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Abstract. Recently in [Journal of Computational Physics, 321 (2016), 829–907], an approach has been
developed for solving linear system of equations with nonsingular coefficient matrix. The method is
derived by using a delayed over-relaxation step (DORS) in a generic (convergent) basic stationary iterative
method. In this paper, we first prove semi-convergence of iterative methods with DORS to solve singular
linear system of equations. In particular, we propose applying the DORS in the Modified HSS (MHSS)
to solve singular complex symmetric systems and in the Richardson method to solve normal equations.
Moreover, based on the obtained results, an algorithm is developed for solving coupled matrix equations.
It is seen that the proposed method outperforms the relaxed gradient-based (RGB) method [Comput. Math.
Appl. 74 (2017), no. 3, 597–604] for solving coupled matrix equations. Numerical results are examined to
illustrate the validity of the established results and applicability of the presented algorithms.

1. Introduction

Consider the following consistent linear system of equations,

Ax = b, (1)

where A ∈ Rn×n (possibly singular) and b ∈ Rn are known and x ∈ Rn is an unknown vector.
For a given n × n matrix A, the decomposition A = M −N is called splitting, if M ∈ Rn×n is nonsingular.

Corresponding to a given splitting A = M − N, a basic stationary iterative method to solve (1) has the
succeeding general form:

xk+1 = Gxk + f , k = 0, 1, 2, . . . , (2)

where G = M−1N is called iteration matrix, f = M−1b and the initial guess x0 is given.
In [1], a delayed iterative scheme to solve Ax = b is given by:

x̄k+1 = Gxk + f , (3)
xk+1 = ωx̄k+1 + (1 − ω)xk−1, k = 0, 1, 2, . . . ,
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where ω is a given positive parameter. Notice that for ω = 1, the iterative scheme (3) reduces to (2). In the
case that the spectral radius of G is strictly less than one (ρ(G) < 1 ) and A is nonsingular, the convergence
properties of (3) have been discussed in [1].

In view of the discussions in [1], the efficiency of using a delayed over-relaxation step (DORS) on
convergence speed of stationary iterative methods have been mainly studied under the assumption that
the coefficient matrix A is a (square) positive definite matrix. Here we are interested in seeing whether this
technique is applicable for solving consistent linear system of equations with possibly non-square coefficient
matrix. More precisely, the derived results for applying DORS in Richardson method encouraged us to
propose an algorithm for solving Ax = b where A is a rectangular and possibly rank deficient matrix. As a
natural way, the results are finally exploited to obtain an iterative scheme to solve coupled matrix equations.
In particular, it is illustrated that the proposed algorithm surpasses both the GB method and the recently
proposed method in [21] to solve coupled matrix equations.

Before ending this section, we give a brief overview on the concept of “semi-convergence”. For a given
square matrixG, suppose that lim

k→∞
G

k = L, if L < ∞ thenG is said to be semi-convergent. In the case that L = 0

then G is called a convergent matrix. Here we recall that the matrix G is convergent if and only if ρ(G) < 1.
A given matrix G is semi-convergent iff

• ρ(G) = 1,

• index(I − G) = 1 which means that rank(I − G) = rank(I − G)2,

• If µ ∈ σ(G) with |µ| = 1 then µ = 1, (i.e., υ(G) = {|µ| : µ ∈ σ(G), µ , 1} < 1)

here σ(G) denotes the spectrum of G, for future details, one may refer to [7].
In order to discuss on the semi-convergence of an iterative method, we need to also recall the following

theorem from [7].

Theorem 1.1. Consider the splitting A = M −N ∈ Rn×n. The iterative method (2) converges to some solution x∗ to
Ax = b for each x0 if and only if G is semi-convergent.

The remainder of this paper is organized as follows. In the next section, first, we prove that if G is
semi-convergent, then (3) converges to a solution of Ax = b in the case that A is singular. Then, as an
example, we propose an algorithm by applying DORS in the MHSS method to solve singular complex
symmetric systems. In the last part of the second section, we briefly describe the application of DORS on
Richardson method to solve normal equations. Section 3 is devoted to presenting an algorithm with the
DORS for solving coupled matrix equations. Numerical results are reported in Section 4 which demonstrate
applicability of using a DORS for speeding up the convergence of stationary iterative methods. Finally, we
briefly state our conclusions in Section 5.

2. DORS in Iterative Methods for Singular Linear Systems

This section is divided into three parts. In the first part, we mainly establish semi-convergence of the
iterative methods with DORS to solve singular linear system of equations. Then as an example, we propose
using DORS in the MHSS method to solve singular complex symmetric linear systems. Finally we present a
convergent and parameter free algorithm with DORS to solve linear system Ax = b where A is an arbitrary
rectangular matrix.

2.1. Semi-convergence of iterative schemes with DORS
In this part, we prove that under a certain condition, the iterative method (3) converges to a solution of

(1) where A is assumed to be singular. To this end, we first rewrite (3) as follows:(
xk+1
xk

)
=

(
ωG (1 − ω)I

I 0

) (
xk

xk−1

)
+

(
ω f
0

)
, (4)
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(k = 0, 1, 2, . . .). As seen the iteration matrix of iterative method (4) is given by

G̃ =

(
ωG (1 − ω)I

I 0

)
. (5)

Now, from Theorem 1.1, it reveals that for proving the convergence of (3) in the case that A is a singular
matrix, we need to show that G̃ is semi-convergent. To this end, we first recall the following useful lemma.

Lemma 2.1. [23] Consider the quadratic equation x2
− bx + c = 0, where b and c are real numbers. Both roots of the

equation are less than one in modulus if and only if |c| < 1 and |b| < 1 + c.

The following theorem provides a sufficient condition for the semi-convergence of G̃.

Theorem 2.2. Let G be a semi-convergent matrix and ω ∈ (0, 2) is a fixed parameter. Then the matrix G̃ given by
(5) is semi-convergent.

Proof. Here, without loss of generality, we assume that ω , 1. We give the proof into two steps for more
clarification.

Step I. Let λ be an arbitrary eigenvalue of G̃. Therefore, it can be seen that in general the following relation
holds between the eigenvalues of G̃ and G, (see [1])

λ2
− ω`λ + (ω − 1) = 0, (6)

where ` is an eigenvalue of G. The above relation gives two solutions in the form:

λ± =
ω`
2
±

1
2

√
ω2`2 − 4(ω − 1). (7)

Notice that our used strategy in the rest of this steps yields a different and short proof, from that given in
[1, Proposition 1], for the convergence of the delayed iterative schemes when G is convergent, see Case 1.

By the assumption, G is semi-convergent which implies that ρ(G) = 1 and |`| < 1 for all ` , 1. We
consider the following two cases.

• Case 1. If |`| < 1 then considering the quadratic equation (6) from Lemma 2.1, we get |λ±| < 1 for
ω ∈ (0, 2).

• Case 2. If ` = 1 then from (7):

– For 1 < ω < 2, we have

λ± =
ω
2
±
ω
2
∓ 1,

which implies that λ+ = ω − 1 and λ− = 1.

– For 0 < ω < 1 we have

λ± =
ω
2
∓
ω
2
± 1,

which implies that λ+ = 1 and λ− = ω − 1.

From the discussions of this step, we may deduce that ρ(G̃) = 1 and |λ| < 1 for all λ , 1.
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Step II. In this part, we show that rank((I − G̃)2) = rank(I − G̃). It can be observed that

I − G̃ =

(
I − ωG −(1 − ω)I
−I I

)
=

(
ωI (1 − ω)I
0 −I

) (
I − G 0

I −I

)
.

Consequently, we see that rank(I − G̃) does not deponed on ω , 0, i.e.,

rank(I − G̃) = rank(W),

where

W =

(
I − G 0

I −I

)
.

Now, it can be deduced that

rank(I − G̃) = rank(I − G) + n.

On the other hand,

rank((I − G̃)2) = rank(IWIW) = rank(WIW),

in which I is a nonsingular matrix defined as follows:

I =

(
ωI (1 − ω)I
0 −I

)
.

By the following computations and invoking the assumption that rank((I − G)2) = rank(I − G), we get

rank((I − G̃)2) = rank(WIW)

= rank
((

(I − G)(I − ωG) −(1 − ω)(I − G)
2I − ωG (ω − 2)I

))
= rank

((
(I − G)(I − ωG) −(1 − ω)(I − G)

2I − ωG (ω − 2)I

) (
I 0
I I

))
= rank

((
ω(I − G)2

−(1 − ω)(I − G)
ω(I − G) (ω − 2)I

))

= rank
((

I −(I − G)
0 I

) (
ω(I − G)2

−(1 − ω)(I − G)
ω(I − G) (ω − 2)I

))
= rank

((
0 (I − G)

ω(I − G) (ω − 2)I

))
= rank

((
I −

1
ω−2 (I − G)

0 I

) (
0 (I − G)

ω(I − G) (ω − 2)I

))
= rank

((
−

ω
ω−2 (I − G)2 0
ω(I − G) (ω − 2)I

))
= rank((I − G)2) + n
= rank(I − G) + n.

From Steps I and II, we may conclude the results immediately.
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Before ending this subsection, we recall the following two basic theorems which are useful for deter-
mining the unique minimum norm least–squares solution in an algorithm. In the following we use the
notation “Range(B)” to denote the span of the column vectors of a given matrix B.

Theorem 2.3. [17] Let A ∈ Rm×n and b ∈ Rm, and

X = {x ∈ Rn : x = argmin
y∈Rn

‖Ay − b‖2}.

Then x ∈ X if and only if ATAx = ATb. Moreover, x∗ = A+b is the unique solution of the problem

min
x∈X
‖x‖2,

where A+ is the pseudoinverse of A.

Note the vector x∗ = A+b in Theorem 2.3 is said to be the least Euclidean norm solution.

Theorem 2.4. [18] Let A ∈ Rm×n and b ∈ Range(A). Suppose that the system of linear equations Ax = b has a
solution x∗ ∈ Range(AT). Then x∗ is a unique least Euclidean norm solution of the system of linear equations.

2.2. MHSS iterative method with DORS
From discussions in the previous part, it revealed that if the stationary iterative method (2) is semi-

convergent, then the corresponding iterative scheme (3) converges to a solution of (1). In the literature the
semi-convergence of several iterative schemes have been studied so far, therefore they can be effectively
used with DORS to solve singular linear system of equations. Here we only consider the modified MHHS
method with DORS between several possible approaches. Observing the performance of DORS in other
semi-convergence stationary iterative methods left to conscientious readers.

Let us consider the singular linear system Ax = b where A ∈ Cn×n is a complex symmetric matrix of the
form A = W + iT. In [8], the MHSS method for solving this kind of linear system is given as follows:

The MHSS iteration method: Let x0 ∈ Cn be an arbitrary initial guess. For k = 0, 1, 2, . . . until the sequence
of iterates xk converges, compute the (k + 1)-th iterate xk+1 using the following iterative methods:{

(αI + W)x = (αI − iT)xk + b,
(αI + T)xk+1 = (αI + iW)x − ib, (8)

where α is a given positive parameter. Suppose that τmin and τmax are the minimum and the maximum
nonzero eigenvalues of the matrices W and T, respectively. In [8, Corollary 2.2], it has been established that
the quasi-optimum value for the α is given by α∗ =

√
τminτmax which minimizes the upper bound of of the

semi-convergence factor for the MHSS iterative scheme; see [8] for further details.
In the case that the matrices W and T are both symmetric positive semidefinite, the semi-convergence

of the MHSS method is proved in [8]. From the reported numerical experiments in [8], it is observed that
the MHSS method surpasses the HSS method [2] to solve the mentioned class of singular linear system of
equations.

For two complex vectors x and y of the same size, we consider the inner product
〈
x, y

〉
= Re(yHx) where

yH denotes the conjugate transpose of y. This is a well-defined inner product on Cn. The induced norm is
the well-known Euclidean vector norm.

Assume that xk has been computed, hence we set xk+1 = xk−1 + ω(x̄ − xk−1). Consequently, we have

rk+1 = b − Axk+1

= b − ωAx̄ − (1 − ω)Axk−1

= ω(b − Ax̄) + (1 − ω)(b − Axk−1)
= ωr̄ + (1 − ω)rk−1

= rk−1 + ω(r̄ − rk−1)
= rk−1 − ω(rk−1 − r̄). (9)
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The value of ω can be determined by using the idea of one dimensional oblique projection technique
(Minimal Residual method), [19, Chapter 5] as follows. We comment that, the idea is essentially MR-DOR
(Minimal Residual with DOR step) which was originally described in [1].

In fact the (k + 1)-th iterate is computed so that

‖b − Axk+1‖2 = min
y∈S
‖b − Ay‖2,

where S = {y | y = ω̄x̄ + (1 − ω̄)xk−1 for some real ω̄}. It is not difficult to observe that the preceding
optimality condition is equivalent to find ω by imposing the orthogonality condition

〈rk+1, rk−1 − r̄〉 = 0,

the above orthogonality condition implies that

0 = 〈rk+1, rk−1 − r̄〉
= 〈rk−1, rk−1 − r̄〉 − ω 〈rk−1 − r̄, rk−1 − r̄〉 ,

which results that

ω =
〈rk−1, rk−1 − r̄〉
〈rk−1 − r̄, rk−1 − r̄〉

.

In conclusion, as a possible iterative scheme with DORS for complex symmetric linear system of equa-
tions Ax = b with A = W + iT, we propose Algorithm 1. The resulting method is called the DMHHS method.
The performance of the algorithm is numerically compared to the MHSS method in Section 4. We comment
that Lines 5 and 6 are equivalent to one iterate of the MHSS method.

Algorithm 1: DMHHS method to solve Ax = b where A = W + iT.

1 Input: The coefficient matrix A,W and T, the right-hand side b, α,ω > 0 and x0.
2 Set x0 = 0 and compute x1 by applying one iterate of (8);
3 begin
4 for k=1,2,. . . , until convergence do
5 Solve (αI + W)x̃ = (αI − iT)xk + b to find x̃;
6 Solve (αI + T)x̄ = (αI + iW)x̃ − ib to find x̄;
7 r̄ = b − Ax̄;

8 ω =
Re(rH

k−1(rk−1−r̄))
Re((rk−1−r̄)H(rk−1−r̄)) ;

9 xk+1 = ωx̄ + (1 − ω)xk−1 ;
10 rk+1 = ωr̄ + (1 − ω)rk−1 ;
11 end
12 end

2.3. Richardson method with DORS for normal equations
In this section we propose an iterative method to solve linear system of equations (1) where A is possibly

rectangular and rank deficient matrix.
Let us consider the well-known Richardson method [19] to solve ATAx = ATb which is given as follows:

xk+1 = xk + µAT(b − Axk) = (I − µATA)xk + µATb, k = 0, 1, 2, . . . , (10)

where µ is a given positive real parameter and A ∈ Rn×m.
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In [20, Theorem 2.5], Salkuyeh and Beik established a sufficient condition for the convergence of the
iterative method (10). More precisely, it has been shown that the iteration matrix corresponding to (10),
i.e., G = (I − µATA), is semi-convergent. In addition, the optimal value for the parameter µ is obtained for
which (10) reaches to its best convergence rate.

Here, we first consider application of the Richardson method with DORS for solving ATAx = ATb. The
corresponding iterative scheme is of the form (3) with G = (I − µATA) and f = µATb where µ is a given
positive parameter. Therefore, the Richardson method with DORS is given as follows:

x̄k+1 = xk + µATrk, (11)
xk+1 = ωx̄k+1 + (1 − ω)xk−1, k = 1, 2, . . . ,

where rk = b − Axk is the k-th residual vector.
In general, finding the optimal parameter in the iterative schemes (10) and (11) needs information about

the extreme eigenvalues of ATA which would be too expensive in practice; see [19]. Notice that when the
coefficient matrix is singular, the minimum nonzero and maximum eigenvalues must be found to determine
the optimum parameter µ in (10), see [20]. To overcome this drawback, one may choose the parameters
µ and ω in progressive manner instead of using fixed parameters. In fact, we mainly use the idea of
one-dimensional projection techniques in the following manner [19, Chapter 5].

Let xk be the k-th approximate solution, we find µ∗ in (11) so that r̄∗k+1 = b − Ax̄∗k+1 satisfies

‖r̄∗k+1‖2 = min
x∈S̃
‖b − Ax‖2, (12)

where x̄∗k+1 = xk + µ∗ATrk and S̃ = {x | x = xk + µATrk}. It can be seen that (12) holds iff〈
r̄∗k+1,Apk

〉
2

= 0,

where pk = ATrk. Evidently, we have r̄∗k+1 = rk − µ∗Apk . Therefore, under the assumption
〈
Apk,Apk

〉
2 , 0,

the preceding orthogonality condition implies that

µ∗ =

〈
rk,Apk

〉
2〈

Apk,Apk
〉

2
.

Notice that the proposed way for choosing µ can also be used while using (10). Therefore the results of
the following proposition hold when µ is chosen in both iterative schemes (10) and (11) by the mentioned
projection technique at each step. We comment that µ∗ is derived using the idea of Minimal Residual
method [19] which is also used in [1]. The proof is straightforward, hence we omit it.

Proposition 2.5. Assume that x∗ is a solution of Ax = b. Then,〈
pk, x∗ − xk

〉
2 = 〈rk, rk〉2 ,

and 〈
Apk, rk

〉
2 =

〈
pk, pk

〉
2 ,

where pk = ATrk, rk = b − Axk and xk is the k-th approximate solution computed by either (10) or (11).

Remark 2.6. From the first relation of previous proposition, we can immediately conclude that pk = 0 implies that
rk = 0 which shows that xk is the exact solution of Ax = b. The second relation in Proposition 2.5 reveals that
Apk = 0 implies pk = 0 which, as pointed earlier, ensures that xk is the exact solution of Ax = b. Therefore the earlier
assumption

〈
Apk,Apk

〉
2 , 0 is not a kind of restriction. Because Apk = 0 results xk is the exact solution of Ax = b.
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In order to determine parameterω in iterative scheme (11), again, one can use the idea of one-dimensional
techniques. Notice that in the delayed step of (11), we have

xk+1 = ωx̄k+1 + (1 − ω)xk−1.

Or equivalently,

xk+1 = xk−1 + ωdk,

where dk = x̄k+1 − xk−1. Here we find ω∗ so that

‖r∗k+1‖2 = min
x∈Ŝ
‖b − Ax‖2, (13)

where r∗k+1 = b−Ax∗k+1 and x∗k+1 = xk−1 +ω∗dk and Ŝ = {x | x = xk−1 +ωdk}. It can be verified that (13) satisfies
iff 〈

r∗k+1,Adk

〉
2

= 0.

If 〈Adk,Adk〉2 , 0, it is not difficult to see that above orthogonality condition implies that

ω∗ =
〈rk,Adk〉2

〈Adk,Adk〉2
.

Note that Adk = rk−1 − r̄k+1. Hence 〈Adk,Adk〉2 = 0 implies r̄k+1 = rk−1. From the way that µ is chosen, we
have ‖r̄k+1‖2 ≤ ‖rk‖2 and the way was exploited for choosing ω in the previous step results ‖rk‖2 ≤ ‖rk−1‖2.
This shows as soon as Adk = 0, the following equality holds

‖r̄k+1‖2 = ‖rk‖2.

It can be seen that the above relation concludes
〈
rk,Apk

〉
2 = 0. Now from Proposition 2.5 and Remark 2.6,

we deduce that ‖r̄k+1‖2 = ‖rk‖2 implies xk is the exact solution of Ax = b.
Now using the above discussions, we present Algorithm 2. Considering the way of choosing µ and ω

in the above progressive manner, it is not difficult to establish the following proposition. The proof follows
from straightforward computations, so it is omitted.

Proposition 2.7. Assume that k steps of Algorithm 2 is performed. Suppose that x̂ = xk +ω̂pk where ω̂ is an arbitrary
constant. Then

‖rk+1‖2 ≤ ‖r̂‖2, (14)

where rk+1 and r̂ are respectively residual corresponding to xk+1 and x̂.

Remark 2.8. From Proposition 2.7, we deduce that Algorithm 2 outperforms the Richardson method for solving
singular normal equations. In fact, this follows from the fact that the k-th approximate solution computed by the
Richardson method belongs to xk + span{pk}. Notice that if we choose µ in the above proposed way and set ω = 1 then
the resulting method still converges faster than Richardson method.

Proposition 2.9. The sequence of approximate solutions {xk}
∞

k=1, computed by Algorithm 2, converges to a solution
of Ax = b.

Proof. Assume that k steps of the algorithm have been performed. From the earlier discussions, it has been
seen that ‖r̄k+1‖2 ≤ ‖rk‖2. Therefore, in view of Proposition 2.7, we deduce ‖rk+1‖2 ≤ ‖r̄k+1‖2 ≤ ‖rk‖2. As seen
in the algorithm, we have tk = Adk. From the previous discussions, it is known that 〈r̄k+1, tk〉2 = 0 which
shows that

〈r̄k+1, r̄k+1〉2 =
〈
rk − µtk, rk+1

〉
2

=
〈
rk, rk+1

〉
2 .



A. Ameri, F. P. A. Beik / Filomat 32:9 (2018), 3181–3198 3189

Algorithm 2: Richardson method with DORS for ATAx = ATb (ATA is possibly singular).

1 Input: The coefficient matrix A, the right-hand side b and x0.
2 Set p0 = ATr0 and t0 = Ap0 where r0 = b − Ax0;
3 Compute x1 = x0 + µp0 where µ =

〈rk ,t0〉2
〈t0,t0〉2

;
4 begin
5 for k=1,2,. . . , until convergence do
6 rk = b − Axk;
7 pk = ATrk;
8 tk = Apk;
9 µ =

〈rk ,tk〉2
〈tk,tk〉2

;
10 x̄ = xk + µpk ;
11 r̄ = rk − µtk;
12 φk = rk−1 − r̄;

13 ω =
〈rk−1,φk〉2
〈φk ,φk〉2

;

14 xk+1 = xk−1 + ω(x̄ − xk−1) ;
15 rk+1 = rk−1 − ωφk ;
16 end
17 end

Now, it can be observed that

〈rk+1, rk+1〉2 ≤ 〈r̄k+1, r̄k+1〉2

=
〈
rk, rk+1

〉
2

= 〈rk, rk〉2 − µ
〈
rk,Apk

〉
2

= 〈rk, rk〉2

1 −
〈
rk,Apk

〉2
2〈

Apk,Apk
〉

2 〈rk, rk〉2

 .
Here we comment that the well-known Cauchy-Schwarz inequality implies

1 −
〈
rk,Apk

〉2
2〈

Apk,Apk
〉

2 〈rk, rk〉2
≤ 1.

Notice that the above inequality holds strictly when
〈
rk,Apk

〉
2 , 0. Otherwise

〈
rk,Apk

〉
2 = 0 concludes pk = 0

which implies that xk is the exact solution of Ax = b by Proposition 2.5 and Remark 2.6. Therefore, ‖rk‖2
decreases monotonically toward zero at each step of the algorithm and this fact completes the proof.

We end this part with the following brief remark which shows that if we choose a special kind of initial
guess in Algorithm 2, then it converges to the unique least-norm solution of Ax = b.

Remark 2.10. We comment here that if we choose the initial guess x0 ∈ Range(AT) (for simplicity x0 can be chosen
as a zero vector) then the sequence of approximate solutions xk for k = 1, 2, . . . , belongs to Range(AT). Hence if the
iterative scheme (11) is convergent, the produced sequence of approximate solutions converges to the unique least-norm
solution by Theorems 2.3 and 2.4.

3. An Algorithm with DORS for Matrix Equations

In this section, we briefly show how the results in Subsection 2.3 can be used to improve the speed
of convergence of the well-known gradient-based (GB) iterative method to solve matrix equations. Our
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examined numerical tests illustrate that applying the DORS can significantly decrease the number of
iterations that the GB method requires to be convergent. Meanwhile, there is no need to assume that
the mentioned problem has a unique solution. Comparing to GB-type methods, the following proposed
algorithm is free of any parameters. For further dissuasions on improving the convergence speed of the GB
iterative method and its cyclic variant in progressive way, we refer the reader to [5, 6].

Several iterative methods have been proposed for solving linear matrix equations in the literature; for
instance see [3, 4, 9–15] and the references therein. The earlier cited works have been mainly proposed the
GB approaches to solve different kinds of matrix equations under the restrictions that the problem has a
unique solution.

More recently, Sheng and Sun [21] proposed an algorithm to solve the following coupled matrix equa-
tions

(A1XB1,A2XB2) = (F1,F2), (15)

where the matrices Ai, Bi and Fi for i = 1, 2 are given with suitable dimensions. The following iterative
scheme (namely Algorithm 3) has been proposed for solving (15). The convergence of Algorithm 3 has
been proved under the assumptions that the coupled matrix equations (15) have a unique solution,

0 < µ1 <
1

ω̄‖A1‖
2
2‖B1‖

2
2

and 0 < µ1 <
1

(1 − ω̄)‖A2‖
2
2‖B2‖

2
2

,

where 0 < ω̄ < 1 is given. As seen there is no suggestion for choosing optimum values of µ1, µ2 and
ω̄. Obviously finding suitable values of these parameters is not easy in general. On the other hand the
theoretical results have been only proved under the restriction of existence of a unique solution. In [21],
the reported numerical results show that the RGB method surpasses the GB method by choosing suitable
parameters.

Algorithm 3: The relaxed gradient-based (RGB) iterative algorithm [21].

1 Input: The matrices A1,A2,B1,B2 F1 and F2.
2 Choose the initial guess X(0), the parameters µ1, µ2 and appropriative positive number ω such that

0 < ω̄ < 1;
3 begin
4 for k=1,2,. . . , until convergence do
5 X1(k) = X(k − 1) − µ1AT

1 (A1X(k − 1)B1 − F1)BT
1 ;

6 X2(k) = X(k − 1) − µ2AT
2 (A2X(k − 1)B2 − F2)BT

2 ;
7 X(k) = ω̄X1(k) + (1 − ω̄)X2(k);
8 end
9 end

Consider the following general coupled Sylvester matrix equations
q∑

j=1

Ai jX jBi j = Ci, i = 1, . . . , p, (16)

where Ai j ∈ Rri×n j ,Bi j ∈ Rm j×ki and Ci ∈ Rri×ki are given matrices and X j ∈ Rn j×m j are the unknown matrices
for j = 1, 2, . . . , q.

For a given matrix X ∈ Rn×p, in the sequel, the notation “vec(X)” stands for a vector of dimension np
obtained by stacking the columns of the matrix X. Using the “vec(.)” operator and properties of Kronecker
product, it is seen that solving (16) is equivalent to solving the following linear system of equations,

q∑
j=1

(BT
ij ⊗ Ai j)vec(X j) = vec(Ci), i = 1, . . . , p, (17)
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where ⊗ denotes the well-known Kronecker product. For simplicity, we rewrite (17) as follows:

MX = B, (18)

in whichM is a block matrix and its (i, j)-th block is given by Mi j = BT
ij ⊗ Ai j (i = 1, . . . , p and j = 1, 2, . . . , q).

In [20], it has been described that the GB algorithm for solving (16) is in fact the matrix form of the
Richardson method to solve normal equationsMT

MX =MT
B. Also, it has been shown that the restriction

of the existence of a unique solution can be ignored when the convergence of the GB algorithm is studied for
solving (16). An interval for the fixed parameter µ in the GB algorithm has been established for which the
algorithm converges to a solution of (16). In addition, the following optimum value for the fixed parameter
µ has been determined,

µopt =
2

σ2
1 + σ2

r
, (19)

where σ1 ≥ σ2 ≥ . . . ≥ σr are the nonzero singular values of M. However, as seen, it may become too
expensive to compute the optimum value of µ in general situations.

Although we do not form the linear system (17) in practice, it helps us to figure out how Algorithm
2 can be extended to the matrix form for solving (16). Now we summarize the extension of Algorithm
2 for solving (16) in Algorithm 4. The derivation of the matrix form Algorithm 2 follows from the same
techniques used in [20], therefore we omit the details.

Remark 3.1. In the numerical experiments by DGB-version 1, we refer to Algorithm 4. In order to test how a DORS
works by itself in the algorithm, in Lines 5 and 11, one may compute µ by (19) which is the optimum value of the
parameter in the GB method. In this case we call Algorithm 4 by DGB-version 2. Numerical results show that both
DGB-version 1 and DGB-version 2 need less number of iterations than the GB method to be convergent.

4. Numerical Experiments

In this section we examine some numerical test problems to illustrate the validity of the theoretical
results and the applicability of proposed algorithms. We comment that all of the reported experiments
were performed on a 64-bit 2.45 GHz core i7 processor and 8.00GB RAM using Matlab version 8.3.0532.

As see in the first subsection of Section 2, it is proved that if we have a semi-convergent iterative method
after applying the DORS, it remains semi-convergent. We give the following example to numerically test
this fact. As seen in both MHSS and Algorithm 1, one may need to solve two linear systems of the form
appeared in Lines 5 and 6 of Algorithm 1. Here we used a sparse Cholesky factorization with the symmetric
approximate minimum degree (SYMAMD) reordering to solve these systems.

In the sequel, under “Iter” and “CPU”, we report the required number of iterations and CPU-times for
reaching mentioned stooping criterions, respectively.

Example 4.1. [2, 8] Let n = m2 for a given m and consider the singular linear system Ax = b where A = W+iT ∈ Cn×n

such that

W = Im ⊗ Vc + Vc ⊗ Im ∈ R
n×n and T =

γ

2m
(Im ⊗Uc + Uc ⊗ Im) ∈ Rn×n,

with

Vc = V −
(
e1eT

m + emeT
1

)
∈ Rm×m,

Uc = U −
(
e1eT

m−1 + em−1eT
1 + eaeT

m + emeT
a

)
∈ Rm×m,

where

V = tridiag(−1, 2,−1) ∈ Rm×m and U = pentadiag(−1,−1, 4,−1,−1) ∈ Rm×m,
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Algorithm 4: DGB for solving (16).

1 Input: The coefficient matrix Ai j,Bi j, the right-hand sides Ci for i = 1, . . . , p and j = 1, 2, . . . , q.
2 Set X j(0) = 0 and Ri(0) = Ci for i = 1, . . . , p and j = 1, 2, . . . , q;
3 Set P j(0) =

∑p
i=1 AT

ijRi(0)BT
ij for j = 1, 2, . . . , q;

4 Set Ti(0) =
∑q

j=1 Ai jP j(0)Bi j for i = 1, . . . , p;

5 Compute X j(1) = X j(0) + µP j(0) for j = 1, 2, . . . , q where µ =
∑p

i=1〈Ri(0),Ti(0)〉
F∑p

i=1〈Ti(0),Ti(0)〉
F

;

6 begin
7 for k=1,2,. . . , until convergence do
8 Ri(k) = Ci −

∑q
j=1 Ai jX j(k)Bi j for i = 1, 2, . . . , p;

9 P j(k) =
∑p

i=1 AT
ijRi(k)BT

ij for j = 1, 2, . . . , q;

10 Ti(k) =
∑q

j=1 Ai jP j(k)Bi j for i = 1, . . . , p;

11 µ =
∑p

i=1〈Ri(k),Ti(k)〉
F∑p

i=1〈Ti(k),Ti(k)〉
F

;

12 X̄ j = X j(k) + µP j(k) for j = 1, 2, . . . , q;
13 R̄i = Ri(k) − µTi(k) for i = 1, 2, . . . , p;
14 Φi = Ri(k − 1) − R̄i for i = 1, 2, . . . , p;

15 ω =
∑p

i=1〈Ri(k−1),Φi〉F∑p
i=1〈Φi,Φi〉F

;

16 X j(k + 1) = X j(k − 1) + ω(X̄ − X j(k − 1)) for j = 1, 2, . . . , q ;
17 Ri(k + 1) = Ri(k − 1) − ωΦi for i = 1, 2, . . . , p ;
18 end
19 end

here Im stands for the identity matrix of dimension m, ei denotes the i-th column of Im (i = 1,m−1,m) and ea = e1 +e2.
The right-hand side b is constructed so that x̂ = (1, 2, . . . ,n)T is a solution of Ax = b, i.e., b = Ax̂.

We use the MHSS method [8] and Algorithm 1 to solve singular linear system of equations Ax = b in this example.
The iterations are terminated as soon as the k-th approximate solution xk satisfies

‖b − Axk‖2

‖b‖2
< 10−6,

and x0 is taken to be zero. The corresponding numerical results are reported in Table 1. Our obtained results illustrate
that the DMHSS method converges for solving the singular linear system mentioned in this example.

As seen, the disclosed results in Table 1 confirms that the semi-convergence of MHSS method implies
the semi-convergence of the DMHSS method. Nevertheless, in this case, improvements induced by the use
of DORS in the MHSS method is quite moderate.

In the sequel, test examples we compare the performance of the GB, RGB, DGB-version 1 and DGB-
version 2. The explanation about the last two terms is given in Remark 3.1. As seen both DGB-version 1
and DGB-version 2 outperform the GB method and the recently proposed RGB method [21].

Example 4.2. [21, Example 4.1] Consider the succeeding coupled matrix equations

AiXBi = Fi, i = 1, 2, (20)
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MHSS method DMHSS method

(m,n) (γ, α) Iter CPU RES Iter CPU RES

(64,4096) (101, 0.09) 73 0.617 8.9619E-07 61 0.513 9.2362E-07

(102, 0.33) 83 0.683 9.7154E-07 67 0.568 8.3753E-07

(103, 1.33) 49 0.413 8.1816E-07 39 0.409 8.1322E-07

(104, 1.08) 111 0.922 9.6670E-07 64 0.547 9.9524E-07

(80,6400) (101, 0.07) 86 1.329 9.0562E-07 66 1.065 8.7853E-07

(102, 0.24) 102 1.608 9.9764E-07 76 1.284 9.9173E-07

(103, 0.98) 60 0.936 9.6464E-07 58 0.925 8.8036E-07

(104, 0.65) 98 1.539 9.6905E-07 91 1.415 9.1675E-07

(96,9216) (101, 0.05) 91 2.064 9.1716E-07 71 1.613 8.8935E-07

(102, 0.18) 122 2.798 9.6067E-07 87 2.006 8.6586E-07

(103, 0.70) 72 1.633 9.9390E-07 67 1.522 8.8512E-07

(104, 0.75) 93 2.112 9.3202E-07 81 1.851 9.5765E-07

Table 1: Numerical results for solving Example 4.1.

where

A1 =


1.00 0.00
3.00 2.00
−2.00 5.00
4.00 −1.00

 , A2 =

 1.00 0.50
−2.00 1.00
1.00 1.10

 ,

B1 =

 3.00 0.30 6.50 1.40
−1.00 1.00 −2.00 1.20
1.00 −2.00 2.00 0.50

 , B2 =

 1.00 1.10 0.80
1.50 1.10 0.40
0.10 −1.50 −3.00

 ,
and

F1 =


4.00 −3.70 8.50 5.30
17.00 −0.90 37.50 26.50
4.50 32.90 13.00 15.90
13.50 −19.90 28.00 15.90

 , F2 =

 7.125 2.025 −4.600
−2.950 8.850 20.400
10.515 5.895 −1.240

 .
It can be verified that the coupled matrix equations (20) has a unique solution given by

X∗ =

[
1.00 2.00 3.00
2.00 2.50 −1.00

]
.

We use GB, RGB [21], DGB-version 1 and DGB-version 2 to solve (20). The iteration steps were terminated as soon
as

‖X(k) − X∗‖F < 10−8,

where X(0) is taken to be zero matrix. Here we comment that in the GB method the optimal parameter is chosen and
for RGB method, we used the best parameters based on the reported results in [21]. The GB, RGB, DGB-version 1
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and DGB-version 2 take 425, 195, 6 and 40 iterations, respectively, for convergence with respect to the mentioned
stopping criterion. For more details the convergence histories of the algorithms are plotted in Figure 1 in which

δk =

√
‖F1 − A1X(k)B1‖

2
F

+ ‖F2 − A2X(k)B2‖
2
F

‖F1|
2
F

+ ‖F1‖
2
F

, (21)

where X(k) is the k-th computed approximate solution.

Example 4.3. [20, Example 4.2] Consider the following coupled matrix equations{
A11X1B11 + A12X2B12 = C1
A21X1B21 + A22X2B22 = C2

(22)

where

A11 =

[
1 2
−3 −6

]
, B11 =

 −1 −1
2 1
−5 1

 ,
A12 =

[
2 1 3
1 −1 0

]
, B12 =

[
2 9
0 −3

]
,

A21 =

 1 2
−3 −6
1 2

 , B21 =

 −1 −1 −2
3 1 −1
2 −1 1

 ,
and

C1 =

[
2 83

54 57

]
, C2 =

 9 −6 15
65 44 37
−19 −28 1

 .
Using, the “vec(.)” operator,MX = B corresponds to (22) such that

M =

[
BT

11 ⊗ A11 BT
12 ⊗ A12

BT
21 ⊗ A21 BT

22 ⊗ A22

]
,

where X = (vec(X1); vec(X2)) and B = (vec(C1); vec(C2)). It can be verified thatM is rank deficient and GB method
is semi-convergent and its the optimum value is µopt = 0.00109 which is computed by (19)

Here we compare the performance of GB, DGB-version 1 and DGB-version 2 to solve (22). We used the following
stopping criterion

max
{
‖R1(k)‖F

‖C1‖F

,
‖R2(k)‖F

‖C2‖F

}
< 10−6,

where

R1(k) = C1 − (A11X1(k)B11 + A12X2(k)B12) and R2(k) = C2 − (A21X1(k)B21 + A22X2(k)B22),

in which Xi(k) (k = 1, 2) is the k-th computed approximate solution. The initial guess matrices X1(0) and X2(0) are
both taken to be zero. The GB, DGB-version 1 and DGB-version 2 require 207, 9 and 29 iterations, respectively,
to satisfy the preceding stopping criterion. For more clarification, we displayed the convergence behaviour of the
algorithms in Figure 1 in which

ηk =

√
‖R1(k)‖2

F
+ ‖R2(k)‖2

F

‖C1‖
2
F

+ ‖C2‖
2
F

.
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Figure 1: Convergence history; left: Example 4.2; right: Example 4.3

In the above two examples, it is observed that DORS can improve the rate of convergence of GB-type
algorithms significantly. The size of the previous examples are too small, so required CPU-times of the
algorithms are too close. Now, in order to show the effect of the reduction of the number of iterations on
the CPU time, we examine the following test problem with larger dimensions. Due to the larger size of the
problem in comparison to the previous two examples, it is expensive to estimate the optimum of value of
the GB method. Here we set ω = 1 in Algorithm 4 to observe how the DORS works in the algorithm. In
practice, it is known that Algorithm 4 with ω = 1 is as fast as the GB method with its optimum convergence
factor.

Example 4.4. [22, Example 4.3] Here we mention the Sylvester matrix equation,

AX + XB = C, (23)

where A,B and C are n × n matrices and generated by Matlab function such that A = triu(rand(n,n), 1) + dia1(α +
dia1(rand(n)))′, B = A′, C = AX∗ + X∗B where X∗ = rand(n,n). We set α = 6, for which the resulting systems
is very ill-conditioned. Our experiments, after several runs of the code, illustrate that DGB-version 1 (Algorithm
4) converges faster than the accelerated Jacobi-gradient based iterative (AJGI) algorithm; see [22, Table 3] in which
n = 60. We comment that AJGI method relies on some parameters which finding their optimum values is an open
problem, whereas DGB-version 1 is free of parameter. In the implementation of the algorithms, we used the following
stopping criterion,

η̄k :=
‖C − AX(k) − X(k)B‖

F

‖C‖F

< 10−13,

where X(k) is the kth approximate solution and X(0) is taken to be zero.

Finally we examine the performance of Algorithm 4 for an image deblurring problem.
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Table 2: Numerical comparison results for Example 4.4.

n Method ω ‖X(k) − X∗‖F/‖X∗‖F η̄k CPU-time(s) Iteration
60 Algorithm 4 - 3.6608E-14 4.0038E-14 0.0216 51

Algorithm 4 1 1.1065E-13 9.3335E-14 0.0832 364
100 Algorithm 4 - 9.4566E-14 8.5870E-14 0.0596 79

Algorithm 4 1 1.4965E-13 9.9664E-14 0.5947 1144
200 Algorithm 4 - 1.2837E-13 8.8398E-14 0.3377 167

Algorithm 4 1 2.0020E-13 9.9890E-14 11.4891 5337

Method ω CPU Iter

Algorithm 4 - 1.2067 219

Algorithm 4 1 48.3243 10000

Table 3: Numerical results for solving Example 4.5.

Example 4.5. In this example, we mainly test the applicability of the DORS in Algorithm 4 for the image deblurring
problem

AcXAT
r = B, (24)

where Ac ∈ Rm×m, Ar ∈ Rn×n and the recorded blurred image B ∈ Rm×n are given and the unknown X ∈ Rm×n is
the desired sharp image, see [16] for further details. We work on Challenge 2 from [16]. For this problem m = 260,
n = 300, cond(Ac) = 6.2679 × 105 and cond(Ar) = 1.6739 × 105. The blurred image is displayed in Figure 2.

Here we mainly aim to illustrate the effectiveness of a DORS in an iterative method. Notice that Algorithm 4
without DORS (with ω = 1) is the matrix form of the steepest decent method. We stopped the iterations as soon as
the number of iterates reaches to 10000 or

θk =
‖B − AcX(k)AT

r ‖F

‖B‖F

< 0.0015,

where X(k) is the k-th approximation and X(0) is taken to be zero. The restored images plotted in Figure 3. From
Table 3 and Figure 3, it is obvious that the DORS can improve the convergence speed of an iterative method. Here
we comment that Algorithm 4 with ω = 1 converges too slowly so that the computed approximate solutions can not
satisfy θk < 0.0015 in less than 1000 iterations.

5. Conclusion

We have established a sufficient condition for the semi-convergence of an iterative method with DORS to
solve the consistent linear system of equations Ax = b where A is singular. In the case that A is a rectangular
matrix and possibly rank deficient, we proposed a parameter free approach using the Richardson method
with DORS for normal equations. Moreover the discussed results have exploited to construct an algorithm
for solving coupled matrix equations. In addition we numerically examined the proposed algorithms to
illustrate their effectiveness and to compare their performance with some of the existing approaches in the
literature. The performance of the algorithm has been numerically tested for an image deblurring problem.
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Blurred image

Figure 2: Blurred image for Example 4.5

Algorithm 4 with ω=1 Algorithm 4

Figure 3: Restored images by Algorithm 4 for Example 4.5
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