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Abstract. In this paper, we shall give some new characterizations of normal elements in a ring with
involution by the solutions of related equations.

1. Introduction

Throughout this paper, let R be an associative ring with 1. An involution in R is an anti-isomorphism
∗ : R→ R, a→ a∗ of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a† is called the Moore-Penrose inverse (or MP-inverse) of a, if

a = aa†a, a† = a†aa†, (aa†)∗ = aa†, (a†a)∗ = a†a.

If a† exists, then it is unique [1]. Denote by R† the set of all MP-invertible elements of R.
An element a ∈ R is said to be group invertible if there exists a#

∈ R such that

a = aa#a, a# = a#aa#, aa# = a#a.

a# is called a group inverse of a, and it is uniquely determined by the above condition [2]. We write R# for
the set of all group invertible elements of R.

The element a ∈ R#
∩ R† satisfying a# = a† is said to be EP [3]. The set of all EP elements of R will be

denoted by REP.
If a∗a = aa∗, then the element a ∈ R is called normal. Mosić and Djordjević in [4, Lemma 1.2] proved for

an element a ∈ R† that a is normal if and only if aa† = a†a and a∗a† = a†a∗. It is known by [5, Corollary 2.8,
Lemma 2.7] a ∈ R† is normal if and only if a†(a†)∗ = (a†)∗a† or a ∈ REP and a∗a† = a†a∗. More results on normal
elements are given in [5].

Following the fore study, this paper provide some equivalent conditions for an element to be normal in
a ring with involution.
The following results are frequently used in this paper.

THEOREM 1.1 [5]. For any a ∈ R#
∩ R†, the following are satisfied:
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(1) (a†)∗R = aR, (a#)∗R = a∗R;
(2) aR = aa†R = aa∗R, a∗R = a†R = a∗aR = a†aR;
(3) aR = a#R = a2R = aa#R, (a∗)2R = a∗R;
(4) aR = aa∗a#R = a#a∗R, a∗R = a∗a#R.
THEOREM 1.2 [2]. a ∈ R# if and only if a ∈ a2R ∩ Ra2.

2. Characterizations of normal elements

Proposition 2.1. Let a ∈ R#
∩ R†. Then a is normal if and only if aa∗a†a† = a∗a†.

Proof. “⇒ ” Since a ∈ R† and a is normal, we have a∗a = aa∗ and aa† = a†a. Hence aa∗a†a† = a∗a†aa† = a∗a†.
“⇐ ” If a ∈ R#

∩ R†, then by Theorem 1.1, we get

a†R = a∗R = (a∗)2R = a∗a†R = aa∗a†a†R ⊆ aR = aa#aR = a#a2R ⊆ a#R,

which gives (1 − a#a)a† ∈ (1 − a#a)a†R ⊆ (1 − a#a)a#R = 0. Thus a† = a#aa†, and then we have a†a = a#aa†a =
a#a = aa#, implies imediatly that aa† = a†a. Since aa∗a†a† = a∗a†, a∗a†a† = a†aa∗a†a† = a†a∗a†. It follows that
a∗a† = a∗a†aa† = a∗a†a†a = a†a∗a†a = a†a∗aa† = a†a∗. This means a is normal.

We alrady know that a ∈ R#
∩ R† satisfying a# = a† is said to be EP. So we have the following corollary.

Corollary 2.2. Let a ∈ R#
∩ R†. Then a is normal if and only if aa∗a#a† = a∗a#.

Proof. “⇒ ” It is evident.
“ ⇐ ” Since a ∈ R#

∩ R† and aa∗a#a† = a∗a#, then by Theorem 1.1, we get a†R = a∗R = a∗a#R = aa∗a#a†R =
aa∗a#a∗R = aa∗aR = aa∗R = aR. It follows that aa† = a†a. This gives that a∗a = a∗a#a2 = aa∗a#a†a2 = aa∗a#a2a† =
aa∗aa† = aa∗. Therefore a is normal.

Proposition 2.3. Let a ∈ R#
∩ R†. Then a is normal if and only if (aa∗)2 = a∗a2a∗.

Proof. “⇒ ” Assume that a is normal, then a∗a = aa∗. Hence (aa∗)2 = a∗a2a∗.
“ ⇐ ” Since a ∈ R#

∩ R† and (aa∗)2 = a∗a2a∗, then by Theorem 1.1, one obtains that a†R = a∗aR = a∗a2R =
a∗a2a∗R = (aa∗)2R = aa∗aR = aa†R = aR. So we arrive at aa† = a†a. This gives that aa∗a = aa∗aa†a = aa∗aa∗(a†)∗ =
a∗a2a∗(a†)∗ = a∗a2. Multiplying the equality on the right by a†, we have aa∗ = a∗a. Therefore a is normal.

Corollary 2.4. Let a ∈ R#
∩ R†. Then a is normal if and only if a∗ = aa∗a†.

Corollary 2.5. Let a ∈ R#
∩ R†. Then a is normal if and only if

(
a∗

a

)
is regular and

(
a∗

a

)−
=

(
1 − aa† (a†)∗a†a∗

)
.

Proof. “⇒ ” If a is normal, then aa∗ = a∗a. By [4, Theorem 2.2(xi)], we get a∗ = a†a∗a. Thus(
a∗

a

) (
1 − aa† (a†)∗a†a∗

)
=

(
a∗(1 − aa†) a∗(a†)∗a†a∗

a − a2a† a(a†)∗a†a∗

)
=

(
0 a†aa†a∗

a − a2a† a(a†)∗a†a∗

)
.

By [5, Lemma 2.7], we have a ∈ REP, which gives a = a2a†. By [5, Corollary 2.8], we get (a†)∗a† = a†(a†)∗. So we
arrive at a(a†)∗a†a∗ = aa†(a†)∗a∗ = aa†. It follows that(

a∗

a

) (
1 − aa† (a†)∗a†a∗

)
=

(
0 a†a∗

0 aa†

)
,

meaning that (
a∗

a

) (
1 − aa† (a†)∗a†a∗

) (a∗
a

)
=

(
0 a†a∗

0 aa†

) (
a∗

a

)
=

(
a†a∗a
aa†a

)
=

(
a∗

a

)
.
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“⇐ ” If
(
a∗

a

)−
=

(
1 − aa† (a†)∗a†a∗

)
. Then we have(

a∗

a

)
=

(
a∗

a

) (
1 − aa† (a†)∗a†a∗

) (a∗
a

)
=

(
a†a∗a

(a − a2a†)a∗ + a(a†)∗a†a∗a

)
,

one obtains that a∗ = a†a∗a, therefore a is normal by [4, Theorem 2.2(xi)].

Note that if a is normal, then (aa∗)2 = aa∗aa∗ = a2a∗a∗.
Conversely, we can ask if a ∈ R#

∩ R† with (aa∗)2 = a2a∗a∗, is it still a normal element?
The following example illustrates that this conclusion does not necessarily hold.

Example 2.6. Let R =M3(Z2), with the involution is the transpose of matrix. Suppose that a =

1 1 1
0 0 0
0 0 0

 ∈ R. So

a† =

1 0 0
1 0 0
1 0 0

 = a∗ since

aa†a =

1 1 1
0 0 0
0 0 0


1 0 0
1 0 0
1 0 0


1 1 1
0 0 0
0 0 0

 =
1 1 1
0 0 0
0 0 0

 = a,

a†aa† =

1 0 0
1 0 0
1 0 0


1 1 1
0 0 0
0 0 0


1 0 0
1 0 0
1 0 0

 =
1 0 0
1 0 0
1 0 0

 = a†,

(aa†)∗ =

1 0 0
0 0 0
0 0 0


∗

=

1 0 0
0 0 0
0 0 0

 = aa†,

(a†a)∗ =

1 1 1
1 1 1
1 1 1


∗

=

1 1 1
1 1 1
1 1 1

 = a†a.

Noting that (aa∗)2 =

1 0 0
0 0 0
0 0 0


1 0 0
0 0 0
0 0 0

 =
1 0 0
0 0 0
0 0 0

 = aa∗ = a2a∗a∗. Nevertheless, a∗a =

1 1 1
1 1 1
1 1 1

 , aa∗. We

obtain a is not normal.

Corollary 2.7. Let a ∈ R†. Then a is normal if and only if (aa∗)2 = a2a∗a∗ and aa† = a†a.

Proof. “⇒ ” It is evident.
“ ⇐ ” Suppose that (aa∗)2 = a2a∗a∗ and aa† = a†a. Now, we get aa∗ = aa∗aa∗(a†)∗a† = a2a∗a∗(a†)∗a† = a2a∗a†.

Multiplying this equality by a† from the left side, it follows a∗ = a†a2a∗a† = aa†aa∗a† = aa∗a†. Furthermore, we obtain
a†a∗ = a†aa∗a† = a∗a†, which implies that a is normal.

It is well known that a ∈ REP if and only if a ∈ R† and aa† = a†a. Hence we get following corollary.

Corollary 2.8. Let a ∈ R†. Then a is normal if and only if a ∈ REP and (aa∗)2 = a2a∗a∗.

Corollary 2.9. Let a ∈ R†. Then a is normal if and only if (aa∗)2 = a2a∗a∗ and a∗ = a∗a†a.

Proof. “⇐ ” Let a∗ = a∗a†a and (aa∗)2 = a2a∗a∗, then a∗(1 − a†a) = 0, by taking the involution, gives (1 − a†a)a = 0,
thus we get a = a†a2. Since (aa∗)2 = a2a∗a∗, which yields a†aa∗aa∗(a†)∗a† = a†a2a∗a∗(a†)∗a†, this shows that
a∗ = a†a2a∗a† = aa∗a†, hence a†a∗ = a†aa∗a† = a∗a†. Note that aR = a†a2R ⊆ a†R = a∗R = aa∗a†R ⊆ aR, so we arrive
that a ∈ REP. Therefore a is normal.

“⇒ ” It is routine verification.
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Similarly, we have the following corollary.

Corollary 2.10. Let a ∈ R†. Then a is normal if and only if (aa∗)2 = a∗a2a∗ and a∗ = aa†a∗.

Let a ∈ R† ∩ R#. We write comm(a) = {x ∈ R|xa = ax} and χa = {a, a#, a†, a∗, (a†)∗, (a#)∗}. Now we consider
the relations between normal elements and the solutions of certain equations.

Theorem 2.11. Let a ∈ R†. Then a is normal if and only if the system of equations (1) a∗ = a∗ax

a† = a†ax
(1)

has at least one solution in comm(a) ∩ comm(a∗).

Proof. “ ⇒ ” For any a ∈ R† and a is normal, we deduce that aa† = a†a and a†a∗ = a∗a†, so a† ∈ comm(a) ∩
comm(a∗). Hence x = a† is a solution of the system (1).

“ ⇐ ” Assume that x = c is a solution of the system (1), which belongs to comm(a) ∩ comm(a∗). Then
we have a∗ = a∗ac, a† = a†ac and ca = ac, ca∗ = a∗c. It follows that a∗ = a∗ac = (a∗ac)ac = a∗a2c2 and
aa† = (a†)∗a∗ = (a†)∗a∗a2c2 = aa†a2c2 = a2c2 = c2a2, that is, a = a2c2a = c2a3

∈ a2R∩Ra2, then a ∈ R# by Theorem
1.2. Furthermore, it implies that aa† = c2a2 = c2a(aa#a) = c2a2a#a = aa†aa# = aa#, thus a ∈ REP. Noting that
a∗a† = (a∗ac)a† = ca∗aa† = ca∗ = a∗c = a†aa∗c = a†aca∗ = a†a∗. Then we get a is normal.

Theorem 2.12. Let a ∈ R†. Then a is normal if and only if the following equation (2) has at least one solution in
comm(a) ∩ comm(a∗).

a† = a∗x(a†)∗ (2)

Proof. “ ⇒ ” If a ∈ R† and a is normal, then aa† = a†a, a†a∗ = a∗a† and a†(a†)∗ = (a†)∗a†, gives a† = a†aa† =
a∗(a†)∗a† = a∗a†(a†)∗. Thus x = a† is a solution of the equation (2) and a† ∈ comm(a) ∩ comm(a∗).

“ ⇐ ” If x = c is a solution of the equation (2), which belongs to comm(a) ∩ comm(a∗), then a† = a∗c(a†)∗,
ca = ac, ca∗ = a∗c. Now we get a = aa†a = a(a∗c(a†)∗)a = aca∗(a†)∗a = aca†aa = caa†aa = ca2 = a2c ∈ a2R ∩ Ra2.
By Theorem 1.2, we have a ∈ R#. Then aa† = a(a∗c(a†)∗) = aca∗(a†)∗ = aca†a = caa†a = ca = caa#a = ca2a# = aa#,
this means that a ∈ REP and aa† = a†a. Note that

a†a∗ = a∗c(a†)∗a∗ = ca∗aa† = ca∗,

a∗a† = a∗a∗c(a†)∗ = ca∗a†a = ca∗aa† = ca∗.

Combining these two equalities, we get a†a∗ = a∗a†. Thus a is normal.

It is know by [6, Theorem 2.3], if a ∈ R†, then a† = a∗ and a is normal if and only if a ∈ R# and aa∗ = a†a.
The following theorem 2.13 shows that, in the conditions a ∈ R# and aa∗ = a†a, a ∈ R# can be removed.

Theorem 2.13. Let a ∈ R†. Then a† = a∗ and a is normal if and only if aa∗ = a†a.

Proof. “⇒ ” Assume that a ∈ R† and a is normal, then aa† = a†a. Since a† = a∗, then aa∗ = a†a.
“⇐ ” Since a ∈ R† and aa∗ = a†a, aR = aa∗R = a†aR = a†R, that is a ∈ REP and therefore aa† = a†a. Multiplying

aa∗ = a†a by a† from the left side, it follows a∗ = a†, then aa∗ = a∗a. So a is normal.

Note that if a ∈ R#
∩ R† and a = a2a∗, multiplying this equality on the left by a†, it follows a†a = a†a2a∗,

by taking the involution, then a†a = aa∗a†a, thus, a†R = a†aR = aa∗a†aR = aa∗a∗R = aa∗R = aR by Theorem
1.1, that is, a ∈ REP and therefore aa† = a†a. It implies that a†a = a†a2a∗ = aa†aa∗ = aa∗. Hence we can get the
following lemma.

Lemma 2.14. Let a ∈ R†. Then a† = a∗ and a is normal if and only if a = a2a∗ and a ∈ R#.
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Theorem 2.15. Let a ∈ R†. Then a† = a∗ and a is normal if and only if a ∈ R# and the following equation (3) has at
least one solution in χa.

axa∗ = xa†a (3)

Proof. “⇐ ” (1) x = a is a solution of the equation (3), then a2a∗ = aa†a = a. By Lemma 2.14, a is normal and
a† = a∗.

(2) If x = a† is a solution of the equation (3), one has that aa†a∗ = a†a†a. By taking the involution, we
have a2a† = a†a(a†)∗. By Theorem 1.1, we get aR = a2R = a2a†R = a†a(a†)∗R = a†a2R = a†R. This shows that
aa† = a†a. Then a∗ = a†aa∗ = aa†a∗ = a†a†a = a†aa† = a†, which implies that aa∗ = a∗a. We see that a is normal.

(3) If x = a∗ is a solution of the equation (3), then aa∗a∗ = a∗a†a. Thus aR = aa∗R = aa∗a∗R = a∗a†aR ⊆
a∗R = a†R by Theorem 1.1. It follows that (1 − a†a)a ∈ (1 − a†a)aR ⊆ (1 − a†a)a†R = 0, that is (1 − a†a)a = 0,
then a = a†a2. One concludes that aa# = a†a2a# = a†a, which implies that aa† = a†a. Hence aa∗a∗ = a∗aa† = a∗,
multiplying the equality on the right by (a†)∗, we get aa∗ = a†a. So a is normal and a† = a∗ by Theorem 2.13.

(4) If x = a# is a solution of the equation (3), then we have a#a†a = aa#a∗ = a#aa∗. By taking the involution,
aa∗(a#)∗ = a†a(a#)∗, thus aR = aa∗a∗R = aa∗(a#)∗R = a†a(a#)∗R = a†aa∗R = a†aR = a†R by Theorem 1.1, this
means that a† = a#. According to the proof of (2), we get a is normal and a† = a∗.

(5) If x = (a†)∗ is a solution of the equation (3), then we can show a(a†)∗a∗ = (a†)∗a†a, that is, a2a† = (a†)∗a†a.
Multiplying the equality on the right by aa#a†, we obtain aa† = (a†)∗a†, then multiplying this equality by a∗

from the left side, we have a∗ = a†, hence a = aa†a = (a∗)∗a†a = (a†)∗a†a = a2a† = a2a∗. It follows that a is
normal by Lemma 2.14.

(6) If x = (a#)∗ is a solution of the equation (3), then a(a#)∗a∗ = (a#)∗a†a, gives a(aa#)∗ = (a#)∗a†a. Multiplying
this equality by a∗ from the right side, it follows a(a2a#)∗ = (a#)∗a∗, that is, aa∗ = (a#)∗a∗. By Theorem 1.1, we
have aR = aa∗R = (a#)∗a∗R ⊆ (a#)∗R = a∗R = a†R, this means that a† = a#. Thus a is normal and a† = a∗ by (5).

“⇒ ” By Lemma 2.14, we know that x = a is a solution of the equation (3).

Theorem 2.16. Let a ∈ R† ∩ R#. Then a is normal if and only if the following equation (4) has at least one solution
in χa.

aa∗x = a∗ax (4)

Proof. “⇒ ” Since a is normal, then aa∗ = a∗a, hence aa∗a† = a∗aa†. It turns out that x = a† is a solution of the
equation (4).

“ ⇐ ” (1) If x = a is a solution of the equation (4), then we have aa∗a = a∗a2. By Theorem 1.1, we have
a†R = a∗aR = a∗a2R = aa∗aR = aa∗R = aR, which forces that a ∈ REP and therefore aa† = a†a. Multiplying
aa∗a = a∗a2 on the right by a†, we get aa∗ = a∗a. Thus a is normal.

(2) If x = a† is a solution of the equation (4), then we know that aa∗a† = a∗aa† = a∗. By Theorem 1.1, we
have a†R = a∗R = aa∗a†R = a(a∗)2R = aa∗R = aR. This means that aa† = a†a, that is, aa∗ = aa∗aa† = aa∗a†a = a∗a.
Which implies that a is normal.

(3) If x = a∗ is a solution of the equation (4), then aa∗a∗ = a∗aa∗. Multiplying this equality by (a†)∗ from the
right side, we have aa∗a†a = a∗a. So a†R = a∗aR = aa∗a†aR = a(a∗)2R = aa∗R = aR by Theorem 1.1, it follows
that a ∈ REP and therefore aa† = a†a. Which implying that a∗a = aa∗a†a = aa∗aa† = aa∗. Hence a is normal.

(4) If x = a# is a solution of the equation (4), then we get that aa∗a# = a∗aa#. By Theorem 1.1, we know
that a†R = a∗a2R = a∗aa#R = aa∗a#R = aa∗aR = aa†R = aR. Hence a† = a#, which implies that a is normal by
(2).

(5) If x = (a†)∗ is a solution of the equation (4), then one has that a∗a(a†)∗ = aa∗(a†)∗ = aa†a = a. By
Theorem 1.1, we get aR = a∗a(a†)∗R = a∗a2R = a∗aR = a†R, thus a ∈ REP and therefore aa† = a†a. Then
aa∗ = a∗a(a†)∗a∗ = a∗aaa† = a∗aa†a = a∗a. Giving that a is normal.

(6) If x = (a#)∗ is a solution of the equation (4), then we know that aa∗(a#)∗ = a∗a(a#)∗. Multiplying the
equality on the right by a∗, we have aa∗ = a∗a(a#)∗a∗. So, aR = aa∗R = a∗a(a#)∗a∗R ⊆ a∗R = a†R by Theorem 1.1,
it follows that a† = a#. We see that a is normal by (5).
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Theorem 2.17. Let a ∈ R† ∩ R#. Then a is normal if and only if the following equation (5) has at least one solution
in χa.

aa∗a†x = a∗x (5)

Proof. “ ⇒ ” Assume that a is normal, then aa∗ = a∗a, one obtains that a∗a = a∗aa†a = aa∗a†a. Thus x = a is a
solution of the equation (5).

“ ⇐ ” (1) If x = a† is a solution of the equation (5), then we have aa∗a†a† = a∗a†. Hence, by Proposition
2.1, a is normal.

(2) If x = a is a solution of the equation (5), then we get a∗a = aa∗a†a, by Theorem 1.1, a†R = a∗aR =
aa∗a†aR = aa∗a∗R = aa∗R = aR, it follows that aa† = a†a. This implies a∗a = aa∗a†a = aa∗aa† = aa∗. Thus a is
normal.

(3) If x = a# is a solution of the equation (5), then aa∗a†a# = a∗a#. By Theorem 1.1, we have a†R = a∗aR =
a∗a#R = aa∗a†a#R = aa∗a†aR = aa∗a∗R = aR, one obtains that a# = a†. Hence, a is normal by (1).

(4) If x = a∗ is a solution of the equation (5), then we have aa∗a†a∗ = a∗a∗. So a†R = a∗R = a∗a∗R =
aa∗a†a∗R ⊆ aR = a#a2R ⊆ a#R by Theorem 1.1. It follows that (1− a#a)a† ∈ (1− a#a)a†R ⊆ (1− a#a)a#R = 0, that
is (1 − a#a)a† = 0, then a† = a#aa†. We obtain a†a = a#aa†a = a#a, which implies that aa† = a†a. Multiplying
aa∗a†a∗ = a∗a∗ on the right by (a†)∗, we have aa∗a† = a∗. Hence, by [4, Theorem 2.2(x)], a is normal.

(5) If x = (a†)∗ is a solution of the equation (5), then aa∗a†(a†)∗ = a∗(a†)∗ = a†a. By Theorem 1.1, we
get a†R = a†aR = aa∗a†(a†)∗R = aa∗a†aR = aa∗a∗R = aR, we know that aa† = a†a. This means a∗ = a†aa∗ =
aa∗a†(a†)∗a∗ = aa∗a†aa† = aa∗a†. Hence, by [4, Theorem 2.2(x)], a is normal.

(6) If x = (a#)∗ is a solution of the equation (5), then we get aa∗a†(a#)∗ = a∗(a#)∗, by Theorem 1.1,
a†R = a∗R = a∗a∗R = a∗(a#)∗R = aa∗a†(a#)∗R ⊆ aR, so we arrive at a# = a†. According to the proof of (5), a is
normal.
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