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Abstract. This research paper stands for an extension to the multivariate t’distribution introduced in 1954
by Cornish, Dunnett and Sobel, namely the multiparameter t’distribution. This distribution is expressed
in two different ways. The first way invests the mixture of a normal vector with a natural extension to the
Wishart distribution, that is the Riesz distribution on symmetric matrices. The second one rests upon the
Cholesky decomposition of the Riesz matrix. An algorithm for generating this distribution is investigated
using the Riesz distribution arising obtained through not only the distribution of the empirical normal
covariance matrix for samples with monotone missing data but also through Cholesky decomposition. In
addition, Some fundamentals properties of the multiparameter t’distribution such as the infinite divisibility
are identified. Besides, the Expectation Maximization algorithm is used to estimate its parameters. Finally,
the performance of these estimators is assessed by means of the Mean Squared Error between the true and
the estimated parameters.

1. Introduction

Towords 1950’s, Cornish [5] and Dunnett and Sobel [10] set forward the notion of multivariate t’distribution
which is a natural generalization of the classical Student distribution. It stands for central focus of statistical
inference. This distribution is elliptically symmetric and performs a basic role in terms of statistical analysis
of multivariate data. It is worth noting that the tails of the multivariate t’distribution are more realistic.
From this perspective, this distribution can provide a more viable alternative for the classical multivariate
analysis with regard to the real data rather than the multivariate normal one. Recently, some interesting
applications have been set forward in novel areas such as cluster and discriminant analysis (Andrews and
McNicholas [2]), multiple regression (Arashi and Tabatabaey [3]), Bayesian prediction approach (Chien [4])
and robust projection indices (Nason [23]). From a theoretical point of view, the multivariate t’ distribution
has attracted the attention of researchers and whetted their interest. Therefore, several research works have
been oriented towards this direction. For instance, Cornish [6] focused on the link between the multivari-
ate t’distribution and the set of normal sample deviates. Dickey [8] explored the characterizations of the
multivariate t’distribution and its inverse. Kotz and Nadarajah [19] reported that there exist few forms of
multivariate t’distributions. Moreover, Lin [20] demonstrated that on the one hand this distribution arises
as a mixture of a normal vector with a Chi-squared variable. On the other hand, it represents a mixture
of a normal vector with a Wishart matrix. In this paper, our central focus is upon the natural extensions
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of these two forms. This allows us to characterize a natural extension to the multivariate t’distribution,
namely the multiparameter t’distribution. For this purpose, we basically use the Riesz distribution in the
space of symmetric matrices which represents the natural extension of the Wishart one.

Over the last decades, there has been a spate of interest in the Wishart distribution owing to its use in the
graphical Gaussian models. Nobody can deny its crucial role in the context of multivariate statistics as it
arises in the estimation of the covariance matrices and stands for the conjugate prior of the precisian matrix.
It is significant to mention that the Wishart probability distribution is initially identified as a multivariate
extension of the Chi-squared distribution. Indeed, it displays the sums of the squares of multivariate
normal distribution. Nevertheless, only a few results have been obtained recently (see for instance Graczyk
et al. [14] and Von Rosen [25]). Furthermore, this distribution proves to lack flexibility in certain situations
as it has a real shape parameter. In order to overcome this deficiency based on the Gindikin [13] theorem,
Hassairi and Lajmi [15] introduced an important extension which is the Riesz distribution. Recently, several
interesting results concerning the latter emerged. In fact, Andersson and Klein [1] extended the definition
of the Riesz distribution to homogeneous cones in association with graphical models. Moreover, Dı́az-
Garcia [7] gave the first two moments of the Riesz distribution using their characteristic functions. Hassairi
and Louati [16, 17] and Louati [21] showed that the approach based on the mixture of distributions may
be extended to the Riesz model. This allowed to build new families of distributions that are useful in
modeling. Besides, Kammoun et al. [18] investigated the estimation of the scale parameter for the Riesz
distribution. Furthermore, Louati and Masmoudi [22] used the Weyl’s integration formula and the Cholesky
decomposition to provide stands for the first moment of the inverse Riesz distribution which represents the
natural extension of the inverse Wishart one. Over the past few decades, the applications of the Wishart
distributions have been growing in different fields. They were substantial particularly in image processing,
wireless communications, recognition and clustering, etc. The assumption that its natural extension may
lead to several applications that are more general than the ones related to the Wishart, seemed to be the
basic impetus motivating researchers for a further and thorough investigation of theoretical and applied
aspects of the Riesz distribution. Within this framework, we attempt to prove that the Riesz distribution can
be drawn from the square of some matrix connected to the multivariate normal distribution with missing
data.

Departing from the definition and certain results concerning the Riesz distribution, we identify in
Section 3, the notion of the degree of freedom of the Riesz distribution. Using the Laplace transform,
we demonstrate that this distribution, in the discrete case, is related to the normal matrix with monotone
missing data. We characterize the Riesz distribution, in the continuous case, by means of its Cholesky
decomposition. This enables us to provide algorithms for generating the Riesz distribution. In Section
4, the multiparameter t’distribution is characterized as a mixture of normal vectors with respect to some
derived Riesz matrices and certain fundamental related properties are investigated. Finally, in Section 5,
we display the Expectation Maximization (EM) algorithm for maximum likelihood (ML) estimation with
known degree of freedom. A simulation study is incorporated to illustrate the proposed algorithm.

2. Preliminaries

In order to present our results in their most general form, we first need to recall some notations and
review some characteristic properties concerning the Riesz distributions. The notations used in this paper
mostly follow those of Louati [21]. Let E be the set of (r, r) real symmetric matrices equipped with the scalar
product 〈x, y〉 = tr(xy). We denote by Ω the cone of positive definite elements of E. The definition of the Riesz
distribution is based on the notion of generalized power of x in Ω which defined, for s = (s1, s2, . . . , sr) ∈ Rr,
by

∆s(x) = ∆1(x)s1−s2∆2(x)s2−s3 . . .∆r−1(x)sr−1−sr∆r(x)sr ,

where for all k ∈ {1, . . . , r}, ∆k(x) is the determinant of the (k, k) sub-matrix Pk(x) = (xi j)1≤i, j≤k of x.
We denote by ∆∗k(x) the determinant of the (k, k) sub-matrix P∗k(x) = (xi j)r−k+1≤i, j≤r of x. For all s ∈ Rr,

∆∗s(x) = (∆∗1(x))s1−s2 (∆∗2(x))s2−s3 . . . (∆∗r−1(x))sr−1−sr (∆∗r(x))sr . (1)
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Let T +
l be the set of lower triangular matrices with positive diagonal elements. For x ∈ Ω, u ∈ T +

l and
s ∈ Rr we have

∆s(uxut) = ∆s(uut)∆s(x) and ∆s(u−1x(u−1)t) = ∆−s(uut)∆s(x) (2)

for more details, the reader can see Faraut and Korányi [11], p. 114 and Hassairi and Lajmi [15].
The Riesz probability distribution on Ω with scale parameter σ in Ω and shape parameter s = (s1, s2, . . . , sr) ∈∏r

i=1 ](i − 1)/2,+∞[, has the following density function

R(s, σ)(dx) =
e−<σ,x>∆s− r+1

2
(x)

ΓΩ(s)∆s(σ−1)
1

Ω
(x)(dx), (3)

where

ΓΩ(s) = (2π)
r(r−1)

4

r∏
i=1

Γ (si − (i − 1)/2)

is the multivariate gamma function. Its Laplace transform is equal to

LR(s,σ)(θ) =
∆s((σ − θ)−1)

∆s(σ−1)
, for all θ ∈ σ −Ω. (4)

In particular, if s1 = s2 = . . . = sr = p > (r−1)/2,R(s, σ) is reduced to the Wishart distribution with parameters
p ∈ ](r − 1)/2,+∞[ and σ ∈ Ω defined by

W(p, σ)(dx) =
e−<σ,x> det(x)p− n

r

ΓΩ(p) det(σ−p)
1

Ω
(x)(dx).

In this case, the Laplace transform evaluated in σ −Ω, is given by

LW(p,σ)(θ) =

(
det(σ − θ)

det(σ)

)−p

. (5)

3. Simulation of the Riesz distribution

This section is entirely devoted to the simulation of the Riesz distribution with scale parameter σ−1

2 and
shape parameter s

2 . For this purpose, we demonstrate that this distribution, when the parameter s is an
integer vector, is closely related to a normal matrix for samples with monotone missing data.

Let (Y1,Y2, . . . ,Yr)t be a random vector with multivariate normal distribution N(0, σ). Suppose that we
have k1 observations of (Y1,Y2, . . . ,Yr)t, k2 observations of (Y2, . . . ,Yr)t and so kr of Yr. Assume that for all
j ∈ {1, 2, . . . , r}, we have k j > 0 and consider s j = k1 + k2 + . . .+ k j. We denote by Y the matrix of observations
where the missing data are replaced by zero. More precisely, we have

y1,1 . . . y1,s1 0 0 0 . . . . . . . . . 0
y2,1 . . . y2,s1 y2,s1+1 . . . y2,s2 0 . . . . . . . . . 0
... . . .

...
... . . .

... . . .
... 0 . . .

...
yr−1,1 . . . yr−1,s1 yr−1,s1+1 . . . yr−1,s2 . . . yr−1,sr−1 0 . . . 0
yr,1 . . . yr,s1 yr,s1+1 . . . yr,s2 . . . yr,sr−1 yr,sr−1+1 . . . yr,sr


. (6)

Next, we characterize the distribution of the random matrix R = YYt,where Yt denotes the transpose of the
matrix Y.

Theorem 3.1. The random matrix R = YYt is Riesz distributed with shape parameter s
2 = ( s1

2 , . . . ,
sr
2 ), scale parameter

σ−1

2 ∈ Ω and degree of freedom ν = (s1, s2 − s1, . . . , sr − sr−1) ∈N∗ ×Nr−1.
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Proof. The Laplace transform of the matrix R = YYt is indicated by

LR(θ) = E
(
e〈θ,R〉

)
= E

(
e〈θ,YYt

〉
)

= E

 r∏
i=1

e〈θ,ZiZt
i〉

 ,
with for all i ∈ {1, 2, . . . , r},

Zi =

(
0(i−1)×(si−si−1)

Ti

)
, where Ti =


xi,si−1+1 . . . . . . xi,si

...
...

...
...

xr,si−1+1 . . . . . . xr,si

.

Using the independence of the columns of Ti, we deduce that

LR(θ) = E

 r∏
i=1

e〈P
∗

r−i+1(θ),TiTt
i 〉

 =

r∏
i=1

E
(
e〈P

∗

r−i+1(θ),TiTt
i 〉
)

=

r∏
i=1

LTiTt
i
(P∗r−i+1(θ)).

Since for all i ∈ {1, 2, . . . , r}, TiTt
i is Wishart distributed W

(
si−si−1

2 ,
P∗r−i+1(σ)

2

)
(see Wishart [26]), then according

to (1) and (5), we have

LR(θ) =

r∏
i=1


det

(
P∗r−i+1(σ)

2 − P∗r−i+1(θ)
)

det
(

P∗r−i+1(σ)
2

)

−

si−si−1
2

=
∆∗
−

s∗
2

( σ2 − θ)

∆∗
−

s∗
2

( σ2 )
,

where s∗
2 = ( sr

2 ,
sr−1

2 , . . . ,
s1
2 ). This, with (4) and the fact that

∆s(x−1) = ∆∗
−s∗ (x),

(see Hassairi and Lajmi [15]), gives the desired result.

Based on (6) and Theorem 3.1, we display an algorithm for generating the Riesz distribution with an
integer parameter s, namely the discrete Riesz distribution.

Algorithm 3.2. (The discrete Riesz simulation)

Step 1: For all i ∈ {1, 2, . . . , r}, we generate ki independent centered multivariate normal random variable with
parameter σ

Step 2: For each simulated vector Yi = (Yi
1,Y

i
2, . . . ,Y

i
r)t, we replace the set (Yi

1, ..,Y
i
i−1) by zeros.

Step 3: Calculate R = YYt.

Next, we exhibit a simulation of the continuous Riesz matrix which corresponds to the Riesz distribution
with a shape parameter s in

∏r
i=1 ](i − 1)/2,+∞[. It is well known that, if Z is an element of the cone Ω of

definite positive symmetric matrices, then using the Cholesky decomposition, there exists a unique random
matrix u = (ui j)1≤i, j≤r ∈ T

+
l such that Z = uut. Besides, Z follows a Riesz distribution R(s, Ir), if, and only if,{

u2
ii follows γ(si − (i − 1)/2, 1) for all 1 ≤ i ≤ r
ui j follows N(0, 1/2) for all 1 ≤ j < i ≤ r.

Consider σ ∈ Ω. Then, using the Cholesky decomposition, there exists a unique v in T +
l such that

σ−1 = vvt. It follows that, X = vZvt is a Riesz matrix with shape parameter s and scale parameter σ. In fact,
The Laplace transform of X is expressed by

LX(θ) = E
(
e〈θ,X〉

)
= E

(
e〈θ,vZvt

〉
)

= E
(
e〈v

tθv,Z〉
)

= LZ(vtθv).
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Since Z is a Riesz matrix, then according to (2), (4) and the fact that σ−1 = vvt , we can write

LX(θ) = ∆s

((
Ir − vtθv

)−1
)

= ∆s

((
vt

((
v−1

)t
v−1
− θ

)
v
)−1

)
= ∆s

(
v−1

((
v−1

)t
v−1
− θ

)−1 (
v−1

)t
)

= ∆s

(
v−1

(
v−1

)t
)
∆s

(((
v−1

)t
v−1
− θ

)−1
)

= ∆−s

(
vvt

)
∆s

(
(σ − θ)−1

)
=

∆s

(
(σ − θ)−1

)
∆s (σ−1)

.

Grounded on (4), this implies that X = vZvt is R(s, σ) (for more details, the reader can see Veleva [24]).

Algorithm 3.3. (The continuous Riesz simulation)

Step 1: For all i ∈ {1, 2, . . . , r}, we generate u2
ii Gamma random variable with shape parameter si − (i− 1)/2 and scale

parameter 1.

Step 2: For all 1 ≤ j < i ≤ r, we generate
√

2ui j standard normal random variable.

Step 3: Calculate X = vuutvt.

4. The multiparameter t’distribution

In this section, the Riesz distribution is invested to introduce the multiparameter t’distribution. It is a
generalized version of the multivariate t’one and represents the marginal mixture of a normal vector with
respect to a Riesz matrix. An algorithm for generating the obtained distributed vector is discussed and
illustrated by a simulation study. More precisely, we have

Theorem 4.1. Let X and Y be two random variables such that the conditional distribution of X given Y, X|Y has
a multivariate normal distribution N(µ,Y−1) with µ ∈ Rr and Y has a Riesz distribution R(s, σ2 ) with parameter
s ∈

∏r
i=1 ](i − 1)/2,+∞[ and σ ∈ Ω. Then, the random vector X has the following probability density function

∆s+ 1
2
(((x − µ)(x − µ)t + σ)−1)ΓΩ(s + 1

2 )

π
r
2 ∆s(σ−1)ΓΩ(s)

(dx). (7)

Proof. Since X|Y is N(µ,Y−1) and Y is R(s, σ2 ), then according to (3), the joint density of (X,Y) is expressed as

f(X,Y)(x, y) = f(X|Y=y)(x) fY(y)

=
e−

1
2<(x−µ),y(x−µ)>e−<

σ
2 ,y>∆s− n

r
(y)

(2π)
r
2 ∆s(2σ−1)ΓΩ(s) det(y−1)

1
2

. (8)

Integrating (8) with respect to y and using (3), the marginal density function of X is indicated by

fX(x) =
1

(2π)
r
2 ∆s(2σ−1)ΓΩ(s)

∫
Ω

e−
1
2<(x−µ)(x−µ)t+σ,y>∆s+ 1

2−
n
r
(y)(dy)

=
∆s+ 1

2
(2((x − µ)(x − µ)t + σ)−1)ΓΩ(s + 1

2 )

(2π)
r
2 ∆s(2σ−1)ΓΩ(s)

=
2
∑r

i=1 si+
r
2 ∆s+ 1

2
(((x − µ)(x − µ)t + σ)−1)ΓΩ(s + 1

2 )

2
∑r

i=1 si (2π)
r
2 ∆s(σ−1)ΓΩ(s)

.

Hence, we obtain the desired result.

Subsequently, we give the definition of the multiparameter t’distribution.

Definition 4.2. Let s be an element of
∏r

i=1 ](i − 1)/2,+∞[, µ ∈ Rr and σ ∈ Ω. A random vector X of Rr is said
to have a multiparameter t’distribution with parameters s, µ,σ and degree of freedom ν = (s1, s2 − s1, . . . , sr − sr−1),
denoted as X ∼MTν(µ, σ, r) if its probability density function is defined by (7).
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Remarks 4.3. 1. If, for all i ∈ {1, 2, . . . , r}, si = p, then (7) reduces to the multivariate t’distribution which is
represented in Lin [20] by associating a normal vector with an independent Wishart matrix. This refers basically to
the fact that in this case, the Riesz distribution R(s, σ) reduces to the Wishart distribution W(p, σ). Furthermore, if
r = 1, then the probability density function given in (7) defines the univariate t’distribution.
2. The conditional distribution of Y given X = x has Riesz distribution with parameters s+ 1

2 and 1
2 ((x−µ)(x−µ)t +σ).

In fact, the posterior distribution of Y given X = x is equal to

f(Y|X=x)(y) =
f(X|Y=y)(x) fY(y)

fX(x)
.

Inserting the probability density function of a normal vector, the Riesz matrix given in (3) and (7), we obtain

f(Y|X=x)(y) =
e−

1
2<(x−µ),y(x−µ)>e−<

σ
2 ,y>∆s− n

r
(y)

(2π)
r
2 ∆s(2σ−1)ΓΩ(s) det(y−1)

1
2

×
π

r
2 ∆s(σ−1)ΓΩ(s)

∆s+ 1
2
(((x − µ)(x − µ)t + σ)−1)ΓΩ(s + 1

2 )

=
e−

1
2<(x−µ)(x−µ)t+σ,y>∆s+ 1

2−
n
r
(y)

2
r
2 2

∑r
i=1 si∆s+ 1

2
(((x − µ)(x − µ)t + σ)−1)ΓΩ(s + 1

2 )
.

This combined with (3) provides the desired result.

Next, some fundamental properties of the multiparameter t’distribution are exhibited. Specifically, the
property of the infinitely divisible studied and the action of the affinities is explored.

Proposition 4.4. 1. The multiparameter t’distribution is infinitely divisible.
2. If X is multiparameter t’distributed MTν(µ, σ, r), then

(a) If σ−1 = vvt
∈ Ω then v′(X − µ) is multiparameter t’distributed MTν(0, Ir, r).

(b) For all a ∈ T +
l and b ∈ Rr, atX + b is multiparameter t’distributed MTν(atµ + b, atσa, r).

(c) For all α ∈ R∗, αX is multiparameter t’distributed MTν(αµ, α2σ, r).

Proof. 1. Let X1, . . . ,Xn be n independent copies MTλ(µn ,
σ
n , r), then according to Theorem 4.1, there exists a

Riesz matrix Y ∼ R(s, σ2n ) such that the conditional distribution

Xi|Y ∼ N(µ/n,Y−1) for all i ∈ {1, 2, . . . , r}.

It follows that
∑n

i=1 Xi|Y is N(µ,nY−1). Furthermore, using (4), we deduce that Y
n is R(s, σ2 ). This implies that

X =

n∑
i=1

Xi ∼MTν(µ, σ, r).

This proves the infinitely divisible property of the multiparameter t’distribution (see Feller [12], p. 176).
2. (a) Setting Z = v′(X − µ), then we have

dz = det(v)dx = det(σ)−
1
2 dx.

Using (2) and (7), we can write

fZ(z) =

∆s+ 1
2

(((
v−1

)t
zztv−1 + σ

)−1
)
ΓΩ(s + 1

2 ) det(σ)
1
2

π
r
2 ∆s(vvt)ΓΩ(s)

=
∆s+ 1

2

(
v(zzt + I)−1vt

)
ΓΩ(s + 1

2 ) det(σ)
1
2

π
r
2 ∆s(vvt)ΓΩ(s)

=
∆s+ 1

2
(vvt)∆s+ 1

2

(
(zzt + Ir)−1

)
ΓΩ(s + 1

2 ) det(σ)
1
2

π
r
2 ∆s(vvt)ΓΩ(s)

=
∆s+ 1

2
(zzt + Ir)ΓΩ(s + 1

2 )

π
r
2 ΓΩ(s)

.
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(b) Setting W = atX + b , then the probability density function of W is given by

fW(w) =

∆s+ 1
2

(((
a−1

)t (
w − b − atµ

) (
w − b − atµ

)t a−1 + σ
)−1

)
ΓΩ

(
s + 1

2

)
π

r
2 det(a)∆s(σ−1)ΓΩ(s)

=
∆s+ 1

2

(
a
((

w − b − atµ
) (

w − b − atµ
)t

+ atσa
)−1

at
)
ΓΩ

(
s + 1

2

)
π

r
2 det(a)∆s

(
a (atσa)−1 at

)
ΓΩ(s)

.

This combined with (2), leads us to draw that

fW(w) =
∆s+ 1

2

(
aat)∆s+ 1

2

(((
w − b − atµ

) (
w − b − atµ

)t
+ atσa

)−1
)
ΓΩ

(
s + 1

2

)
π

r
2 det (a) ∆s (aat) ∆s

(
(atσa)−1

)
ΓΩ(s)

=
∆s+ 1

2

(
aat)∆s+ 1

2

(((
w − b − atµ

) (
w − b − atµ

)t
+ atσa

)−1
)
ΓΩ

(
s + 1

2

)
π

r
2 ∆ 1

2
(a)∆s(aat)∆s

(
(atσa)−1

)
ΓΩ(s)

.

After a standard simplification, we deduce that

fW(w) =
∆s+ 1

2
(((w − b − atµ)(w − b − atµ)t + atσa)−1)ΓΩ(s + 1

2 )

π
r
2 ∆s((atσa)−1)ΓΩ(s)

.

Based on this equation and (7) the result holds.

A relatively simple way to generate a multiparameter t’distribution consists in involving a sample of a
Riesz matrix Y with parameters s and σ/2 using the continuous Riesz simulation algorithm and a generating
multivariate normal vector X with parameters µ and Y−1.

Algorithm 4.5. (The multiparameter t’distribution simulation)

Step 1: Simulate a random matrix Y from the Riesz distribution R(s, σ2 ).

Step 2: Simulate a vector X using the scale mixture of the multivariate normal distribution with the variance
parameter Y−1.

Next, we characterize the multiparameter t’distribution by means of its Laplace transform. It is impor-
tant to mention that the latter is expressed in terms of the generalized Bessel function defined in Faraut and
Korányi [11], p. 356.

Theorem 4.6. The Laplace transform of the multiparameter t’distribution MTν(0, σ, r) is equal to

LMTν(0,σ,r)(θ) =
Ks

(
σ
2 ,

θθt

2

)
∆s(2σ−1)ΓΩ(s)

, for all θ ∈ Rr,

where Ks is the generalized Bessel function.

Proof. Using the notation given in Theorem 4.1, we can write

LMTν(0,σ,r)(θ) =

∫
Rr

e<θ,x> fX(x)dx =

∫
Rr

e<θ,x>
(∫

Ω

fX|Y=y(x) fY(y)dy
)

dx =

∫
Ω

LX|Y(θ) fY(y)dy.

Since the conditional distribution of X given Y = y is N(0, y−1) and Y is R(s, σ2 ), then we obtain

LMTν(0,σ,r)(θ) =

∫
Ω

e−<
θθt

2 ,y−1> fY(y)dy =
1

∆s(2σ−1)ΓΩ(s)

∫
Ω

e−<
θθt

2 ,y−1>e−<
σ
2 ,y>∆s− n

r
(y)dy.
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Now, we use the fact that for (a, b) ∈ Ω2 and for s ∈
∏r

i=1 ](i − 1)/2,+∞[,

Ks(a, b) =

∫
Ω

e−<a,y>e−<b,y−1>∆s− n
r
(y)dy

(see Faraut and Korányi [11], p. 356) to get the desired result.

Remark 4.7. Using the conditional expectation, we deduce that if X ∼MTν(µ, σ, r), then E(X) = µ. This implies that
we can estimate the parameter vector µ by using the method of moments. In fact, considering j copies X1,X2, . . . ,X j
with multiparameter t’distribution MTν(µ, σ, r), then

µ̂ =
X1 + X2 + . . . + x j

j
.

Furthermore,

Var(X) = E
(
E[(X − E(X))(X − E(X))t

|Y = y]
)

+ Var(E(X|Y = y))

= E
(
E[(X − µ)(X − µ)t

|Y = y]
)

= E(Y−1).

Since Y has Riesz distribution R(s, σ2 ), then Y−1 is an inverse Riesz matrix with parameter s and σ
2 . Therefore, using

the expression of the first moment of an inverse Riesz matrix given by Louati and Masmoudi [22], we deduce that

Var(X) =
1

sr −
r+1

2

σ
2

+

r−1∑
k=1

(sk+1 − sk)
∏r

i=k+1
si−

i
2

si−
i+1
2

(sk −
k+1

2 )(sk+1 −
k+2

2 )

(
P∗k(2σ−1)

)−1
. (9)

A standard calculation demonstrates that, in particular, if for all i ∈ {1, 2, . . . , r}, si = p, then (9) becomes

Var(X) =
σ

2p − (r + 1)
,

which corresponds to the variance-covariance of the multivariate t’distribution Tp(µ, σ, r) (see Cornish [5]).

In the following theorem, we confirm that the multiparameter t’distribution can be also obtained by
combining the notion of mixture and the Cholesky decomposition.

Theorem 4.8. Let V be a standard normal vector and Y = UUt a Riesz matrix R(s, σ2 ) independent of V, then the

random vector X =
(
U−1

)t
V +µ has a multiparameter t’distribution with parameters µ ∈ Rr and σ ∈ Ω and a degree

of freedom ν = (s1, s2 − s1, . . . , sr − sr−1).

Proof. According to (3), the joint density of (Y,V) is provided by

f(Y,V)(y, v)dydv = fY(y) fV(v)dydv =
e−

1
2 (〈v,v〉+〈σ,y〉)∆s− n

r
(y)

(2π)
r
2 ∆s(2σ−1)ΓΩ(s)

1
Ω×Rr (y, v)dydv.

Since V = Ut(X − µ), then the Jacobian is given by

dydv = det(ut)dx = det(y)
1
2 dydx.
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Therefore, the joint density of (Y,X) is

f(Y,X)(y, x)dydx =
e−

1
2 (〈σ,y〉+〈ut(x−µ),ut(x−µ)〉)∆s− n

r
(y)det(y)

1
2

(2π)
r
2 ∆s(2σ−1)ΓΩ(s)

1
Ω×Rr (y, x)dydx

=
e−

1
2 (〈σ,y〉+〈(x−µ),uut(x−µ)〉)∆s− n

r + 1
2
(y)

(2π)
r
2 ∆s(2σ−1)ΓΩ(s)

1
Ω×Rr (y, x)dydx

=
e−

1
2 (〈σ,y〉+〈(x−µ)(x−µ)t,y〉)∆s− n

r + 1
2
(y)

(2π)
r
2 ∆s(2σ−1)ΓΩ(s)

1
Ω×Rr (y, x)dydx

=
e−

1
2 (〈σ+(x−µ)(x−µ)t,y〉)∆s− n

r + 1
2
(y)

(2π)
r
2 ∆s(2σ−1)ΓΩ(s)

1
Ω×Rr (y, x)dydx.

Integrating this with respect to y and using (3), we infer that the marginal density function of X is

2
r
2 +

∑r
i=1 siΓΩ

(
s + 1

2

)
∆s+ 1

2

((
(x − µ)(x − µ)t + σ

)−1
)

(2π)
r
2 2

∑r
i=1 si∆s(σ−1)ΓΩ (s)

.

Grounded upon this equation and (7), we obtained the desired result.

Remark 4.9. It is worth mentioning that, it is possible to apply this representation to obtain the expectation and the
variance of the random vector with the multiparameter t’distribution. In fact, since V (a centered normal vector) and
Y = UUt are independent, then we can assert

E(X) = E(U−1V + µ) = µ.

The variance of X is given by

Var(X) = E
(
(X − E(X))(X − E(X))t

)
= E

(((
U−1

)t
V
) ((

U−1
)t

V
)t
)

= E
((

U−1
)t

VVtU−1
)

=

∫
T +

l

∫
Rr

(
u−1

)t
vvtu−1 fU(u) fV(v)dudv =

∫
T +

l

(
u−1

)t
(∫
Rr

vvt fV(v)dv
)

u−1 fU(u)du.

Moreover, since V is a centered normal vector with Var(V) = Ir, then

Var(X) =

∫
T +

l

(
u−1

)t
Iru−1 fU(u)du = E

((
U−1

)t
U−1

)
= E

((
UUt

)−1
)

= E(Y−1).

The fact that Y is Riesz distributed R(s, σ2 ) gives

Var(X) =
1

sr −
r+1

2

σ
2

+

r−1∑
k=1

(sk+1 − sk)
∏r

i=k+1
si−

i
2

si−
i+1
2

(sk −
k+1

2 )(sk+1 −
k+2

2 )

(
P∗k(2σ−1)

)−1
,

(see Louati and Masmoudi (2015)).

Next, we invest the representation given in Theorem 4.8 to generate the multiparameter t’distribution with
parameters µ ∈ Rr and σ ∈ Ω and a degree of freedom ν = (s1, s2 − s1, . . . , sr − sr−1).

Algorithm 4.10. (The multiparameter t’distribution simulation)

Step 1: Simulate a random matrix Y from the Riesz distribution R(s, σ2 ).
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Step 2: Compute the Cholesky decomposition U of Y and Calculate its inverse U−1.

Step 3: Simulate a standard normal vector V.

Step 4: Calculate X =
(
U−1

)t
V + µ.

Remark 4.11. Subsequently, to clarify the shape of the multiparameter t’distribution, we attempt to repeat the

above algorithm for a chosen sample size N = 1000 with parameters µ = (0, 0)t and σ =

(
1 ρ
ρ 1

)
, where ρ ∈

{−0.9,−0.01, 0.01, 0.9} for different values of degree of freedom ν = (k1, k2) .

Figure 1: Simulation studies with different degrees of freedom

We represent the obtained simulated data in Figure 1 as a scatter plot which seems to have an ellipsoid shape. Its
longitudinal axis is slightly inclined when the correlation coefficient is around −1 or 1. This implies that a linear
equation describes the relationship between X1 and X2 perfectly, with all data points lying on a line. Besides, if the
correlation coefficient is around 0, then there is no linear correlation between the two variables.

5. Estimation of the parameters

5.1. The Expectation Maximization Algorithm
The maximum likelihood estimation of the multivariate t’distribution, especially with known degree of

freedom, has been based on the Expectation Maximization (EM) algorithm. Note that Dempster et al. [9]
showed that the EM algorithm can be used to find maximum likelihood estimates when the observation is
viewed as incomplete data and with a fixed degree of freedom. It consists of an Expectation step (E-step)
followed by a Maximization step (M-step). We apply the EM algorithm for the multiparameter t’distribution
in order to estimate the set of parameters Θ = {µ, σ}.
Let X1,X2, . . . ,XN be N independent random vectors such that

Xi|Yi ∼ N(µ,Y−1
i ) and Yi ∼ R (s, σ/2) , for all i = 1, 2, . . . ,N.

The log-likelihood function of (X1, . . . ,XN,Y1, . . . ,YN) is equal to

l(X1, . . . ,XN,Y1, . . . ,YN,Θ) =

N∑
i=1

ln
(

fXi |Yi=yi (xi|Θ) fYi (yi|Θ)
)
.
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The first step of the EM algorithm consists of finding the expected value of the log-likelihood

Q(Θ,Θ(l)) = E(l(X1, . . . ,XN,Y1, . . . ,YN,Θ)|X1, . . . ,XN,Θ
(l)). (10)

where Θ(l) = {µ(l), σ(l)
} is the set of the current parameters estimates. The second step of the EM algorithm

is to maximize Q(Θ,Θ(l)).
Next, we introduce the recursive expressions of the estimators of µ(l+1) and σ(l+1) at the iteration (l + 1).

Theorem 5.1. The estimators of µ and σ at the iteration (l + 1) are

1. σ(l+1) =
∑r

k=1(sr−k+1 − sr−k)P∗k
(

1
2N

∑N
i=1E

(
yi|X1, . . . ,XN,Θ(l)

))−1

2. µ(l+1) =
(∑N

i=1E
(
yi|X1, . . . ,XN,Θ(l)

))−1 ∑N
i=1E

(
yi|X1, . . . ,XN,Θ(l)

)
xi.

Proof. According to (3) and (10), we assert

Q(Θ,Θ(l)) = E
((

f (µ) + f (σ) + H
) ∣∣∣∣X1, . . . ,XN,Θ

(l)
)
,

where

f (µ) = µt
N∑

i=1

(
yixi −

yiµ

2

)
,

f (σ) = −N log(∆s(2σ−1)) −
N∑

i=1

〈
σ
2
, yi〉

and

H = −
N
2

(
r log(2π) + 2 ln (ΓΩ(s))

)
+

1
2

 N∑
i=1

log(det(yi)) −
N∑

i=1

xt
i yixi +

N∑
i=1

2 ln
(
∆s− n

r
(yi)

) .
It follows that

Q(Θ,Θ(l)) = µt

 N∑
i=1

E
(
yi|X1, . . . ,XN,Θ

(l)
)

xi −
1
2
E

(
yi|X1, . . . ,XN,Θ

(l)
)
µ


−N log(∆s(2σ−1)) −

N∑
i=1

〈
σ
2
,E

(
yi|X1, . . . ,XN,Θ

(l)
)〉

+ E
(
H|X1, . . . ,XN,Θ

(l)
)
.

1. Differentiating Q(Θ,Θ(l)) with respect to σ and using the fact that for all x ∈ Ω, we have

∂ log(∆∗k(x))

∂x
= (P∗k(x))−1, for all k ∈ {1, 2, . . . , r}.

We obtain

0 =
∂
(
Q(Θ,Θ(l))

)
∂σ

= −N
r∑

k=1

(sr−k − sr−k+1)(P∗k(σ))−1
−

1
2

N∑
i=1

E
(
yi|X1, . . . ,XN,Θ

l
)
,

with s0 = 0. Therefore,
r∑

k=1

(sr−k+1 − sr−k)(P∗k(σ))−1 =
1

2N

N∑
i=1

E
(
yi|X1, . . . ,XN,Θ

(l)
)
. (11)

Using the fact that for all θ ∈ −Ω,

k′
Rs

(θ) =

r∑
i=1

(sr−i+1 − sr−i)
(
P∗i (−θ)

)−1
,



E. Ghorbel, M. Louati / Filomat 33:13 (2019), 4137–4150 4148

(see Hassairi and Lajmi [15]), (11) becomes

k′Rs
(−σ) =

1
2N

N∑
i=1

E
(
yi|X1, . . . ,XN,Θ

(l)
)
.

Hence,

σ(l+1) = −k
′
−1

Rs

 1
2N

N∑
i=1

E
(
yi|X1, . . . ,XN,Θ

(l)
) .

Based on this equation and the fact that for all m ∈ Ω,

k
′
−1

Rs
(m) =

r∑
k=1

(sr−k − sr−k+1)
(
P∗k(m)

)−1
,

(see Kammoun et al. [18]), we give the expression σ(l+1).

2. Differentiating Q(Θ,Θ(l)) with respect to µ, we obtain

0 =
∂
(
Q(Θ,Θ(l))

)
∂µ

=

N∑
i=1

E
(
yi|X1, . . . ,XN,Θ

(l)
)

xi −

N∑
i=1

E
(
yi|X1, . . . ,XN,Θ

(l)
)
µ.

This implies that
N∑

i=1

E
(
yi|X1, . . . ,XN,Θ

(l)
)

xi =

N∑
i=1

E
(
yi|X1, . . . ,XN,Θ

(l)
)
µ.

Multiplying by
(∑N

i=1E
(
yi|X1, . . . ,XN,Θ(l)

))−1
, we get the expression of the estimator µ(l+1).

5.2. Numerical estimation

This subsection is devoted to the evaluation of the performance of the proposed EM estimation approach.
For this purpose, we suppose that r = 5 and we consider s = (5, 7.5, 8.5, 12.5, 16), µ = (−1, 2, 0, 1,−1)t and

σ =


27.5 2 0.5 0 2.75

2 27.5 1.25 2.5 1.25
0.5 1.25 52.5 0 3.75
0 2.5 0 25 0.25

2.75 1.25 3.75 0.25 36.25

 .
We repeat the above EM algorithm for different samples sizes N ∈ {500, 1000, 2000, 5000}. We assume that
the number of simulated samples n was chosen to be 1000 and we take as initial value of the mean vector
µ(0) =

X1+X2+...+X j

j , where X1,X2, . . . ,X j are j copies with multiparameter t’distribution MTν(µ, σ, r). The
estimated values µ̂ and σ̂ are given by

µ̂ = (−0.9539, 2.0526, 0.0003, 1.0036,−0.9815)t and σ̂ =


26.2081 0.1331 0.1177 −0.0111 0.0339
0.1331 26.8061 0.2186 0.1554 0.0089
0.1177 0.2186 51.1257 −0.0284 0.1347
−0.0111 0.1554 −0.0284 25.4496 0.0317
0.0339 0.0089 0.1347 0.0317 35.6550

 .
The performance of these estimators is assessed by means of the Mean Squared Error between the true
and the estimated parameters defined by MSE(µ̂) = E

((
µ − µ̂

)2
)

and MSE(σ̂) = E
(
(σ − σ̂)2

)
. The obtained

numerical results are depicted in the following table.
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N 500 1000 2000 5000
MSE(µ̂) 0.0044 0.0016 0.0013 0.0004
MSE(σ̂) 0.0132 0.0115 0.0102 0.0099

Table 1: MSE of the estimated parameters µ̂ and σ̂

Table 1 portrays that the MSE of the estimated parameters decreases when N increases. It is very close to
zero. In fact, the MSE(µ̂) is around 4×10−4 and the MSE(σ̂) is about 9.9×10−3 for N = 5000. This allows us to
confirm the performance of the proposed EM estimation approach. Once MSE is calculated, the confidence
interval of the MSE is assessed and confidence level is chosen to be 95%. The obtained results are presented
in the following figure.

Figure 2: MSE and confidence interval MSE error of the estimated parameters µ̂ and σ̂

Figure 2 highlights that the confidence intervals of the MSE cover the true parameters values. Besides,
the size of data influences the quality of the estimators. In fact, As MSE decreases, the width of the interval
decreases. As we increase the sample size n, the width of the interval decreases. This proves that the
estimators µ̂ and σ̂ are close to the true parameters.

6. Conclusion

To this extent, there is no doubt about the significant role played by the multivariate t’distribution in
the context of multivariate statistics. Our central focus is upon the natural extension of the the multivariate
t’distribution, namely the multiparameter t’distribution. From this perspective, we first invested the natural
extension of the Wishart distribution, that is the Riesz distribution, as well as the Cholesky decomposition to
represent this distribution. It is noteworthy that unlike the multivariate t’distribution, the multiparameter
t’distribution acquired a shape parameter comprising r different element. We offered an algorithm to
generate the new distribution involving a sampling of a Riesz matrix. We introduced the EM algorithm
to estimate its parameters. Some simulations were carried out in different sizes so as to illustrate the
performance of their estimators. At this stage of analysis, we would assert that our work is a step that may
be taken further as it lays the ground and paves the way for future works to enact promising applications
in such areas as multiple regression and Bayesian approach.
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