Filomat 33:13 (2019), 4115–4120 https://doi.org/10.2298/FIL1913115S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some New Characterizations of Normal Elements

Liyan Shi^a, Junchao Wei^a

^aSchool of Mathematics, Yangzhou University, Yangzhou, 225002, P. R. China

Abstract. In this paper, we shall give some new characterizations of normal elements in a ring with involution by the solutions of related equations.

1. Introduction

Throughout this paper, let *R* be an associative ring with 1. An involution in *R* is an anti-isomorphism $* : R \to R, a \to a^*$ of degree 2, that is,

$$(a^*)^* = a, (a + b)^* = a^* + b^*, (ab)^* = b^*a^*.$$

An element a^{\dagger} is called the Moore-Penrose inverse (or MP-inverse) of a, if

$$a = aa^{\dagger}a, a^{\dagger} = a^{\dagger}aa^{\dagger}, (aa^{\dagger})^{*} = aa^{\dagger}, (a^{\dagger}a)^{*} = a^{\dagger}a.$$

If a^{\dagger} exists, then it is unique [1]. Denote by R^{\dagger} the set of all MP-invertible elements of R.

An element $a \in R$ is said to be group invertible if there exists $a^{\#} \in R$ such that

$$a = aa^{\#}a, a^{\#} = a^{\#}aa^{\#}, aa^{\#} = a^{\#}a.$$

 $a^{\#}$ is called a group inverse of *a*, and it is uniquely determined by the above condition [2]. We write $R^{\#}$ for the set of all group invertible elements of *R*.

The element $a \in R^{\#} \cap R^{\dagger}$ satisfying $a^{\#} = a^{\dagger}$ is said to be EP [3]. The set of all EP elements of R will be denoted by R^{EP} .

If $a^*a = aa^*$, then the element $a \in R$ is called normal. Mosić and Djordjević in [4, Lemma 1.2] proved for an element $a \in R^+$ that a is normal if and only if $aa^+ = a^+a$ and $a^*a^+ = a^+a^*$. It is known by [5, Corollary 2.8, Lemma 2.7] $a \in R^+$ is normal if and only if $a^+(a^+)^* = (a^+)^*a^+$ or $a \in R^{EP}$ and $a^*a^+ = a^+a^*$. More results on normal elements are given in [5].

Following the fore study, this paper provide some equivalent conditions for an element to be normal in a ring with involution.

The following results are frequently used in this paper.

THEOREM 1.1 [5]. For any $a \in R^{\#} \cap R^{\dagger}$, the following are satisfied:

Keywords. normal element, EP element, Mooer-Penrose inverse, group inverse, solutions of equation.

²⁰¹⁰ Mathematics Subject Classification. 15A09; 16W10, 16U99

Received: 22 January 2019; Accepted: 17 June 2019

Communicated by Dijana Mosić

Research supported by the National Natural Science Foundation of China (No. 11471282)

Email addresses: 1910096449@qq.com (Liyan Shi), jcweiyz@126.com (Junchao Wei)

(1) $(a^{\dagger})^*R = aR$, $(a^{\#})^*R = a^*R$; (2) $aR = aa^{\dagger}R = aa^*R$, $a^*R = a^{\dagger}R = a^*aR = a^{\dagger}aR$; (3) $aR = a^{\#}R = a^2R = aa^{\#}R$, $(a^*)^2R = a^*R$; (4) $aR = aa^*a^{\#}R = a^{\#}a^*R$, $a^*R = a^*a^{\#}R$. THEOREM 1.2 [2]. $a \in R^{\#}$ if and only if $a \in a^2R \cap Ra^2$.

2. Characterizations of normal elements

Proposition 2.1. Let $a \in R^{\#} \cap R^{\dagger}$. Then a is normal if and only if $aa^{*}a^{\dagger}a^{\dagger} = a^{*}a^{\dagger}$.

Proof. " \Rightarrow " Since $a \in R^{\dagger}$ and a is normal, we have $a^*a = aa^*$ and $aa^{\dagger} = a^{\dagger}a$. Hence $aa^*a^{\dagger}a^{\dagger} = a^*a^{\dagger}aa^{\dagger} = a^*a^{\dagger}$. " \Leftarrow " If $a \in R^{\#} \cap R^{\dagger}$, then by Theorem 1.1, we get

$$a^{\dagger}R = a^{*}R = (a^{*})^{2}R = a^{*}a^{\dagger}R = aa^{*}a^{\dagger}a^{\dagger}R \subseteq aR = aa^{\#}aR = a^{\#}a^{2}R \subseteq a^{\#}R,$$

which gives $(1 - a^{\#}a)a^{\dagger} \in (1 - a^{\#}a)a^{\dagger}R \subseteq (1 - a^{\#}a)a^{\#}R = 0$. Thus $a^{\dagger} = a^{\#}aa^{\dagger}$, and then we have $a^{\dagger}a = a^{\#}aa^{\dagger}a = a^{\#}a$, implies imediatly that $aa^{\dagger} = a^{\dagger}a$. Since $aa^{*}a^{\dagger}a^{\dagger} = a^{*}a^{\dagger}$, $a^{*}a^{\dagger}a^{\dagger} = a^{\dagger}aa^{*}a^{\dagger}a^{\dagger} = a^{\dagger}a^{*}a^{\dagger}$. It follows that $a^{*}a^{\dagger} = a^{*}a^{\dagger}aa^{\dagger} = a^{*}a^{\dagger}a^{\dagger}a^{\dagger} = a^{\dagger}a^{*}a^{\dagger}a^{\dagger} = a^{\dagger}a^{*}a^{\dagger}a^{\dagger} = a^{\dagger}a^{*}a^{\dagger}a^{\dagger}$. It follows that $a^{*}a^{\dagger} = a^{*}a^{\dagger}aa^{\dagger} = a^{*}a^{\dagger}a^{\dagger}a^{\dagger} = a^{\dagger}a^{*}a^{\dagger}a^{\dagger} = a^{\dagger}a^{*}a^{\dagger}a^{\dagger}$.

We alrady know that $a \in R^{\#} \cap R^{\dagger}$ satisfying $a^{\#} = a^{\dagger}$ is said to be EP. So we have the following corollary.

Corollary 2.2. Let $a \in R^{\#} \cap R^{\dagger}$. Then a is normal if and only if $aa^*a^{\#}a^{\dagger} = a^*a^{\#}$.

Proof. " \Rightarrow " It is evident.

" \leftarrow " Since $a \in R^{\#} \cap R^{\dagger}$ and $aa^*a^{\#}a^{\dagger} = a^*a^{\#}$, then by Theorem 1.1, we get $a^{\dagger}R = a^*R = a^*a^{\#}R = aa^*a^{\#}a^{\dagger}R = aa^*a^{\#}a^{\dagger}R$

Proposition 2.3. Let $a \in \mathbb{R}^{\#} \cap \mathbb{R}^{+}$. Then *a* is normal if and only if $(aa^{*})^{2} = a^{*}a^{2}a^{*}$.

Proof. " \Rightarrow " Assume that a is normal, then $a^*a = aa^*$. Hence $(aa^*)^2 = a^*a^2a^*$. " \Leftarrow " Since $a \in R^{\#} \cap R^{\dagger}$ and $(aa^*)^2 = a^*a^2a^*$, then by Theorem 1.1, one obtains that $a^{\dagger}R = a^*aR = a^*a^2R = a^*a^2R$.

 $a^*a^2a^*R = (aa^*)^2R = aa^*aR = aa^*R = aR$. So we arrive at $aa^* = a^*a$. This gives that $aa^*a = aa^*aa^*a = aa^*aa^*(a^*)^* = a^*a^2a^*(a^*)^* = a^*a^2$. Multiplying the equality on the right by a^* , we have $aa^* = a^*a$. Therefore a is normal. \Box

Corollary 2.4. Let $a \in R^{\#} \cap R^{\dagger}$. Then *a* is normal if and only if $a^* = aa^*a^{\dagger}$.

Corollary 2.5. Let $a \in R^{\#} \cap R^{\dagger}$. Then a is normal if and only if $\begin{pmatrix} a^* \\ a \end{pmatrix}$ is regular and $\begin{pmatrix} a^* \\ a \end{pmatrix}^- = (1 - aa^{\dagger} (a^{\dagger})^* a^{\dagger} a^*)$.

Proof. " \Rightarrow " If a is normal, then $aa^* = a^*a$. By [4, Theorem 2.2(xi)], we get $a^* = a^\dagger a^*a$. Thus

$$\binom{a^*}{a}\left(1-aa^{\dagger} (a^{\dagger})^*a^{\dagger}a^*\right) = \binom{a^*(1-aa^{\dagger}) a^*(a^{\dagger})^*a^{\dagger}a^*}{a-a^2a^{\dagger} a(a^{\dagger})^*a^{\dagger}a^*} = \binom{0}{a-a^2a^{\dagger} a^{\dagger}a^*} = \binom{0}{a-a^2a^{\dagger} a^{\dagger}a^*} = \binom{1}{a-a^2a^{\dagger} a^*} = \binom{1}{a-a^2a^$$

By [5, Lemma 2.7], we have $a \in R^{EP}$, which gives $a = a^2a^{\dagger}$. By [5, Corollary 2.8], we get $(a^{\dagger})^*a^{\dagger} = a^{\dagger}(a^{\dagger})^*$. So we arrive at $a(a^{\dagger})^*a^{\dagger}a^* = aa^{\dagger}(a^{\dagger})^*a^* = aa^{\dagger}$. It follows that

$$\binom{a^*}{a}\left(1-aa^{\dagger}\quad (a^{\dagger})^*a^{\dagger}a^*\right)=\binom{0\quad a^{\dagger}a^*}{0\quad aa^{\dagger}},$$

meaning that

$$\binom{a^*}{a}\left(1-aa^{\dagger} (a^{\dagger})^*a^{\dagger}a^*\right)\binom{a^*}{a} = \binom{0}{a} a^{\dagger}a^*\binom{a^*}{a} = \binom{a^{\dagger}a^*a}{aa^{\dagger}}\binom{a^*}{a} = \binom{a^*a^*a}{aa^{\dagger}a} = \binom{a^*}{a}.$$

$$" \leftarrow " If \binom{a^*}{a}^- = (1 - aa^{\dagger} (a^{\dagger})^* a^{\dagger} a^*).$$
 Then we have
$$\binom{a^*}{a} = \binom{a^*}{a} (1 - aa^{\dagger} (a^{\dagger})^* a^{\dagger} a^*) \binom{a^*}{a} = \binom{a^{\dagger} a^* a}{(a - a^2 a^{\dagger})a^* + a(a^{\dagger})^* a^{\dagger} a^* a},$$

one obtains that $a^* = a^{\dagger}a^*a$, therefore a is normal by [4, Theorem 2.2(xi)]. \Box

Note that if *a* is normal, then $(aa^*)^2 = aa^*aa^* = a^2a^*a^*$. Conversely, we can ask if $a \in R^{\#} \cap R^{\dagger}$ with $(aa^*)^2 = a^2a^*a^*$, is it still a normal element? The following example illustrates that this conclusion does not necessarily hold.

Example 2.6. Let $R = M_3(Z_2)$, with the involution is the transpose of matrix. Suppose that $a = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in R$. So

 $a^{\dagger} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = a^{*} since$

$$(1 \ 0 \ 0) aa^{\dagger}a = \begin{pmatrix} 1 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \end{pmatrix} \begin{pmatrix} 1 \ 1 \ 1 \\ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 1 \ 1 \ 1 \\ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} = a, a^{\dagger}aa^{\dagger} = \begin{pmatrix} 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \end{pmatrix} \begin{pmatrix} 1 \ 1 \ 1 \\ 0 \ 0 \\ 1 \ 0 \ 0 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \end{pmatrix} = a^{\dagger}, (aa^{\dagger})^{*} = \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix}^{*} = \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} = aa^{\dagger}, (a^{\dagger}a)^{*} = \begin{pmatrix} 1 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \end{pmatrix}^{*} = \begin{pmatrix} 1 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \end{pmatrix} = a^{\dagger}a.$$

Noting that $(aa^{*})^{2} = \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} = aa^{*} = a^{2}a^{*}a^{*}.$ Nevertheless, $a^{*}a = \begin{pmatrix} 1 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \end{pmatrix} \neq aa^{*}.$ We obtain a is not normal.

Corollary 2.7. Let $a \in \mathbb{R}^+$. Then a is normal if and only if $(aa^*)^2 = a^2a^*a^*$ and $aa^* = a^*a$.

Proof. " \Rightarrow " It is evident.

" \leftarrow " Suppose that $(aa^*)^2 = a^2a^*a^*$ and $aa^\dagger = a^\dagger a$. Now, we get $aa^* = aa^*aa^*(a^\dagger)^*a^\dagger = a^2a^*a^*(a^\dagger)^*a^\dagger = a^2a^*a^\dagger$. Multiplying this equality by a^\dagger from the left side, it follows $a^* = a^\dagger a^2a^*a^\dagger = aa^\dagger aa^*a^\dagger = aa^*a^\dagger$. Furthermore, we obtain $a^\dagger a^* = a^\dagger aa^*a^\dagger = a^*a^\dagger$, which implies that a is normal.

It is well known that $a \in R^{EP}$ if and only if $a \in R^{\dagger}$ and $aa^{\dagger} = a^{\dagger}a$. Hence we get following corollary.

Corollary 2.8. Let $a \in \mathbb{R}^+$. Then a is normal if and only if $a \in \mathbb{R}^{EP}$ and $(aa^*)^2 = a^2a^*a^*$.

Corollary 2.9. Let $a \in \mathbb{R}^+$. Then a is normal if and only if $(aa^*)^2 = a^2a^*a^*$ and $a^* = a^*a^*a$.

Proof. " \leftarrow " Let $a^* = a^*a^\dagger a$ and $(aa^*)^2 = a^2a^*a^*$, then $a^*(1 - a^\dagger a) = 0$, by taking the involution, gives $(1 - a^\dagger a)a = 0$, thus we get $a = a^\dagger a^2$. Since $(aa^*)^2 = a^2a^*a^*$, which yields $a^\dagger aa^*aa^*(a^\dagger)^*a^\dagger = a^\dagger a^2a^*a^*(a^\dagger)^*a^\dagger$, this shows that $a^* = a^\dagger a^2a^*a^\dagger = aa^*a^\dagger$, hence $a^\dagger a^* = a^\dagger aa^*a^\dagger = a^*a^\dagger$. Note that $aR = a^\dagger a^2R \subseteq a^\dagger R = a^*R = aa^*a^\dagger R \subseteq aR$, so we arrive that $a \in R^{EP}$. Therefore a is normal.

" \Rightarrow " It is routine verification.

Similarly, we have the following corollary.

Corollary 2.10. Let $a \in \mathbb{R}^+$. Then *a* is normal if and only if $(aa^*)^2 = a^*a^2a^*$ and $a^* = aa^+a^*$.

Let $a \in R^{\dagger} \cap R^{\#}$. We write *comm*(a) = { $x \in R | xa = ax$ } and $\chi_a = \{a, a^{\#}, a^{\dagger}, a^{*}, (a^{\dagger})^{*}, (a^{\#})^{*}\}$. Now we consider the relations between normal elements and the solutions of certain equations.

Theorem 2.11. Let $a \in \mathbb{R}^+$. Then a is normal if and only if the system of equations (1)

$$\begin{cases} a^* = a^* a x \\ a^* = a^* a x \end{cases}$$
(1)

has at least one solution in $comm(a) \cap comm(a^*)$ *.*

Proof. " \Rightarrow " For any $a \in R^{\dagger}$ and a is normal, we deduce that $aa^{\dagger} = a^{\dagger}a$ and $a^{\dagger}a^{*} = a^{*}a^{\dagger}$, so $a^{\dagger} \in comm(a) \cap comm(a^{*})$. Hence $x = a^{\dagger}$ is a solution of the system (1).

" \leftarrow " Assume that x = c is a solution of the system (1), which belongs to $comm(a) \cap comm(a^*)$. Then we have $a^* = a^*ac$, $a^{\dagger} = a^{\dagger}ac$ and ca = ac, $ca^* = a^*c$. It follows that $a^* = a^*ac = (a^*ac)ac = a^*a^2c^2$ and $aa^{\dagger} = (a^{\dagger})^*a^* = (a^{\dagger})^*a^*a^2c^2 = aa^{\dagger}a^2c^2 = a^2c^2 = c^2a^2$, that is, $a = a^2c^2a = c^2a^3 \in a^2R \cap Ra^2$, then $a \in R^{\#}$ by Theorem 1.2. Furthermore, it implies that $aa^{\dagger} = c^2a^2 = c^2a(aa^{\#}a) = c^2a^2a^{\#}a = aa^{\dagger}aa^{\#} = aa^{\#}$, thus $a \in R^{EP}$. Noting that $a^*a^{\dagger} = (a^*ac)a^{\dagger} = ca^*aa^{\dagger} = ca^* = a^*c = a^{\dagger}aa^*c = a^{\dagger}aca^* = a^{\dagger}a^*$. Then we get a is normal. \Box

Theorem 2.12. Let $a \in \mathbb{R}^+$. Then a is normal if and only if the following equation (2) has at least one solution in $comm(a) \cap comm(a^*)$.

$$a^{\dagger} = a^* x (a^{\dagger})^* \tag{2}$$

Proof. " \Rightarrow " If $a \in R^{\dagger}$ and a is normal, then $aa^{\dagger} = a^{\dagger}a$, $a^{\dagger}a^{*} = a^{*}a^{\dagger}$ and $a^{\dagger}(a^{\dagger})^{*} = (a^{\dagger})^{*}a^{\dagger}$, gives $a^{\dagger} = a^{\dagger}aa^{\dagger} = a^{*}(a^{\dagger})^{*}a^{\dagger} = a^{*}a^{\dagger}(a^{\dagger})^{*}$. Thus $x = a^{\dagger}$ is a solution of the equation (2) and $a^{\dagger} \in comm(a) \cap comm(a^{*})$.

" \leftarrow " If x = c is a solution of the equation (2), which belongs to $comm(a) \cap comm(a^*)$, then $a^{\dagger} = a^*c(a^{\dagger})^*$, $ca = ac, ca^* = a^*c$. Now we get $a = aa^{\dagger}a = a(a^*c(a^{\dagger})^*)a = aca^*(a^{\dagger})^*a = aca^{\dagger}aa = caa^{\dagger}aa = ca^2 = a^2c \in a^2R \cap Ra^2$. By Theorem 1.2, we have $a \in R^{\#}$. Then $aa^{\dagger} = a(a^*c(a^{\dagger})^*) = aca^*(a^{\dagger})^* = aca^{\dagger}a = caa^{\dagger}a = caa^{\sharp}a = ca^2a^{\#} = aa^{\#}$, this means that $a \in R^{EP}$ and $aa^{\dagger} = a^{\dagger}a$. Note that

$$a^{\dagger}a^{*} = a^{*}c(a^{\dagger})^{*}a^{*} = ca^{*}aa^{\dagger} = ca^{*},$$

 $a^{*}a^{\dagger} = a^{*}a^{*}c(a^{\dagger})^{*} = ca^{*}a^{\dagger}a = ca^{*}aa^{\dagger} = ca^{*}.$

Combining these two equalities, we get $a^{\dagger}a^{*} = a^{*}a^{\dagger}$. Thus *a* is normal.

It is know by [6, Theorem 2.3], if $a \in R^+$, then $a^+ = a^*$ and a is normal if and only if $a \in R^\#$ and $aa^* = a^+a$. The following theorem 2.13 shows that, in the conditions $a \in R^\#$ and $aa^* = a^+a$, $a \in R^\#$ can be removed.

Theorem 2.13. Let $a \in R^+$. Then $a^+ = a^*$ and a is normal if and only if $aa^* = a^+a$.

Proof. " \Rightarrow " Assume that $a \in R^{\dagger}$ and a is normal, then $aa^{\dagger} = a^{\dagger}a$. Since $a^{\dagger} = a^{*}$, then $aa^{*} = a^{\dagger}a$. " \Leftarrow " Since $a \in R^{\dagger}$ and $aa^{*} = a^{\dagger}a$, $aR = aa^{*}R = a^{\dagger}aR = a^{\dagger}R$, that is $a \in R^{EP}$ and therefore $aa^{\dagger} = a^{\dagger}a$. Multiplying $aa^{*} = a^{\dagger}a$ by a^{\dagger} from the left side, it follows $a^{*} = a^{\dagger}$, then $aa^{*} = a^{*}a$. So a is normal. \Box

Note that if $a \in R^{\#} \cap R^{\dagger}$ and $a = a^{2}a^{*}$, multiplying this equality on the left by a^{\dagger} , it follows $a^{\dagger}a = a^{\dagger}a^{2}a^{*}$, by taking the involution, then $a^{\dagger}a = aa^{*}a^{\dagger}a$, thus, $a^{\dagger}R = a^{\dagger}aR = aa^{*}a^{\dagger}aR = aa^{*}a^{*}R = aa^{*}R = aR$ by Theorem 1.1, that is, $a \in R^{EP}$ and therefore $aa^{\dagger} = a^{\dagger}a$. It implies that $a^{\dagger}a = a^{\dagger}a^{2}a^{*} = aa^{\dagger}aa^{*} = aa^{*}$. Hence we can get the following lemma.

Lemma 2.14. Let $a \in \mathbb{R}^+$. Then $a^+ = a^*$ and a is normal if and only if $a = a^2a^*$ and $a \in \mathbb{R}^{\#}$.

4118

Theorem 2.15. Let $a \in \mathbb{R}^+$. Then $a^+ = a^*$ and a is normal if and only if $a \in \mathbb{R}^{\#}$ and the following equation (3) has at least one solution in χ_a .

$$axa^* = xa^\dagger a \tag{3}$$

Proof. " \leftarrow " (1) x = a is a solution of the equation (3), then $a^2a^* = aa^{\dagger}a = a$. By Lemma 2.14, a is normal and $a^{\dagger} = a^*$.

(2) If $x = a^{\dagger}$ is a solution of the equation (3), one has that $aa^{\dagger}a^* = a^{\dagger}a^{\dagger}a$. By taking the involution, we have $a^2a^{\dagger} = a^{\dagger}a(a^{\dagger})^*$. By Theorem 1.1, we get $aR = a^2R = a^2a^{\dagger}R = a^{\dagger}a(a^{\dagger})^*R = a^{\dagger}a^2R = a^{\dagger}R$. This shows that $aa^{\dagger} = a^{\dagger}a$. Then $a^* = a^{\dagger}aa^* = aa^{\dagger}a^* = a^{\dagger}aa^{\dagger} = a^{\dagger}aa^{\dagger} = a^{\dagger}a$, which implies that $aa^* = a^*a$. We see that *a* is normal.

(3) If $x = a^*$ is a solution of the equation (3), then $aa^*a^* = a^*a^\dagger a$. Thus $aR = aa^*R = aa^*a^*R = a^*a^\dagger aR \subseteq a^*R = a^*a^*R$ is a solution of the equation (3), then $aa^*a^* = a^*a^\dagger a$. Thus $aR = aa^*R = aa^*a^*R = a^*a^\dagger aR \subseteq a^*R = a^*a^*R = a^*a^\dagger aR \subseteq a^*R = a^\dagger a^*R$ by Theorem 1.1. It follows that $(1 - a^\dagger a)a \in (1 - a^\dagger a)aR \subseteq (1 - a^\dagger a)a^\dagger R = 0$, that is $(1 - a^\dagger a)a = 0$, then $a = a^\dagger a^2$. One concludes that $aa^\# = a^\dagger a^2 a^\# = a^\dagger a$, which implies that $aa^\dagger = a^\dagger a$. Hence $aa^*a^* = a^*aa^\dagger = a^*$, multiplying the equality on the right by $(a^\dagger)^*$, we get $aa^* = a^\dagger a$. So *a* is normal and $a^\dagger = a^*$ by Theorem 2.13.

(4) If $x = a^{\#}$ is a solution of the equation (3), then we have $a^{\#}a^{\dagger}a = aa^{\#}a^{*} = a^{\#}aa^{*}$. By taking the involution, $aa^{*}(a^{\#})^{*} = a^{\dagger}a(a^{\#})^{*}$, thus $aR = aa^{*}a^{*}R = aa^{*}(a^{\#})^{*}R = a^{\dagger}a(a^{\#})^{*}R = a^{\dagger}a(a^{\#})^{*}R = a^{\dagger}a(a^{\#})^{*}R = a^{\dagger}aR = a^{\dagger}R$ by Theorem 1.1, this means that $a^{\dagger} = a^{\#}$. According to the proof of (2), we get *a* is normal and $a^{\dagger} = a^{*}$.

(5) If $x = (a^{\dagger})^* \text{ is a solution of the equation (3), then we can show <math>a(a^{\dagger})^* a^* = (a^{\dagger})^* a^{\dagger} a$, that is, $a^2 a^{\dagger} = (a^{\dagger})^* a^{\dagger} a$. Multiplying the equality on the right by $aa^{\#}a^{\dagger}$, we obtain $aa^{\dagger} = (a^{\dagger})^* a^{\dagger}$, then multiplying this equality by a^* from the left side, we have $a^* = a^{\dagger}$, hence $a = aa^{\dagger}a = (a^*)^*a^{\dagger}a = (a^{\dagger})^*a^{\dagger}a = a^2a^{\dagger} = a^2a^*$. It follows that *a* is normal by Lemma 2.14.

(6) If $x = (a^{\#})^*$ is a solution of the equation (3), then $a(a^{\#})^*a^* = (a^{\#})^*a^{\dagger}a$, gives $a(aa^{\#})^* = (a^{\#})^*a^{\dagger}a$. Multiplying this equality by a^* from the right side, it follows $a(a^2a^{\#})^* = (a^{\#})^*a^*$, that is, $aa^* = (a^{\#})^*a^*$. By Theorem 1.1, we have $aR = aa^*R = (a^{\#})^*a^*R \subseteq (a^{\#})^*R = a^*R = a^{\dagger}R$, this means that $a^{\dagger} = a^{\#}$. Thus a is normal and $a^{\dagger} = a^*$ by (5). " \Rightarrow " By Lemma 2.14, we know that x = a is a solution of the equation (3).

Theorem 2.16. Let $a \in R^{\dagger} \cap R^{\#}$. Then *a* is normal if and only if the following equation (4) has at least one solution in χ_a .

$$aa^*x = a^*ax$$

Proof. " \Rightarrow " Since *a* is normal, then $aa^* = a^*a$, hence $aa^*a^\dagger = a^*aa^\dagger$. It turns out that $x = a^\dagger$ is a solution of the equation (4).

" \leftarrow " (1) If x = a is a solution of the equation (4), then we have $aa^*a = a^*a^2$. By Theorem 1.1, we have $a^*R = a^*aR = a^*a^2R = aa^*aR = aa^*R = aR$, which forces that $a \in R^{EP}$ and therefore $aa^* = a^*a$. Multiplying $aa^*a = a^*a^2$ on the right by a^* , we get $aa^* = a^*a$. Thus *a* is normal.

(2) If $x = a^{\dagger}$ is a solution of the equation (4), then we know that $aa^*a^{\dagger} = a^*aa^{\dagger} = a^*$. By Theorem 1.1, we have $a^{\dagger}R = a^*R = aa^*a^{\dagger}R = a(a^*)^2R = aa^*R = aR$. This means that $aa^{\dagger} = a^{\dagger}a$, that is, $aa^* = aa^*aa^{\dagger} = aa^*a^{\dagger}a = a^*a$. Which implies that *a* is normal.

(3) If $x = a^*$ is a solution of the equation (4), then $aa^*a^* = a^*aa^*$. Multiplying this equality by $(a^{\dagger})^*$ from the right side, we have $aa^*a^{\dagger}a = a^*a$. So $a^{\dagger}R = a^*aR = aa^*a^{\dagger}aR = a(a^*)^2R = aa^*R = aR$ by Theorem 1.1, it follows that $a \in R^{EP}$ and therefore $aa^{\dagger} = a^{\dagger}a$. Which implying that $a^*a = aa^*a^{\dagger}a = aa^*aa^{\dagger} = aa^*$. Hence *a* is normal.

(4) If $x = a^{\#}$ is a solution of the equation (4), then we get that $aa^*a^{\#} = a^*aa^{\#}$. By Theorem 1.1, we know that $a^*R = a^*a^2R = a^*aa^{\#}R = aa^*aR = aa^*R = aa^*R = aa^*R$. Hence $a^+ = a^{\#}$, which implies that *a* is normal by (2).

(5) If $x = (a^{\dagger})^*$ is a solution of the equation (4), then one has that $a^*a(a^{\dagger})^* = aa^*(a^{\dagger})^* = aa^{\dagger}a = a$. By Theorem 1.1, we get $aR = a^*a(a^{\dagger})^*R = a^*a^2R = a^*aR = a^{\dagger}R$, thus $a \in R^{EP}$ and therefore $aa^{\dagger} = a^{\dagger}a$. Then $aa^* = a^*a(a^{\dagger})^*a^* = a^*aaa^{\dagger}a = a^*a$. Giving that *a* is normal.

(6) If $x = (a^{\#})^*$ is a solution of the equation (4), then we know that $aa^*(a^{\#})^* = a^*a(a^{\#})^*$. Multiplying the equality on the right by a^* , we have $aa^* = a^*a(a^{\#})^*a^*$. So, $aR = aa^*R = a^*a(a^{\#})^*a^*R \subseteq a^*R = a^{\dagger}R$ by Theorem 1.1, it follows that $a^{\dagger} = a^{\#}$. We see that a is normal by (5). \Box

Theorem 2.17. Let $a \in R^{\dagger} \cap R^{\#}$. Then a is normal if and only if the following equation (5) has at least one solution in χ_a .

$$aa^*a^\dagger x = a^*x \tag{5}$$

Proof. " \Rightarrow " Assume that *a* is normal, then $aa^* = a^*a$, one obtains that $a^*a = a^*aa^{\dagger}a = aa^*a^{\dagger}a$. Thus x = a is a solution of the equation (5).

" \leftarrow " (1) If $x = a^{\dagger}$ is a solution of the equation (5), then we have $aa^*a^{\dagger}a^{\dagger} = a^*a^{\dagger}$. Hence, by Proposition 2.1, *a* is normal.

(2) If x = a is a solution of the equation (5), then we get $a^*a = aa^*a^\dagger a$, by Theorem 1.1, $a^\dagger R = a^*aR = aa^*a^\dagger aR = aa^*a^\dagger R = aa^*a^R = aR$, it follows that $aa^\dagger = a^\dagger a$. This implies $a^*a = aa^*a^\dagger a = aa^*aa^\dagger = aa^*$. Thus *a* is normal.

(3) If $x = a^{\#}$ is a solution of the equation (5), then $aa^{*}a^{\dagger}a^{\#} = a^{*}a^{\#}$. By Theorem 1.1, we have $a^{\dagger}R = a^{*}a^{R} = a^{*}a^{\#}R = aa^{*}a^{\dagger}a^{R} = aa^{*}a^{\dagger}a^{R} = aa^{*}a^{*}a^{R} = aR$, one obtains that $a^{\#} = a^{\dagger}$. Hence, *a* is normal by (1).

(4) If $x = a^*$ is a solution of the equation (5), then we have $aa^*a^+a^* = a^*a^*$. So $a^{\dagger}R = a^*R = a^*a^*R = aa^*a^*a^*R \subseteq aa^*a^*a^*R \subseteq a^*a^*R \subseteq a^*a^*A \subseteq$

(5) If $x = (a^{\dagger})^*$ is a solution of the equation (5), then $aa^*a^{\dagger}(a^{\dagger})^* = a^*(a^{\dagger})^* = a^{\dagger}a$. By Theorem 1.1, we get $a^{\dagger}R = a^{\dagger}aR = aa^*a^{\dagger}(a^{\dagger})^*R = aa^*a^{\dagger}aR = aa^*a^*R = aR$, we know that $aa^{\dagger} = a^{\dagger}a$. This means $a^* = a^{\dagger}aa^* = aa^*a^{\dagger}(a^{\dagger})^*a^* = aa^*a^{\dagger}aa^{\dagger} = aa^*a^{\dagger}$. Hence, by [4, Theorem 2.2(x)], *a* is normal.

(6) If $x = (a^{\#})^*$ is a solution of the equation (5), then we get $aa^*a^{\dagger}(a^{\#})^* = a^*(a^{\#})^*$, by Theorem 1.1, $a^{\dagger}R = a^*R = a^*a^*R = a^*(a^{\#})^*R = aa^*a^{\dagger}(a^{\#})^*R \subseteq aR$, so we arrive at $a^{\#} = a^{\dagger}$. According to the proof of (5), *a* is normal. \Box

References

- [1] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc 51 (1955) 406-413.
- [2] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, (2nd edition), Springer, New York, 2003.
- [3] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal 61 (1976) 197-251.
- [4] D. Mosić, D. S. Djordjević, Moore-Penrose invertible normal and Hermitian elements in rings, Linear Algebra Appl 431 (2009) 732-745.
- [5] Y. Qu, J. Wei, H. Yao, Characterizations of normal elements in rings with involution, Acta. Math. Hungar 156(2) (2018) 459-464.
- [6] D. Mosić, D. S. Djordjević, Partial isometries and EP elements in rings with involution, Electronic J. Linear Algebra 18 (2009) 761-772.