Some New Characterizations of Normal Elements

Liyan Shi ${ }^{\text {a }}$, Junchao Wei ${ }^{\text {a }}$
${ }^{a}$ School of Mathematics, Yangzhou University, Yangzhou, 225002, P. R. China

Abstract

In this paper, we shall give some new characterizations of normal elements in a ring with involution by the solutions of related equations.

1. Introduction

Throughout this paper, let R be an associative ring with 1 . An involution in R is an anti-isomorphism $*: R \rightarrow R, a \rightarrow a^{*}$ of degree 2 , that is,

$$
\left(a^{*}\right)^{*}=a,(a+b)^{*}=a^{*}+b^{*},(a b)^{*}=b^{*} a^{*}
$$

An element a^{\dagger} is called the Moore-Penrose inverse (or MP-inverse) of a, if

$$
a=a a^{\dagger} a, a^{\dagger}=a^{\dagger} a a^{\dagger},\left(a a^{\dagger}\right)^{*}=a a^{\dagger},\left(a^{\dagger} a\right)^{*}=a^{\dagger} a .
$$

If a^{\dagger} exists, then it is unique [1]. Denote by R^{\dagger} the set of all MP-invertible elements of R.
An element $a \in R$ is said to be group invertible if there exists $a^{\#} \in R$ such that

$$
a=a a^{\#} a, a^{\#}=a^{\#} a a^{\#}, a a^{\#}=a^{\#} a .
$$

$a^{\#}$ is called a group inverse of a, and it is uniquely determined by the above condition [2]. We write $R^{\#}$ for the set of all group invertible elements of R.

The element $a \in R^{\#} \cap R^{\dagger}$ satisfying $a^{\#}=a^{\dagger}$ is said to be EP [3]. The set of all EP elements of R will be denoted by $R^{E P}$.

If $a^{*} a=a a^{*}$, then the element $a \in R$ is called normal. Mosić and Djordjević in [4, Lemma 1.2] proved for an element $a \in R^{\dagger}$ that a is normal if and only if $a a^{\dagger}=a^{\dagger} a$ and $a^{*} a^{\dagger}=a^{\dagger} a^{*}$. It is known by [5, Corollary 2.8, Lemma 2.7] $a \in R^{\dagger}$ is normal if and only if $a^{\dagger}\left(a^{\dagger}\right)^{*}=\left(a^{\dagger}\right)^{*} a^{\dagger}$ or $a \in R^{E P}$ and $a^{*} a^{\dagger}=a^{\dagger} a^{*}$. More results on normal elements are given in [5].

Following the fore study, this paper provide some equivalent conditions for an element to be normal in a ring with involution.
The following results are frequently used in this paper.
THEOREM 1.1 [5]. For any $a \in R^{\#} \cap R^{\dagger}$, the following are satisfied:

[^0](1) $\left(a^{\dagger}\right)^{*} R=a R,\left(a^{\#}\right)^{*} R=a^{*} R$;
(2) $a R=a a^{\dagger} R=a a^{*} R, a^{*} R=a^{\dagger} R=a^{*} a R=a^{\dagger} a R$;
(3) $a R=a^{\#} R=a^{2} R=a a^{\#} R,\left(a^{*}\right)^{2} R=a^{*} R$;
(4) $a R=a a^{*} a^{\#} R=a^{\#} a^{*} R, a^{*} R=a^{*} a^{\#} R$.

THEOREM 1.2 [2]. $a \in R^{\#}$ if and only if $a \in a^{2} R \cap R a^{2}$.

2. Characterizations of normal elements

Proposition 2.1. Let $a \in R^{\#} \cap R^{\dagger}$. Then a is normal if and only if $a a^{*} a^{\dagger} a^{\dagger}=a^{*} a^{\dagger}$.
Proof. " \Rightarrow " Since $a \in R^{\dagger}$ and a is normal, we have $a^{*} a=a a^{*}$ and $a a^{\dagger}=a^{\dagger} a$. Hence $a a^{*} a^{\dagger} a^{\dagger}=a^{*} a^{\dagger} a a^{\dagger}=a^{*} a^{\dagger}$.
$" \Leftarrow "$ If $a \in R^{\#} \cap R^{\dagger}$, then by Theorem 1.1, we get

$$
a^{\dagger} R=a^{*} R=\left(a^{*}\right)^{2} R=a^{*} a^{\dagger} R=a a^{*} a^{\dagger} a^{\dagger} R \subseteq a R=a a^{\#} a R=a^{\#} a^{2} R \subseteq a^{\#} R,
$$

which gives $\left(1-a^{\#} a\right) a^{\dagger} \in\left(1-a^{\#} a\right) a^{\dagger} R \subseteq\left(1-a^{\#} a\right) a^{\#} R=0$. Thus $a^{+}=a^{\#} a a^{\dagger}$, and then we have $a^{\dagger} a=a^{\#} a a^{\dagger} a=$ $a^{\#} a=a a^{\#}$, implies imediatly that $a a^{\dagger}=a^{\dagger} a$. Since $a a^{*} a^{\dagger} a^{\dagger}=a^{*} a^{\dagger}, a^{*} a^{\dagger} a^{\dagger}=a^{\dagger} a a^{*} a^{\dagger} a^{\dagger}=a^{\dagger} a^{*} a^{\dagger}$. It follows that $a^{*} a^{\dagger}=a^{*} a^{\dagger} a a^{\dagger}=a^{*} a^{\dagger} a^{\dagger} a=a^{\dagger} a^{*} a^{\dagger} a=a^{\dagger} a^{*} a a^{\dagger}=a^{\dagger} a^{*}$. This means a is normal.

We alrady know that $a \in R^{\#} \cap R^{\dagger}$ satisfying $a^{\#}=a^{\dagger}$ is said to be EP. So we have the following corollary.
Corollary 2.2. Let $a \in R^{\#} \cap R^{\dagger}$. Then a is normal if and only if $a a^{*} a^{\#} a^{\dagger}=a^{*} a^{\#}$.
Proof. " \Rightarrow " It is evident.
$" \Leftarrow "$ Since $a \in R^{\#} \cap R^{+}$and $a a^{*} a^{\#} a^{\dagger}=a^{*} a^{\#}$, then by Theorem 1.1, we get $a^{\dagger} R=a^{*} R=a^{*} a^{\#} R=a a^{*} a^{\#} a^{\dagger} R=$ $a a^{*} a^{\#} a^{*} R=a a^{*} a R=a a^{*} R=a R$. It follows that $a a^{\dagger}=a^{\dagger} a$. This gives that $a^{*} a=a^{*} a^{\#} a^{2}=a a^{*} a^{\#} a^{\dagger} a^{2}=a a^{*} a^{\#} a^{2} a^{\dagger}=$ $a a^{*} a a^{+}=a a^{*}$. Therefore a is normal.

Proposition 2.3. Let $a \in R^{\#} \cap R^{\dagger}$. Then a is normal if and only if $\left(a a^{*}\right)^{2}=a^{*} a^{2} a^{*}$.
Proof. " \Rightarrow " Assume that a is normal, then $a^{*} a=a a^{*}$. Hence $\left(a a^{*}\right)^{2}=a^{*} a^{2} a^{*}$.
$" \Leftarrow "$ Since $a \in R^{\#} \cap R^{+}$and $\left(a a^{*}\right)^{2}=a^{*} a^{2} a^{*}$, then by Theorem 1.1, one obtains that $a^{\dagger} R=a^{*} a R=a^{*} a^{2} R=$ $a^{*} a^{2} a^{*} R=\left(a a^{*}\right)^{2} R=a a^{*} a R=a a^{\dagger} R=a R$. So we arrive at $a a^{\dagger}=a^{\dagger} a$. This gives that $a a^{*} a=a a^{*} a a^{\dagger} a=a a^{*} a a^{*}\left(a^{\dagger}\right)^{*}=$ $a^{*} a^{2} a^{*}\left(a^{\dagger}\right)^{*}=a^{*} a^{2}$. Multiplying the equality on the right by a^{\dagger}, we have $a a^{*}=a^{*} a$. Therefore a is normal.

Corollary 2.4. Let $a \in R^{\#} \cap R^{\dagger}$. Then a is normal if and only if $a^{*}=a a^{*} a^{\dagger}$.
Corollary 2.5. Let $a \in R^{\#} \cap R^{+}$. Then a is normal if and only if $\binom{a^{*}}{a}$ is regular and $\binom{a^{*}}{a}^{-}=\left(\begin{array}{ll}1-a a^{+} & \left(a^{+}\right)^{*} a^{+} a^{*}\end{array}\right)$.
Proof. " \Rightarrow " If a is normal, then $a a^{*}=a^{*} a$. By [4, Theorem 2.2(xi)], we get $a^{*}=a^{+} a^{*} a$. Thus

$$
\binom{a^{*}}{a}\left(1-a a^{\dagger} \quad\left(a^{\dagger}\right)^{*} a^{\dagger} a^{*}\right)=\left(\begin{array}{cc}
a^{*}\left(1-a a^{\dagger}\right) & a^{*}\left(a^{\dagger}\right)^{*} a^{\dagger} a^{*} \\
a-a^{2} a^{\dagger} & a\left(a^{\dagger}\right)^{*} a^{\dagger} a^{*}
\end{array}\right)=\left(\begin{array}{cc}
0 & a^{\dagger} a a^{\dagger} a^{*} \\
a-a^{2} a^{\dagger} & a\left(a^{\dagger}\right)^{*} a^{\dagger} a^{*}
\end{array}\right) .
$$

By [5, Lemma 2.7], we have $a \in R^{E P}$, which gives $a=a^{2} a^{\dagger}$. By [5, Corollary 2.8], we get $\left(a^{\dagger}\right)^{*} a^{\dagger}=a^{\dagger}\left(a^{\dagger}\right)^{*}$. So we arrive at $a\left(a^{+}\right)^{*} a^{\dagger} a^{*}=a a^{\dagger}\left(a^{\dagger}\right)^{*} a^{*}=a a^{\dagger}$. It follows that

$$
\binom{a^{*}}{a}\left(\begin{array}{ll}
1-a a^{\dagger} & \left(a^{\dagger}\right)^{*} a^{\dagger} a^{*}
\end{array}\right)=\left(\begin{array}{cc}
0 & a^{\dagger} a^{*} \\
0 & a a^{\dagger}
\end{array}\right)
$$

meaning that

$$
\binom{a^{*}}{a}\left(\begin{array}{ll}
1-a a^{\dagger} & \left(a^{+}\right)^{*} a^{\dagger} a^{*}
\end{array}\right)\binom{a^{*}}{a}=\left(\begin{array}{cc}
0 & a^{+} a^{*} \\
0 & a a^{\dagger}
\end{array}\right)\binom{a^{*}}{a}=\binom{a^{+} a^{*} a}{a a^{+} a}=\binom{a^{*}}{a} .
$$

$$
\begin{aligned}
& " \Leftarrow " \text { If }\binom{a^{*}}{a}^{-}=\left(\begin{array}{ll}
1-a a^{+} & \left(a^{+}\right)^{*} a^{+} a^{*}
\end{array}\right) \text {. Then we have } \\
& \qquad\binom{a^{*}}{a}=\binom{a^{*}}{a}\left(\begin{array}{ll}
1-a a^{+} & \left(a^{+}\right)^{*} a^{+} a^{*}
\end{array}\right)\binom{a^{*}}{a}=\binom{a^{+} a^{*} a}{\left(a-a^{2} a^{+}\right) a^{*}+a\left(a^{+}\right)^{*} a^{+} a^{*} a}
\end{aligned}
$$

one obtains that $a^{*}=a^{+} a^{*} a$, therefore a is normal by [4, Theorem 2.2(xi)].
Note that if a is normal, then $\left(a a^{*}\right)^{2}=a a^{*} a a^{*}=a^{2} a^{*} a^{*}$.
Conversely, we can ask if $a \in R^{\#} \cap R^{\dagger}$ with $\left(a a^{*}\right)^{2}=a^{2} a^{*} a^{*}$, is it still a normal element?
The following example illustrates that this conclusion does not necessarily hold.
Example 2.6. Let $R=M_{3}\left(Z_{2}\right)$, with the involution is the transpose of matrix. Suppose that $a=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \in R$. So $a^{\dagger}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)=a^{*}$ since

$$
\begin{gathered}
a a^{\dagger} a=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=a, \\
a^{\dagger} a a^{\dagger}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)=a^{\dagger} \\
\left(a a^{\dagger}\right)^{*}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)^{*}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=a a^{\dagger} \\
\left(a^{\dagger} a\right)^{*}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)^{*}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)=a^{\dagger} a .
\end{gathered}
$$

Noting that $\left(a a^{*}\right)^{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=a a^{*}=a^{2} a^{*} a^{*}$. Nevertheless, $a^{*} a=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right) \neq a a^{*}$. We obtain a is not normal.

Corollary 2.7. Let $a \in R^{\dagger}$. Then a is normal if and only if $\left(a a^{*}\right)^{2}=a^{2} a^{*} a^{*}$ and $a a^{\dagger}=a^{\dagger} a$.
Proof. " \Rightarrow " It is evident.
$" \Leftarrow "$ Suppose that $\left(a a^{*}\right)^{2}=a^{2} a^{*} a^{*}$ and $a a^{\dagger}=a^{\dagger} a$. Now, we get $a a^{*}=a a^{*} a a^{*}\left(a^{\dagger}\right)^{*} a^{\dagger}=a^{2} a^{*} a^{*}\left(a^{\dagger}\right)^{*} a^{\dagger}=a^{2} a^{*} a^{\dagger}$. Multiplying this equality by a^{\dagger} from the left side, it follows $a^{*}=a^{\dagger} a^{2} a^{*} a^{\dagger}=a a^{\dagger} a a^{*} a^{\dagger}=a a^{*} a^{+}$. Furthermore, we obtain $a^{\dagger} a^{*}=a^{\dagger} a a^{*} a^{\dagger}=a^{*} a^{\dagger}$, which implies that a is normal.

It is well known that $a \in R^{E P}$ if and only if $a \in R^{\dagger}$ and $a a^{\dagger}=a^{\dagger} a$. Hence we get following corollary.
Corollary 2.8. Let $a \in R^{+}$. Then a is normal if and only if $a \in R^{E P}$ and $\left(a a^{*}\right)^{2}=a^{2} a^{*} a^{*}$.
Corollary 2.9. Let $a \in R^{+}$. Then a is normal if and only if $\left(a a^{*}\right)^{2}=a^{2} a^{*} a^{*}$ and $a^{*}=a^{*} a^{\dagger} a$.
Proof. " \Leftarrow " Let $a^{*}=a^{*} a^{\dagger} a$ and $\left(a a^{*}\right)^{2}=a^{2} a^{*} a^{*}$, then $a^{*}\left(1-a^{\dagger} a\right)=0$, by taking the involution, gives $\left(1-a^{\dagger} a\right) a=0$, thus we get $a=a^{+} a^{2}$. Since ($\left.a a^{*}\right)^{2}=a^{2} a^{*} a^{*}$, which yields $a^{+} a a^{*} a a^{*}\left(a^{+}\right)^{*} a^{+}=a^{\dagger} a^{2} a^{*} a^{*}\left(a^{+}\right)^{*} a^{+}$, this shows that $a^{*}=a^{\dagger} a^{2} a^{*} a^{\dagger}=a a^{*} a^{\dagger}$, hence $a^{\dagger} a^{*}=a^{\dagger} a a^{*} a^{\dagger}=a^{*} a^{\dagger}$. Note that $a R=a^{\dagger} a^{2} R \subseteq a^{\dagger} R=a^{*} R=a a^{*} a^{\dagger} R \subseteq a R$, so we arrive that $a \in R^{E P}$. Therefore a is normal.
$" \Rightarrow$ " It is routine verification.

Similarly, we have the following corollary.
Corollary 2.10. Let $a \in R^{\dagger}$. Then a is normal if and only if $\left(a a^{*}\right)^{2}=a^{*} a^{2} a^{*}$ and $a^{*}=a a^{\dagger} a^{*}$.
Let $a \in R^{\dagger} \cap R^{\#}$. We write $\operatorname{comm}(a)=\{x \in R \mid x a=a x\}$ and $\chi_{a}=\left\{a, a^{\#}, a^{\dagger}, a^{*},\left(a^{\dagger}\right)^{*},\left(a^{\#}\right)^{*}\right\}$. Now we consider the relations between normal elements and the solutions of certain equations.

Theorem 2.11. Let $a \in R^{\dagger}$. Then a is normal if and only if the system of equations (1)

$$
\left\{\begin{array}{l}
a^{*}=a^{*} a x \tag{1}\\
a^{\dagger}=a^{\dagger} a x
\end{array}\right.
$$

has at least one solution in $\operatorname{comm}(a) \cap \operatorname{comm}\left(a^{*}\right)$.
Proof. " \Rightarrow " For any $a \in R^{\dagger}$ and a is normal, we deduce that $a a^{\dagger}=a^{\dagger} a$ and $a^{\dagger} a^{*}=a^{*} a^{\dagger}$, so $a^{\dagger} \in \operatorname{comm}(a) \cap$ $\operatorname{comm}\left(a^{*}\right)$. Hence $x=a^{+}$is a solution of the system (1).
$" \Leftarrow "$ Assume that $x=c$ is a solution of the system (1), which belongs to $\operatorname{comm}(a) \cap \operatorname{comm}\left(a^{*}\right)$. Then we have $a^{*}=a^{*} a c, a^{\dagger}=a^{\dagger} a c$ and $c a=a c, c a^{*}=a^{*} c$. It follows that $a^{*}=a^{*} a c=\left(a^{*} a c\right) a c=a^{*} a^{2} c^{2}$ and $a a^{\dagger}=\left(a^{\dagger}\right)^{*} a^{*}=\left(a^{\dagger}\right)^{*} a^{*} a^{2} c^{2}=a a^{\dagger} a^{2} c^{2}=a^{2} c^{2}=c^{2} a^{2}$, that is, $a=a^{2} c^{2} a=c^{2} a^{3} \in a^{2} R \cap R a^{2}$, then $a \in R^{\#}$ by Theorem 1.2. Furthermore, it implies that $a a^{\dagger}=c^{2} a^{2}=c^{2} a\left(a a^{\#} a\right)=c^{2} a^{2} a^{\#} a=a a^{\dagger} a a^{\#}=a a^{\#}$, thus $a \in R^{E P}$. Noting that $a^{*} a^{\dagger}=\left(a^{*} a c\right) a^{\dagger}=c a^{*} a a^{\dagger}=c a^{*}=a^{*} c=a^{\dagger} a a^{*} c=a^{\dagger} a c a^{*}=a^{\dagger} a^{*}$. Then we get a is normal.

Theorem 2.12. Let $a \in R^{\dagger}$. Then a is normal if and only if the following equation (2) has at least one solution in $\operatorname{comm}(a) \cap \operatorname{comm}\left(a^{*}\right)$.

$$
\begin{equation*}
a^{\dagger}=a^{*} x\left(a^{\dagger}\right)^{*} \tag{2}
\end{equation*}
$$

Proof. " \Rightarrow " If $a \in R^{\dagger}$ and a is normal, then $a a^{\dagger}=a^{\dagger} a, a^{\dagger} a^{*}=a^{*} a^{\dagger}$ and $a^{\dagger}\left(a^{\dagger}\right)^{*}=\left(a^{\dagger}\right)^{*} a^{\dagger}$, gives $a^{\dagger}=a^{\dagger} a a^{\dagger}=$ $a^{*}\left(a^{\dagger}\right)^{*} a^{\dagger}=a^{*} a^{\dagger}\left(a^{\dagger}\right)^{*}$. Thus $x=a^{\dagger}$ is a solution of the equation (2) and $a^{\dagger} \in \operatorname{comm}(a) \cap \operatorname{comm}\left(a^{*}\right)$.
$" \Leftarrow "$ If $x=c$ is a solution of the equation (2), which belongs to $\operatorname{comm}(a) \cap \operatorname{comm}\left(a^{*}\right)$, then $a^{\dagger}=a^{*} c\left(a^{\dagger}\right)^{*}$, $c a=a c, c a^{*}=a^{*} c$. Now we get $a=a a^{\dagger} a=a\left(a^{*} c\left(a^{\dagger}\right)^{*}\right) a=a c a^{*}\left(a^{\dagger}\right)^{*} a=a c a^{\dagger} a a=c a a^{\dagger} a a=c a^{2}=a^{2} c \in a^{2} R \cap R a^{2}$. By Theorem 1.2, we have $a \in R^{\#}$. Then $a a^{\dagger}=a\left(a^{*} c\left(a^{\dagger}\right)^{*}\right)=a c a^{*}\left(a^{\dagger}\right)^{*}=a c a^{\dagger} a=c a a^{\dagger} a=c a=c a a^{\#} a=c a^{2} a^{\#}=a a^{\#}$, this means that $a \in R^{E P}$ and $a a^{\dagger}=a^{\dagger} a$. Note that

$$
\begin{gathered}
a^{+} a^{*}=a^{*} c\left(a^{+}\right)^{*} a^{*}=c a^{*} a a^{+}=c a^{*}, \\
a^{*} a^{+}=a^{*} a^{*} c\left(a^{+}\right)^{*}=c a^{*} a^{+} a=c a^{*} a a^{+}=c a^{*} .
\end{gathered}
$$

Combining these two equalities, we get $a^{\dagger} a^{*}=a^{*} a^{\dagger}$. Thus a is normal.
It is know by [6, Theorem 2.3], if $a \in R^{\dagger}$, then $a^{\dagger}=a^{*}$ and a is normal if and only if $a \in R^{\#}$ and $a a^{*}=a^{\dagger} a$. The following theorem 2.13 shows that, in the conditions $a \in R^{\#}$ and $a a^{*}=a^{\dagger} a, a \in R^{\#}$ can be removed.

Theorem 2.13. Let $a \in R^{\dagger}$. Then $a^{\dagger}=a^{*}$ and a is normal if and only if $a a^{*}=a^{\dagger} a$.
Proof. " \Rightarrow " Assume that $a \in R^{\dagger}$ and a is normal, then $a a^{\dagger}=a^{\dagger} a$. Since $a^{\dagger}=a^{*}$, then $a a^{*}=a^{\dagger} a$.
$" \Leftarrow "$ Since $a \in R^{\dagger}$ and $a a^{*}=a^{\dagger} a, a R=a a^{*} R=a^{\dagger} a R=a^{\dagger} R$, that is $a \in R^{E P}$ and therefore $a a^{\dagger}=a^{\dagger} a$. Multiplying $a a^{*}=a^{\dagger} a$ by a^{\dagger} from the left side, it follows $a^{*}=a^{\dagger}$, then $a a^{*}=a^{*} a$. So a is normal.

Note that if $a \in R^{\#} \cap R^{\dagger}$ and $a=a^{2} a^{*}$, multiplying this equality on the left by a^{\dagger}, it follows $a^{\dagger} a=a^{\dagger} a^{2} a^{*}$, by taking the involution, then $a^{\dagger} a=a a^{*} a^{\dagger} a$, thus, $a^{\dagger} R=a^{\dagger} a R=a a^{*} a^{\dagger} a R=a a^{*} a^{*} R=a a^{*} R=a R$ by Theorem 1.1, that is, $a \in R^{E P}$ and therefore $a a^{\dagger}=a^{\dagger} a$. It implies that $a^{\dagger} a=a^{\dagger} a^{2} a^{*}=a a^{\dagger} a a^{*}=a a^{*}$. Hence we can get the following lemma.

Lemma 2.14. Let $a \in R^{\dagger}$. Then $a^{\dagger}=a^{*}$ and a is normal if and only if $a=a^{2} a^{*}$ and $a \in R^{\#}$.

Theorem 2.15. Let $a \in R^{\dagger}$. Then $a^{\dagger}=a^{*}$ and a is normal if and only if $a \in R^{\#}$ and the following equation (3) has at least one solution in χ_{a}.

$$
\begin{equation*}
a x a^{*}=x a^{\dagger} a \tag{3}
\end{equation*}
$$

Proof. " \Leftarrow " (1) $x=a$ is a solution of the equation (3), then $a^{2} a^{*}=a a^{\dagger} a=a$. By Lemma 2.14, a is normal and $a^{\dagger}=a^{*}$.
(2) If $x=a^{\dagger}$ is a solution of the equation (3), one has that $a a^{\dagger} a^{*}=a^{\dagger} a^{\dagger} a$. By taking the involution, we have $a^{2} a^{\dagger}=a^{\dagger} a\left(a^{\dagger}\right)^{*}$. By Theorem 1.1, we get $a R=a^{2} R=a^{2} a^{\dagger} R=a^{\dagger} a\left(a^{\dagger}\right)^{*} R=a^{\dagger} a^{2} R=a^{\dagger} R$. This shows that $a a^{\dagger}=a^{\dagger} a$. Then $a^{*}=a^{\dagger} a a^{*}=a a^{\dagger} a^{*}=a^{\dagger} a^{\dagger} a=a^{\dagger} a a^{\dagger}=a^{\dagger}$, which implies that $a a^{*}=a^{*} a$. We see that a is normal.
(3) If $x=a^{*}$ is a solution of the equation (3), then $a a^{*} a^{*}=a^{*} a^{\dagger} a$. Thus $a R=a a^{*} R=a a^{*} a^{*} R=a^{*} a^{\dagger} a R \subseteq$ $a^{*} R=a^{\dagger} R$ by Theorem 1.1. It follows that $\left(1-a^{\dagger} a\right) a \in\left(1-a^{\dagger} a\right) a R \subseteq\left(1-a^{\dagger} a\right) a^{\dagger} R=0$, that is $\left(1-a^{\dagger} a\right) a=0$, then $a=a^{\dagger} a^{2}$. One concludes that $a a^{\#}=a^{\dagger} a^{2} a^{\#}=a^{\dagger} a$, which implies that $a a^{\dagger}=a^{\dagger} a$. Hence $a a^{*} a^{*}=a^{*} a a^{\dagger}=a^{*}$, multiplying the equality on the right by $\left(a^{\dagger}\right)^{*}$, we get $a a^{*}=a^{\dagger} a$. So a is normal and $a^{\dagger}=a^{*}$ by Theorem 2.13.
(4) If $x=a^{\#}$ is a solution of the equation (3), then we have $a^{\#} a^{+} a=a a^{\#} a^{*}=a^{\#} a a^{*}$. By taking the involution, $a a^{*}\left(a^{\#}\right)^{*}=a^{\dagger} a\left(a^{\#}\right)^{*}$, thus $a R=a a^{*} a^{*} R=a a^{*}\left(a^{\#}\right)^{*} R=a^{\dagger} a\left(a^{\#}\right)^{*} R=a^{\dagger} a a^{*} R=a^{\dagger} a R=a^{\dagger} R$ by Theorem 1.1, this means that $a^{\dagger}=a^{\#}$. According to the proof of (2), we get a is normal and $a^{\dagger}=a^{*}$.
(5) If $x=\left(a^{\dagger}\right)^{*}$ is a solution of the equation (3), then we can show $a\left(a^{\dagger}\right)^{*} a^{*}=\left(a^{\dagger}\right)^{*} a^{\dagger} a$, that is, $a^{2} a^{\dagger}=\left(a^{\dagger}\right)^{*} a^{\dagger} a$. Multiplying the equality on the right by $a a^{\#} a^{\dagger}$, we obtain $a a^{\dagger}=\left(a^{\dagger}\right)^{*} a^{\dagger}$, then multiplying this equality by a^{*} from the left side, we have $a^{*}=a^{\dagger}$, hence $a=a a^{\dagger} a=\left(a^{*}\right)^{*} a^{\dagger} a=\left(a^{\dagger}\right)^{*} a^{\dagger} a=a^{2} a^{\dagger}=a^{2} a^{*}$. It follows that a is normal by Lemma 2.14.
(6) If $x=\left(a^{\#}\right)^{*}$ is a solution of the equation (3), then $a\left(a^{\#}\right)^{*} a^{*}=\left(a^{\#}\right)^{*} a^{\dagger} a$, gives $a\left(a a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a^{\dagger} a$. Multiplying this equality by a^{*} from the right side, it follows $a\left(a^{2} a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a^{*}$, that is, $a a^{*}=\left(a^{\#}\right)^{*} a^{*}$. By Theorem 1.1, we have $a R=a a^{*} R=\left(a^{\#}\right)^{*} a^{*} R \subseteq\left(a^{\#}\right)^{*} R=a^{*} R=a^{\dagger} R$, this means that $a^{\dagger}=a^{\#}$. Thus a is normal and $a^{\dagger}=a^{*}$ by (5).
$" \Rightarrow$ " By Lemma 2.14, we know that $x=a$ is a solution of the equation (3).
Theorem 2.16. Let $a \in R^{\dagger} \cap R^{\#}$. Then a is normal if and only if the following equation (4) has at least one solution in χ_{a}.

$$
\begin{equation*}
a a^{*} x=a^{*} a x \tag{4}
\end{equation*}
$$

Proof. " \Rightarrow " Since a is normal, then $a a^{*}=a^{*} a$, hence $a a^{*} a^{\dagger}=a^{*} a a^{\dagger}$. It turns out that $x=a^{\dagger}$ is a solution of the equation (4).
$" \Leftarrow "(1)$ If $x=a$ is a solution of the equation (4), then we have $a a^{*} a=a^{*} a^{2}$. By Theorem 1.1, we have $a^{\dagger} R=a^{*} a R=a^{*} a^{2} R=a a^{*} a R=a a^{*} R=a R$, which forces that $a \in R^{E P}$ and therefore $a a^{\dagger}=a^{\dagger} a$. Multiplying $a a^{*} a=a^{*} a^{2}$ on the right by a^{\dagger}, we get $a a^{*}=a^{*} a$. Thus a is normal.
(2) If $x=a^{\dagger}$ is a solution of the equation (4), then we know that $a a^{*} a^{\dagger}=a^{*} a a^{\dagger}=a^{*}$. By Theorem 1.1, we have $a^{\dagger} R=a^{*} R=a a^{*} a^{\dagger} R=a\left(a^{*}\right)^{2} R=a a^{*} R=a R$. This means that $a a^{\dagger}=a^{\dagger} a$, that is, $a a^{*}=a a^{*} a a^{\dagger}=a a^{*} a^{\dagger} a=a^{*} a$. Which implies that a is normal.
(3) If $x=a^{*}$ is a solution of the equation (4), then $a a^{*} a^{*}=a^{*} a a^{*}$. Multiplying this equality by $\left(a^{+}\right)^{*}$ from the right side, we have $a a^{*} a^{\dagger} a=a^{*} a$. So $a^{\dagger} R=a^{*} a R=a a^{*} a^{\dagger} a R=a\left(a^{*}\right)^{2} R=a a^{*} R=a R$ by Theorem 1.1, it follows that $a \in R^{E P}$ and therefore $a a^{\dagger}=a^{\dagger} a$. Which implying that $a^{*} a=a a^{*} a^{\dagger} a=a a^{*} a a^{+}=a a^{*}$. Hence a is normal.
(4) If $x=a^{\#}$ is a solution of the equation (4), then we get that $a a^{*} a^{\#}=a^{*} a a^{\#}$. By Theorem 1.1, we know that $a^{\dagger} R=a^{*} a^{2} R=a^{*} a a^{\#} R=a a^{*} a^{\#} R=a a^{*} a R=a a^{\dagger} R=a R$. Hence $a^{\dagger}=a^{\#}$, which implies that a is normal by (2).
(5) If $x=\left(a^{\dagger}\right)^{*}$ is a solution of the equation (4), then one has that $a^{*} a\left(a^{\dagger}\right)^{*}=a a^{*}\left(a^{\dagger}\right)^{*}=a a^{\dagger} a=a$. By Theorem 1.1, we get $a R=a^{*} a\left(a^{\dagger}\right)^{*} R=a^{*} a^{2} R=a^{*} a R=a^{\dagger} R$, thus $a \in R^{E P}$ and therefore $a a^{\dagger}=a^{\dagger} a$. Then $a a^{*}=a^{*} a\left(a^{\dagger}\right)^{*} a^{*}=a^{*} a a a^{\dagger}=a^{*} a a^{\dagger} a=a^{*} a$. Giving that a is normal.
(6) If $x=\left(a^{\#}\right)^{*}$ is a solution of the equation (4), then we know that $a a^{*}\left(a^{\#}\right)^{*}=a^{*} a\left(a^{\#}\right)^{*}$. Multiplying the equality on the right by a^{*}, we have $a a^{*}=a^{*} a\left(a^{\#}\right)^{*} a^{*}$. So, $a R=a a^{*} R=a^{*} a\left(a^{\#}\right)^{*} a^{*} R \subseteq a^{*} R=a^{\dagger} R$ by Theorem 1.1, it follows that $a^{\dagger}=a^{\#}$. We see that a is normal by (5).

Theorem 2.17. Let $a \in R^{\dagger} \cap R^{\#}$. Then a is normal if and only if the following equation (5) has at least one solution in χ_{a}.

$$
\begin{equation*}
a a^{*} a^{\dagger} x=a^{*} x \tag{5}
\end{equation*}
$$

Proof. " \Rightarrow " Assume that a is normal, then $a a^{*}=a^{*} a$, one obtains that $a^{*} a=a^{*} a a^{\dagger} a=a a^{*} a^{\dagger} a$. Thus $x=a$ is a solution of the equation (5).
$" \Leftarrow "(1)$ If $x=a^{\dagger}$ is a solution of the equation (5), then we have $a a^{*} a^{\dagger} a^{\dagger}=a^{*} a^{\dagger}$. Hence, by Proposition 2.1, a is normal.
(2) If $x=a$ is a solution of the equation (5), then we get $a^{*} a=a a^{*} a^{\dagger} a$, by Theorem 1.1, $a^{\dagger} R=a^{*} a R=$ $a a^{*} a^{\dagger} a R=a a^{*} a^{*} R=a a^{*} R=a R$, it follows that $a a^{\dagger}=a^{\dagger} a$. This implies $a^{*} a=a a^{*} a^{\dagger} a=a a^{*} a a^{\dagger}=a a^{*}$. Thus a is normal.
(3) If $x=a^{\#}$ is a solution of the equation (5), then $a a^{*} a^{+} a^{\#}=a^{*} a^{\#}$. By Theorem 1.1, we have $a^{\dagger} R=a^{*} a R=$ $a^{*} a^{\#} R=a a^{*} a^{+} a^{\#} R=a a^{*} a^{\dagger} a R=a a^{*} a^{*} R=a R$, one obtains that $a^{\#}=a^{\dagger}$. Hence, a is normal by (1).
(4) If $x=a^{*}$ is a solution of the equation (5), then we have $a a^{*} a^{+} a^{*}=a^{*} a^{*}$. So $a^{\dagger} R=a^{*} R=a^{*} a^{*} R=$ $a a^{*} a^{\dagger} a^{*} R \subseteq a R=a^{\#} a^{2} R \subseteq a^{\#} R$ by Theorem 1.1. It follows that $\left(1-a^{\#} a\right) a^{\dagger} \in\left(1-a^{\#} a\right) a^{\dagger} R \subseteq\left(1-a^{\#} a\right) a^{\#} R=0$, that is $\left(1-a^{\#} a\right) a^{\dagger}=0$, then $a^{\dagger}=a^{\#} a a^{\dagger}$. We obtain $a^{\dagger} a=a^{\#} a a^{\dagger} a=a^{\#} a$, which implies that $a a^{+}=a^{\dagger} a$. Multiplying $a a^{*} a^{+} a^{*}=a^{*} a^{*}$ on the right by $\left(a^{+}\right)^{*}$, we have $a a^{*} a^{\dagger}=a^{*}$. Hence, by [4, Theorem 2.2(x)], a is normal.
(5) If $x=\left(a^{\dagger}\right)^{*}$ is a solution of the equation (5), then $a a^{*} a^{\dagger}\left(a^{\dagger}\right)^{*}=a^{*}\left(a^{\dagger}\right)^{*}=a^{\dagger} a$. By Theorem 1.1, we get $a^{\dagger} R=a^{\dagger} a R=a a^{*} a^{\dagger}\left(a^{\dagger}\right)^{*} R=a a^{*} a^{\dagger} a R=a a^{*} a^{*} R=a R$, we know that $a a^{\dagger}=a^{\dagger} a$. This means $a^{*}=a^{\dagger} a a^{*}=$ $a a^{*} a^{\dagger}\left(a^{\dagger}\right)^{*} a^{*}=a a^{*} a^{\dagger} a a^{\dagger}=a a^{*} a^{\dagger}$. Hence, by [4, Theorem 2.2(x)], a is normal.
(6) If $x=\left(a^{\#}\right)^{*}$ is a solution of the equation (5), then we get $a a^{*} a^{\dagger}\left(a^{\#}\right)^{*}=a^{*}\left(a^{\#}\right)^{*}$, by Theorem 1.1, $a^{\dagger} R=a^{*} R=a^{*} a^{*} R=a^{*}\left(a^{\#}\right)^{*} R=a a^{*} a^{\dagger}\left(a^{\#}\right)^{*} R \subseteq a R$, so we arrive at $a^{\#}=a^{\dagger}$. According to the proof of (5), a is normal.

References

[1] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc 51 (1955) 406-413.
[2] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, (2nd edition), Springer, New York, 2003.
[3] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal 61 (1976) 197-251.
[4] D. Mosić, D. S. Djordjević, Moore-Penrose invertible normal and Hermitian elements in rings, Linear Algebra Appl 431 (2009) 732-745.
[5] Y. Qu, J. Wei, H. Yao, Characterizations of normal elements in rings with involution, Acta. Math. Hungar 156(2) (2018) 459-464.
[6] D. Mosić, D. S. Djordjević, Partial isometries and EP elememts in rings with involution, Electronic J. Linear Algebra 18 (2009) 761-772.

[^0]: 2010 Mathematics Subject Classification. 15A09; 16W10, 16U99
 Keywords. normal element, EP element, Mooer-Penrose inverse, group inverse, solutions of equation.
 Received: 22 January 2019; Accepted: 17 June 2019
 Communicated by Dijana Mosić
 Research supported by the National Natural Science Foundation of China (No. 11471282)
 Email addresses: 1910096449@qq. com (Liyan Shi), jcweiyz@126. com (Junchao Wei)

