ξ)

)(η, ξ) dη,

I2 =

∫
|η|≥ε|ξ|

F (v)(ξ − η)Fx→η(
wN(x, ξ)
Pm(x, ξ)

)(η, ξ) dη,

and 0 < ε < 1 is chosen so that ξ − η ∈ V when ξ ∈ Γ, |ξ| > N2σ−1τNσ−1
, and |η| < ε|ξ|.

To finish the proof we estimate I1 and I2 in Step 5 and Step 6, respectively.
Step 5. Let j1, . . . , jk ∈ {1, . . . ,m} be fixed. Since the coefficients of Pm(·, ξ) are in C∞(U), and Pm(x, ξ) , 0

when x ∈ K and ξ ∈ Γ, it follows that
R j1 R j2 . . .R jkφ(·, ξ)

Pm(·, ξ)
belongs to C∞(K) when ξ ∈ Γ, and moreover it is

homogeneous of order −m−Sk. Hence, by Paley-Wiener type estimates it follows that there exist a constant
C > 0, such that

|Fx→η

(R j1 R j2 . . .R jkφ(x, ξ)
Pm(x, ξ)

)
(η, ξ)| ≤ C|ξ|−m−Sk〈η〉−d−1

≤ C〈η〉−d−1, η ∈ Rd,

when ξ ∈ Γ, |ξ| > N2σ−1τNσ−1
.

This estimate, and the estimate for number of terms in (4.4) (see remark 4.1) imply that there exist
constants A,C > 0 such that

∣∣∣∣Fx→η

(wN(x, ξ)
Pm(x, ξ)

)∣∣∣∣ ≤ ∑
k∈K1

N−m∑
Sk=0

∣∣∣∣Fx→η

(R j1 R j2 . . .R jkφ(x, ξ)
Pm(x, ξ)

)
(η, ξ)

∣∣∣∣
≤ ACN

〈η〉−d−1. (4.12)
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Since |η| < ε|ξ| ⇒ |ξ − η| ≥ (1 − ε)|ξ|, by using (4.11) and (4.12), we obtain the desired estimate for I1:

|I1| ≤

∫
|η|<ε|ξ|

|F (v)(ξ − η)||Fx→η(
wN(x, ξ)
Pm(x, ξ)

(η, ξ)| dη

≤

∫
|η|<ε|ξ|

A
hNσNτNσ

|ξ − η|N
|Fx→η(

wN(x, ξ)
Pm(x, ξ)

(η, ξ)| dη

≤ A
hNσNτNσ

((1 − ε)|ξ|)N

∫
Rd

CN
〈η〉−d−1 dη

≤ A1
hNσ

1 NτNσ

|ξ|N
, ξ ∈ Γ, |ξ| > N2σ−1τNσ−1

,

for some constants A1, h1 > 0.
Step 6. It remains to estimate I2. We note that |ξ − η| ≤ (1 + 1/ε)|η| when |η| ≥ ε|ξ|. The Paley-Wiener

type estimate for v = ψ f ∈ E′(U) implies that |F (v)(η)| ≤ C〈η〉M, for some constant M,C > 0. Therefore

|I2| ≤

∫
|η|≥ε|ξ|

|F (v)(ξ − η)||Fx→η(
wN(x, ξ)
Pm(x, ξ)

)(η, ξ)| dη

≤

∫
|η|≥ε|ξ|

〈ξ − η〉M〈η〉N+d+1
|Fx→η(

wN(x,ξ)
Pm(x,ξ) )(η, ξ)|

〈η〉N+d+1
dη

≤ CN+1
supη∈Rd〈η〉N+M+d+1

|Fx→η(
wN(x,ξ)
Pm(x,ξ) )(η, ξ)|

〈ξ〉N
,

when ξ ∈ Γ, |ξ| > N2σ−1τNσ−1
.

To finish the proof, it remains to show that ξ ∈ Γ, |ξ| > N2σ−1τNσ−1
, implies that there exist constants

A, h > 0 such that

sup
η∈Rd

〈η〉N+M+d+1
|Fx→η(

wN(x, ξ)
Pm(x, ξ)

)(η, ξ)| ≤ AhNσ
N2σ−1τNσ

, (4.13)

for a sufficiently large N ∈ N, and then we use this estimate to bound |I2|.
Arguing in the similar way as in the proof of [18, Theorem 1.1], it is sufficient to prove

sup
x∈K

∣∣∣∣Dβ
(wN(x, ξ)

Pm(x, ξ)

)∣∣∣∣ ≤ AhNσ
N2σ−1τNσ

, β ∈ Nd, |β| = N + M + d + 1, (4.14)

for some constants A, h > 0, when ξ ∈ Γ, |ξ| > N2σ−1τNσ−1
. Recall (see Subsection 4.2),

sup
x∈K

∣∣∣∣Dγ 1
Pm(x, ξ)

∣∣∣∣ ≤ |ξ|−mC|γ|
σ+1
|γ|τ|γ|

σ
, γ ∈ Nd, ξ ∈ Γ,

for some constant C > 0. Moreover, from (4.29) (see Subsection 4.3), it follows that

sup
x∈K
|DγwN(x, ξ)| ≤ AhNσ

∑
k∈K1

N−m∑
Sk=0

|ξ|−Sk (Sk + |γ|)τ(Sk+|γ|)σ ,

for some constants A, h > 0, when ξ ∈ Γ.
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Hence, for x ∈ K and ξ ∈ Γ, |ξ| > N2σ−1τNσ−1
, we obtain∣∣∣∣∣DβwN(x, ξ)

Pm(x, ξ)

∣∣∣∣∣ ≤ ∑
k∈K1

∑
γ≤β

(
β
γ

)
|Dβ−γ 1

Pm(x, ξ)
||DγwN(x, ξ)|

≤ AhNσ
∑
γ≤β

∑
k∈K1

N−m∑
Sk=0

|ξ|−Sk−m
(
β
γ

)
C|β−γ|

σ+1
|β − γ|τ|β−γ|

σ
(Sk + |γ|)τ(Sk+|γ|)σ

≤ A1hNσ

1

∑
γ≤β

∑
k∈K1

N−m∑
Sk=0

(
β
γ

)
|ξ|−Sk (Sk + |β|)τ(Sk+|β|)σ , (4.15)

for some A1, h1 > 0, β ∈ Nd, |β| = N + M + d + 1, where we used (M.1) property of the sequence Mτ,σ
p = pτpσ .

Since Sk ≤ N −m, it follows that N > Sk and therefore

|ξ| > N2σ−1τNσ−1
> Sk

2σ−1τSk
σ−1
.

Now, (M.2) property of Mτ,σ
p = pτpσ implies

|ξ|−Sk (Sk + |β|)τ(Sk+|β|)σ ≤
(Sk + |β|)τ(Sk+|β|)σ

Sk
2σ−1τSk

σ

≤ CSk
σ+|β|σSk

2σ−1τSk
σ

|β|2
σ−1τ|β|σ

Sk
2σ−1τSk

σ

= CSk
σ+|β|σ (N + M + d + 1)2σ−1τ(N+M+d+1)σ

≤ CNσ

1 N2σ−1τNσ
, (4.16)

for some constant C1 > 0 where the last inequality follows from (M.2)′ property of Mτ,σ
p . Using the estimate

for number of terms in wN, by (4.15) and (4.16), the estimate (4.14) follows.
By the similar arguments as in the proof of [18, Theorem 1.1], (4.13) follows from (4.14) since

π1(supp
wN(x, ξ)
Pm(x, ξ)

) ⊆ K.

Therefore,

|I2| ≤ A
hNσN2σ−1τNσ

|ξ|N
(4.17)

for suitable constants A, h > 0 and N sufficiently large, and the theorem is proved.

4.1. Representing φ̂u(ξ) by an approximate solution

In this subsection we derive (4.3), (4.4) and (4.5).
Let PT(x,D) =

∑
|α|≤m

bα(x)Dα, bα(x) ∈ E{τ,σ}(U) be the transpose of P(x,D). If v(x, ξ) is the solution of the

equation

eixξPT(x,D)v(x, ξ) = φ(x), x ∈ K, ξ ∈ Γ, (4.18)

then

φ̂u(ξ) =

∫
u(x)φ(x)e−ixξdx =

∫
u(x)PT(x,D)v(x, ξ)dx, ξ ∈ Γ,
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Similarly as in [6] and [17], we may assume that v(x, ξ) =
e−ixξw(x, ξ)

Pm(x, ξ)
, for some w(·, ξ) ∈ C∞(K), so that

the left hand side of (4.18) becomes

eixξPT(x,D)(
w(x, ξ)e−ixξ

Pm(x, ξ)
) = eixξ

∑
|α|≤m

∑
β≤α

(
α
β

)
bα(x)Dα−β(e−ixξ)Dβ

( w(x, ξ)
Pm(x, ξ)

)
=

∑
|α|≤m

∑
β≤α

∑
γ≤β

(
α
β

)(
β
γ

)
bα(x)(−ξ)α−βDγ

( 1
Pm(x, ξ)

)
Dβ−γw(x, ξ)

= (I − R(x, ξ))w(x, ξ), x ∈ K, ξ ∈ Γ, (4.19)

where

R(x, ξ) =

m∑
j=1

R j(x, ξ), R j(x, ξ) =
∑
|α|≤ j

cα, j(x, ξ)Dα,

for suitable functions cα, j(x, ξ) which are homogeneous of order − j and

|Dβcα, j(x, ξ)| ≤ |ξ|− jAh|β|
σ
|β|τ|β|

σ
, β ∈ Nd, x ∈ K, ξ ∈ Γ (4.20)

for some A, h > 0 and for all |α| ≤ j. We refer to Subsection 4.2 for the calculus which shows how (4.19)
implies (4.20).

Therefore (4.18) can be rewritten in the following convenient form:

(I − R(x, ξ))w(x, ξ) = φ(x) x ∈ K, ξ ∈ Γ. (4.21)

which gives rise to approximate solutions as follows.
Note that the order of operator Rk, k ∈ N, is mk. We compute∑

k∈K1

Rk
− R

∑
k∈K1

Rk =
∑
k∈K1

Rk
−

∑
k∈K1

Rk+1

=
∑
k∈K1

Rk
−

∑
{k∈N |m≤mk≤N}

Rk = I −
∑
k∈K2

Rk (4.22)

whereK1 is given by (4.6) and in the last equality we used

K1 ∩ {k ∈ N |m ≤ mk ≤ N} = {k ∈ N |m ≤ mk ≤ N −m}.

Moreover, since the operators R j, 1 ≤ j ≤ m, do not commute we can write∑
k∈K1

Rk =
∑
k∈K1

N−m∑
Sk=0

R j1 R j2 . . .R jk ,

and ∑
k∈K2

Rk =
∑
k∈K2

N∑
Sk=N−m+1

R j1 R j2 . . .R jk

where Sk = j1 + j2 + · · · + jk, ji ∈ {1, . . . ,m}, 1 ≤ i ≤ k.
Now,

(I − R(x, ξ))(
∑
k∈K1

Rkφ(x)) = (
∑
k∈K1

Rk
− R

∑
k∈K1

Rk)φ(x) = (I −
∑
k∈K2

Rk)φ(x) = φ(x) −
∑
k∈K2

Rkφ(x),

and if we put wN =
∑

k∈K1
Rkφ and eN =

∑
k∈K2

φ we conclude that

(I − R)wN(x, ξ) = φ(x) − eN(x, ξ), N ∈ N, x ∈ K, ξ ∈ Γ,

with wN and eN given by (4.4) and (4.5) respectively. Now (4.3) follows from (4.19).
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4.2. Estimates for cα, j(x, ξ)

We show in this subsection that (4.19) implies (4.20). An essential argument in this part of the proof is
the inverse-closedness property presented in Theorem 2.1.

Recall,

Dα
( 1
Pm(x, ξ)

)
= α!

∑
(s,p, j)∈π

(−1) j j!
(Pm(x, ξ)) j+1

s∏
k=1

1
jk!

( 1
pk!

Dpk Pm(x, ξ)
) jk
, (4.23)

for α ∈ Nd, where sum is taken over all decompositions (s, p, j) of the form

α = j1p1 + j2p2 + · · · + jsps,

with j =

s∑
i=1

ji ∈ {0, 1, . . . , |α|}, pi ∈ Nd, |pi| ∈ {1, . . . , |α|} for i ∈ {1, . . . , s}, s ≤ |α|. (see Subsection 2.1)

Since the coefficients of Pm(x, ξ) belong to E{τ,σ}(U), it follows that

sup
x∈K
|Dpk Pm(x, ξ)| ≤ Ah|pk |

σ
|pk|

τ|pk |
σ
|ξ|m, (4.24)

for some A, h > 0. Moreover, (K × Γ) ∩ Char(P) = ∅ implies that

sup
x∈K
|Pm(x, ξ)| ≥ C′|ξ|m. (4.25)

Hence, by (4.23), (4.24) and (4.25), we obtain

|Dα
( 1
Pm(x, ξ)

)
| ≤ |α|!

∑
(s,p, j)∈π

j!
j1! . . . js!|Pm(x, ξ)| j+1

·

s∏
k=1

( 1
pk!
|Dpk Pm(x, ξ)|

) jk

≤ |α|!
∑

(s,p, j)∈π

|ξ|mj j!
|ξ|m( j+1) j1! . . . js!|Pm(x, ξ)| j+1

·

s∏
k=1

( 1
pk!

Ah|pk |
σ
|pk|

τ|pk |
σ
) jk

≤ |ξ|−mA1h|α|
σ+1

1 |α|τ|α|
σ
,

for some A1, h1 > 0, where the last inequality follows by calculation from the proof of Theorem 2.1.

In particular, we have proved that
1

Pm(·, ξ)
∈ E{τ,σ,h}(K) for some h > 0 and for every ξ ∈ Γ. From the

algebra property of extended Gevrey classes it follows that bα(·)∂γ
1

Pm(·, ξ)
∈ E{τ,σ,h′}(K) for some h′ > 0,

where |γ| ≤ |α| ≤ m and bα(x) are the coefficients of PT(x,D).
These estimates, together with (4.19) give (4.20).

4.3. Estimates for Dβ(R j1 ...R jkφ)

In this subsection we follow the idea presented in [6, Lemmas 8.6.2 and 8.6.3]. As in Subsection 4.1 we
put

Sk = j1 + · · · + jk, N −m ≤ Sk ≤ N,

for k ∈ N such that mk ≤ N, and let |β| ≤M.
Recall that R j(x, ξ) =

∑
|α|≤ j

cα, j(x, ξ)Dα, and note that by the successive applications of the Leibniz rule,

Dβ(R j1 ...R jkφ) can be written as a sum of terms of the form

(Dγ0 cα j1 , j1 (x, ξ))(Dγ1 cα j2 , j2 (x, ξ)) . . . (Dγk−1 cα jk , jk
(x, ξ))(Dγkφ(x)).
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Put ai = |γi| so that

a0 + · · · + ak = Sk + |β|, (4.26)

a0 ≤ |β|, (4.27)

and

ai ≤

i∑
t=1

jt + |β|, 1 ≤ i ≤ k. (4.28)

From (4.20) it follows that

|Dγi−1 cα ji , ji (x, ξ)| ≤ |ξ|− ji Ahaσi−1 a
τaσi−1
i−1 , γi−1 ∈ Nd, x ∈ K, ξ ∈ Γ,

for some constants A, h > 0 and for all |α ji | ≤ ji, i = 1, . . . , k.

Observe that the number of multiindices γ0, . . . , γk with the property (4.26) is
(
Sk + |β|

a0, . . . , ak

)
. In the sequel

we write
∑

when the sum is taken over all multiindices γ0, . . . , γk which satisfies (4.26)-(4.28).
Since φ ∈ DK

{τ,σ}
, for x ∈ K and ξ ∈ Γ, we estimate

|(DβR j1 ...R jkφ)(x, ξ)| ≤
∑(

Sk + |β|
a0, . . . , ak

)( k∏
i=1

|Dγi−1 cα ji , ji (x, ξ)|
)
· |Dγkφ(x)|

≤ |ξ|−Sk

∑(
Sk + |β|

a0, . . . , ak

)( k∏
i=1

Ahaσi−1 a
τaσi−1
i−1

)
·

(
Ahak

σ
ak
τak

σ
)

≤ |ξ|m−NA
N
m +1hNσ

∑(
Sk + |β|

a0, . . . , ak

)( k+1∏
i=1

a
τaσi−1
i−1

)
≤ |ξ|m−NA1hNσ

1

∑(
Sk + |β|

a0, . . . , ak

)( k+1∏
i=1

a
τaσi−1
i−1

)
,

for some A1, h1 > 0. By the almost increasing property of Mτ,σ
p = pτpσ it follows that

k+1∏
i=1

a
τaσi−1
i−1 ≤ Ca0+···+ak

a0! · · · ak!
(a0 + · · · + ak)!

(a0 + · · · + ak)τ(a0+···+ak)σ

= CSk+|β|
a0! · · · ak!
(Sk + |β|)!

(Sk + |β|)τ(Sk+|β|)σ ,

for some C > 0, wherefrom∑(
Sk + |β|

a0, . . . , ak

)( k+1∏
i=1

a
τaσi−1
i−1

)
≤

∑ a0! · · · ak!
(Sk + |β|)!

· CSk+|β|
(Sk + |β|)!
a0! . . . ak!

(Sk + |β|)τ(Sk+|β|)σ

= CSk+|β|(Sk + |β|)τ(Sk+|β|)σ
∑

a0+···+ak=Sk+|β|

1

≤ CN(N + M)τ(N+M)σ
(
Sk + |β| − 1

k

)
≤ CN

1 (N + M)τ(N+M)σ

for suitable C1 > 0.
Hence, we conclude that there exist constants A, h > 0 such that

|(DβR j1 ...R jkφ)(x, ξ)| ≤ A|ξ|m−NhNσ
(N + M)τ(N+M)σ , (4.29)

x ∈ K, ξ ∈ Γ, which gives the desired estimate.
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