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Available at: http://www.pmf.ni.ac.rs/filomat

Classification and Approximation of Solutions
to Sylvester Matrix Equation

Bogdan D. Djordjevića, Nebojša Č. Dinčićb
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Abstract. In this paper we solve Sylvester matrix equation with infinitely-many solutions and conduct their
classification. If the conditions for their existence are not met, we provide a way for their approximation
by least-squares minimal-norm method.

1. Introduction and preliminaries

For given vector spaces V1 and V2, let A ∈ L(V2), B ∈ L(V1) and C ∈ L(V1,V2) be linear operators.
Equations of the form

AX − XB = C (1)

with solution X ∈ L(V1,V2) are called Sylvester equations, Sylvester-Rosenblum equations or algebraic
Ricatti equations. Such equations have various application in vast fields of mathematics, physics, computer
science and engineering (see e.g. [5], [19] and references therein). Fundamental results, established by
Sylvester and Rosenblum themselves, are now-days the starting point in solving contemporary problems
where these equations occur. These results are

Theorem 1.1. [23] (Sylvester matrix equation) Let A, B and C be matrices. Equation AX −XB = C has unique
solution X iff σ(A) ∩ σ(B) = ∅.

Theorem 1.2. [22] (Rosenblum operator equation) Let A, B and C be bounded linear operators. Equation
AX − XB = C has unique solution X if σ(A) ∩ σ(B) = ∅.

Equations with unique solutions have been extensively studied so far. There are numerous results re-
garding this case, some of them theoretical (e. g. Lyapunov stability criteria and spectral operators), which
can be found in [2], [5] or [9], and some of them computational (matrix sign function, factorization of matri-
ces and operators, various iterative methods etc.). It should be mentioned that matrix eq. (1) with unique
solution X has been solved numerically (among others) in [4], [6], [13], [14], [18] and [21]. The case where
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A, B and C are unbounded operators but solution X is unique and bounded has been studied in [16] and [20].

Solvability of eq. (1) in matrices, discarding uniqueness of solution, has been studied in [7] and partially
in [18]. Main results in [7] are based on the idea that solutions X can be provided as parametric matrices,
where number of parameters at hand depends on dimensions of the corresponding eigenspaces for A and B.

The case where A, B and C are unbounded, with infinitely many unbounded solutions X has been
studied in [8]. This particular research paper provides insight on new solutions (called the weak solutions),
which are only defined on the corresponding eigenspaces for A and B.

This research paper concerns the case when A and B are matrices whose spectra intersect, while ma-
trix C is a rectangular matrix of appropriate dimensions. We obtain sufficient conditions for existence of
infinitely-many solutions and provide a way for their classification. If the conditions for their existence are
not met, we give a way of approximating particular solutions. This study relies on the eigenspace-analysis
conducted in [7] and [8].

We assume V1 and V2 to be finite dimensional Hilbert spaces over the same scalar filed C or R,
while A ∈ B(V2), B ∈ B(V1) and C ∈ B(V1,V2) are assumed to be operators which correspond to the
afore-mentioned matrices. Further, N(L) and R(L) denote null-space and range of the given operator L.
Recall that every finite-dimensional subspace W of a Hilbert space V is closed. Consequently, there exists
orthogonal projector from V to W, which will be denoted as PW .

2. Existence and classification of solutions

Through out this paper, we assume that A and B share s common eigenvalues and denote that set by σ:

{λ1, . . . , λs} =: σ = σ(A) ∩ σ(B).

For more elegant notation, we introduce Ek
B = N(B − λkI) and Ek

A = N(A − λkI) whenever λk ∈ σ. Differ-
ent eigenvalues generate mutually orthogonal eigenvectors, so the spaces Ek

B form an orthogonal sum. Put

EB :=
s∑

k=1
Ek

B. It is a closed subspace of V1 and there exists E⊥B such that V1 = EB ⊕ E⊥B . Take B = BE ⊕ B1 with

respect to that decomposition and denote C1 = CPE⊥B
.

Proposition 2.1. Let V be a Hilbert space and L ∈ B(V). If W is L−invariant subspace of V, then W⊥ is
L∗−invariant subspace of V.

Theorem 2.1. (Existence of solutions) For every k ∈ {1, . . . , s}, let λk, Ek
A and Ek

B be provided as in the previous
paragraph. If

N(C1)⊥ = R(B1) and C
(
Ek

B

)
⊂ R(A − λkI), (2)

then there exist infinitely many solutions X to the equation (1).

Proof. For every 1 ≤ k ≤ s, let Ek
B, EB, E⊥B , BE and B1 be provided as in the previous paragraph. Note that

N(C1)⊥ = R(C∗1), where C∗1 ∈ B(V2,E⊥B ).

Step 1: solutions on E⊥B .
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We first conduct analysis on E⊥B . Space EB is BPE⊥B
−invariant subspace of V1 and Proposition 2.1 yields

E⊥B to be (BPE⊥B
)∗− invariant subspace of V1, so without loss of generality we can observe B∗1 as B∗1 : E⊥B → E⊥B .

Since σ(BE) = {λ1, . . . , λs}, it follows that

σ(B∗1) ⊆ {0} ∪ σ(B∗) \ {λ̄1, . . . , λ̄s}.

Case 1. Assume that σ(B∗1) ∩ σ(A∗) = ∅. Then there exists unique X∗1 ∈ B(V2,E⊥B ) such that

X∗1A∗ − B∗1X∗1 = C∗1,

that is, there exists unique X1 ∈ B(E⊥B ,V2) such that

AX1 − X1B1 = C1

holds.

Case 2. Assume that σ(A∗) ∩ σ(B∗1) , ∅. It follows that σ(A∗) ∩ σ(B∗1) = {0}. But then A∗ cannot be
nilpotent. Truly, if σ(A∗) = {0} = σ(A), then by assumption, σ(B) ∩ σ(A) , ∅, therefore, 0 ∈ σ(B), that is,
0 ∈ σ. If u ∈ N(B1), it follows that B1u = 0 and u ∈ E⊥B , but then Bu = B1u = 0, so u ∈ N(B) ⊂ EB, therefore
u ∈ EB ∩ E⊥B = {0}. Hence contradiction, implying that A∗ is not nilpotent, but rather has finite ascend,
asc(A∗) = m ≥ 1, whereN((A∗)m) is a proper subspace of V2.

Now observe B∗1 : E⊥B → E⊥B , which is not invertible by assumption. Take arbitrary Z∗0 ∈ B(N(A∗),N(B∗1))
operator. Then for every d ∈ N(A∗), there exists (by (2)) unique u ∈ N(B∗1)⊥ such that

B∗1u = C∗1d.

Define X∗1(Z∗0) onN(A∗) as X∗1(Z∗0)d := Z∗0d + u. Since asc(A∗) = m, the following recursive formula applies.
Assume that m = 1. Precisely, decompose V2 = N(A∗) ⊕ N(A∗)⊥ and A∗ = 0 ⊕ A∗1. Then A∗1 is injective

fromN(A∗)⊥ toN(A∗)⊥ and X∗1 can be defined onN(A∗)⊥ as restriction of X∗1 from Case 1.

Assume that m > 1. Then proceed to decomposeN(A∗)⊥ = N(A∗1)⊕N(A∗1)⊥ and and define X∗1 onN(A∗1)
as X∗1(N∗1)u := N∗1u + d, where Z∗1 ∈ B(N(A∗1),N(B∗1)) is arbitrary operator and

B∗1u = C∗1d.

If A∗1 is injective on N(A∗1)⊥, i.e. if m = 2, then X1 can be defined on N(A∗1)⊥ as restriction of X1 from Case
1. If not, then proceed to decompose N(A∗1)⊥ = N(A∗2) ⊕ N(A∗2)⊥ and so on. Eventually, one would get to
iteration no. m, in a manner that

V2 = N(A∗) ⊕N(A∗1) ⊕N(A∗2) ⊕ . . . ⊕N(A∗m) ⊕N(A∗m)⊥

and A∗m : N(A∗m)⊥ → N(A∗m)⊥ is injective. Then σ(B∗1) ∩ σ(A∗m) = ∅, ergo define X∗1 on N(A∗m)⊥ as restriction
of X∗1 from Case 1 toN(A∗m)⊥ . Further, for 0 ≤ n ≤ m, let Z∗n ∈ B(N(A∗n),N(B∗1)) be arbitrary operators. Then
define X∗1 onN(A∗n) as

X∗1(Z∗n)d := Z∗nd + u,

where once again u ∈ N(B∗1)⊥ is unique element such that B∗1u = C∗1d. Equivalently, there exists X1 ∈

B(E⊥B ,V2) such that
AX1 − X1B1 = C1,

where
X1 = X1(Z∗0,Z

∗

1, . . . ,Z
∗

m).

Condition R(C∗1) = N(B∗1)⊥ = R(B1) yields X1 to be well defined on the entire E⊥B .
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Step 2: solutions on EB.

We now conduct our analysis on EB. Define EA =
s∑

k=1
Ek

A and split V2 into orthogonal sum V2 = EA ⊕ E⊥A.

Decompose A = AE ⊕ A1 with respect to that sum. Then A1 is injective on E⊥A and A1v = Av, for every
v ∈ E⊥A. For every k ∈ {1, . . . , s} let Nk ∈ B(Ek

B,E
k
A) be arbitrary. For every u ∈ Ek

B, by assumption (2), there

exists unique d(u) ∈
(
Ek

A

)⊥
such that

(A − λkI)d(u) = Cu.

Define
Xk

E : u 7→ Nku + d(u), u ∈ Ek
B.

Then Xk
E : Ek

B → Ek
A⊕

(
PEk

A
⊥ (A1 − λkI)−1CEk

B

)
defines a linear map. What is left is to check whether XE :=

s∑
k=1

Xk
E

is a solution to the equation
AXE − XEBE = CPEB

restricted to EB. However, this is directly verifiable. For any u ∈ EB there exist unique α1, . . . , αs ∈ C(R) and
unique uk ∈ Ek

B, 1 ≤ k ≤ s, such that u =
∑
αkuk. Then

(AXE − XEB)u = A
s∑

k=1

αkXk
Euk −

s∑
k=1

λkαkXk
Euk =

s∑
k=1

(αk(A − λkI)) (Nkuk + d(uk)) =

s∑
k=1

αkCuk = Cu.

It follows that

X =

(
XE 0
0 X1

)
. (3)

is a solution to eq. (1).

Remark. Notice that in proof of Theorem 2.1 Case 2. only emerges if σ(A) ∩ σ(B1) = {0} while 0 < σ(B).
Because of special circumstances under which this problem takes place, this situation will be analyzed
separately from the standard problem (see Corollary 2.3).

Theorem 2.1 naturally inquires answers to the following questions:

Question 1. Is every solution to the equation (1) of the form (3)?

Question 2. Under which conditions is the solution to (1) unique?

Both of these questions have affirmative answers, which is justified by analysis of the following eigen-problem
associated with given Sylvester equation:

Assume that 0 ∈ σ = σ(A) ∩ σ(B) and let Nλ ∈ B(EλB,E
λ
A), for every λ ∈ σ be arbitrary. Define Nσ := ⊕λ∈σNλ. Find

a solution X to Sylvester equation such that the following eigen-problem is uniquely solvedAX − XB = C
Xuλ := P(EλA)⊥ (A − λI)−1Cuλ + Nλuλ, uλ ∈ EλB, λ ∈ σ ∪ {0}.

(4)

Theorem 2.2. (Uniqueness of the solution to the eigen-problem) With respect to the previous notation, assume
that 0 ∈ σ.
1) If the condition (2) holds for every shared eigenvalue λ ∈ σ, then solution X depends only on the choice
of operator Nσ, that is, for fixed Nσ, there exists unique solution X such that (4) holds.
2) Conversely, for every solution X to (1) and for every shared eigenvalue λ for matrices A and B, there
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exists unique quotient class (A−λI)−1C(N(B−λI))⊕N(A−λI) such that X is unique solution to the quotient
eigen-problemAX − XB = C

X : N(B − λI)→ (A − λI)−1C(N(B − λI)) ⊕N(A − λI).
(5)

Proof. Recall notation from proof of Theorem 2.1.
1) The first statement of the theorem is proved directly. Namely, take V1 = EB⊕E⊥B , B = BE⊕B1, V2 = EA⊕E⊥A,
A = AE ⊕A1 like in Theorem 2.1. Then there exists X = XE ⊕X1, which is a solution to (1). By construction,
since σ(B1) ∩ σ(A) = ∅, Case 1. applies and X1 is uniquely determined in B(E⊥,V2) while Xλ

E is uniquely
determined in the class B(EB/EλB,V2/EλA) for every λ ∈ σ. Varying λ in σ completes the proof.
2) Conversely, let X be a solution to the eq. (1). Let λ be one of the shared eigenvalues for A and B and fix
u as a corresponding eigenvector for B. Then XBu = λXu. Hence

AXu − XBu = (A − λI)Xu = Cu.

Split Xu into the orthogonal sum Xu = v1 + v2, where v1 ∈ N(A − λI) and v2 ∈ (N(A − λI))⊥. Then v2 is
the sought expression PN(A−λI)⊥ (A − λI)−1Cu and Xu ∈ v2 +N(A − λI). Condition (2) follows immediately.
Repeating the same procedure for every shared eigenvalue for A and B completes the proof.

Corollary 2.1. (Number of solutions) let Σ be the set of all Nσ introduced in the eigen-problem associated
with given Sylvester equation (1), that is

Σ =
{
Nσ : Nσ = ⊕λ∈σNλ, Nλ ∈ B(EλB,E

λ
A), λ ∈ σ(A) ∩ σ(B) = σ 3 {0}

}
.

Let S be the set of all solutions to (1) which satisfy condition (2). Then |Σ| = |S| .

Proof. For arbitrary Nσ ∈ Σ, there exits unique X ∈ S such that (4) holds. Further, for arbitrary X ∈ S
and arbitrary λ ∈ σ there exist quotient classes EλA and EλB such that (5) holds. Define Nλ : EλB → EλA to
be bounded. Then Nσ = ⊕λ∈σNλ. It follows that Nσ ∈ Σ. There is one-to-one surjective correspondence
S↔ Σ.

Remark. Due to Corollary 2.1, solution X(Nσ) ∈ S, (Nσ ∈ Σ), can be referred to as particular solution.

Corollary 2.2. (Size of particular solution) With the assumptions and notation from Theorem 2.1, Theorem
2.2 and Corollary 2.1, norm of X(Nσ) is given as

‖X(Nσ)‖2 = ‖XE‖
2 + ‖X1‖

2 = ‖Nσ‖
2 +

s∑
k=1

‖P(Ek
A)⊥ (A − λkI)−1CPEk

B
‖

2 + ‖X1‖
2. (6)

Proof. Taking the same decomposition as in Theorem 2.1, let X = XE + X1. Since XE annihilates E⊥B and X1
annihilates EB, it follows that

‖X‖2 = ‖XE + X1‖
2 = ‖XE‖

2 + ‖X1‖
2.

By the same argument, taking

‖XE‖
2 = ‖Nσ‖

2 +

s∑
k=1

‖P(Ek
A)⊥ (A − λkI)−1CPEk

B
‖

2

completes the proof.

Corollary 2.3. (Singularities on E⊥B ) Assume that 0 < σ but 0 ∈ σ(A)∩σ(B1) and let dsc(A) = m ≥ 1. For every

0 ≤ n ≤ m, define Zn ∈ B(R(B1)⊥,R(An+1)⊥ ∩ R(An)) and let Z =
m∑

n=0
Zn. If N(C1)⊥ = R(B1), then there are

infinitely many solutions to (1) on E⊥B . Those solutions depend only on choice for Z, that is, if Z is fixed
then there exists unique solution X1(Z) on E⊥B .

Proof. Proof is the same as part 1) in Theorem 2.2. Note that dsc(A) = asc(A∗) = m and R(An+1)⊥ ∩ R(An) =
N((A∗)n+1) ∩N((A∗)n)⊥. Then proceed to Case 2. of proof of Theorem 2.1.
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3. Fourier approximation minimal norm solution

As illustrated in Theorem 2.2, the system (4) has unique solution provided that all the input parameters
are known and satisfy conditions (2). However, if the only input information is σ(A) ∩ σ(B) = σ , ∅, the
condition (2) is in general not easy or possible to verify. Thus approximation analysis requires more detailed
approach.

The easiest assumption is that there exist eigenvalues for A and B

λk1 , . . . , λkw ∈ σ

such that
C(E`B) ∩ R(A − λ`I) = ∅, ` ∈ {k1, . . . , kw}.

Ergo any eigenvector u` of B that corresponds to λk` does not obey the condition (2) (` = k1, kw), that is,
Cu` < R(A−λ`I). There exists an orthonormed basis (ek)k for R(A−λ`I), such that Cu` can be approximated
by Cu` ∈ R(A − λ`I) and this approximation is the best possible, where

Cu` =
∑

k

〈Cu, ek〉ek.

This way, operator C is directly defined on
kw∑
`=k1

E`B ≡ Ew
B . The space Ew

B is finite-dimensional and therefore

has an orthogonal complement in V1, denoted as W = Ew
B
⊥. Thus the extension of C on V1 is admissible and

we define
C := C ⊕ CPW .

Now we solve the approximate Sylvester equation AX − XB = C, and the solutions X (which exist from
Theorem 2.1) are approximate solutions to the initial eq. AX − XB = C. Combining Corollary 2.2, we see that
the error of approximation is derived from

sup
‖u‖=1
‖(AX − XB − C)u‖ = sup

‖u‖=1
‖(C − C)u‖

and this approximation is the best possible, for given u`. However, note that C is not uniquely determined,
but still depends on the input parameters: the corresponding eigenvectors for B and the choice for bases in
the spacesR(A−λ`I). Hence we try to extract one particular C which is the best suited for our approximation
problem:

Problem 0. Find those (or that one) approximations for C such that solutions have the smallest possible
norm

C̃ = {C : AX − XB = C⇒ ‖X‖ is the smallest possible}.

This transfers our problem into minimum function problem, which is solvable in terms of numerical
analysis.

4. Least-squares Minimum-norm solutions

When it comes to applications of matrix Sylvester equation, Frobenius norm seems to play more impor-
tant role than the operator sup−norm. Hence we continue our approximation analysis with that norm.

Frobenius norm, sometimes also called Euclidean norm, of a matrix A ∈ Cm×n is defined as

||A||F =

 m∑
i=1

n∑
j=1

|ai j|
2


1/2

=

min{m,n}∑
i=1

σ2
i (A)


1/2

,
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where σi(A) are the singular values of A. Also, ||A||F = tr(AA∗)1/2 (recall that A∗ = A
T

is conjugate trans-
pose). Recall that Frobenius norm is sub-multiplicative, i.e. ||AB||F ≤ ||A||F||B||F and unitarily invariant
i.e. ||U1AU2||F = ||A||F for some unitary U1,U2. From the very definition, it also follows that for matrix A
partitioned on block-matrices, A = [Ai j]p×q, it follows that ||A||2F =

∑p
i=1

∑q
j=1 ||Ai j||

2
F. We mention that on any

finite dimensional space any two norms are equivalent.

Now we state two problems about Sylvester equation AX − XB = C we are dealing with. Recall that
A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n are given, and X ∈ Cm×n is an unknown matrix. Now Problem 0. can be
broken down into two separate problems

Problem 1. Find the set S of all X̂ such that ||AX̂ − X̂B − C||F is the smallest possible, i.e.

min
X∈Cm×n

||AX − XB − C||F = ||AX̂ − X̂B − C||F.

Problem 2. Among all X̂ find the one with the smallest Frobenius norm, i.e.

min
X̂∈S
||X̂||F = ||X̂0||F.

Definition 4.1. Matrices X̂ which are solutions for Problem 1 are least-squares solutions. Matrices X̂0
which are solutions for Problem 2 are minimal-norm least-squares solution.

Before we continue our analysis, we remark the following facts:

• if Sylvester equation is consistent for given C, then set S from Problem 1 consists of all solutions of
the Sylvester equation, and norm of approximation error is zero. If there is unique solution, then it
solves Problem 2 as well. In the case when there are infinitely many solutions, Problem 2 gives those
solutions with the smallest norm;

• for homogeneous equation (i.e. C = 0), set S consists of all homogeneous solutions, and solution of
Problem 2 is unique, namely X = 0.

It is well-known fact that eq. (1) can, by Kronecker product and vectorization operation, be transformed
into

(In ⊗ A − BT
⊗ Im) vec(X) = vec(C).

The matrix In⊗A−BT
⊗ Im is often called ”nivellateur” in the literature, and the least-squares minimal-norm

solution is unique and is given by

v̂ec(X) = (In ⊗ A − BT
⊗ Im)†vec(C),

where T† denotes the unique Moore-Penrose inverse of in general rectangular complex matrix T. For more
on the topic of the generalized inverses reader is referred to [3]. Remark that effective calculation of the
Moore-Penrose inverse of nivellateur appears to be very difficult. The authors are unaware of such method,
but for the group inverse there is a recent paper of Hartwig and Patrı́cio [11].

Our aim is to reduce the problem for original Sylvester equation to the simplest Sylvester equation case,
similar to the approach used in [7]. Suppose that matrices A ∈ Cm×m and B ∈ Cn×n have the following Jordan
canonical forms (for some invertible matrices S and T):

A = SJAS−1, B = TJBT−1.

Without loss of generality, we may assume that ∅ , σ(A)∩ σ(B) = {λ1, ..., λs}, hence we excluded the unique
solution case, so

JA = dia1{J(λ1; p11, p12, ..., p1,k1 ), ..., J(λs; ps1, ps2, ..., ps,ks )} ∈ C
m×m,

JB = dia1{J(λ1; q11, q12, ..., q1,`1 ), ..., J(λs; qs1, qs2, ..., qs,`s )} ∈ C
n×n,
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where pi j, j = 1, ki, i = 1, s, and qi j, j = 1, `i, i = 1, s, are natural numbers, and ki and `i are geometric
multiplicities of the eigenvalue λi, i = 1, s, of A and B, respectively. Notation J(λ; t1, ..., tk) stands for

J(λ; t1, ..., tk) = dia1{Jt1 (λ), ..., Jtk (λ)} = Jt1 (λ) ⊕ ... ⊕ Jtk (λ),

where Jt1 (λ) is the Jordan block matrix of dimension t1 × t1 with λ on its main diagonal.
If we put those Jordan forms in the equation, we have (we denoted Y = S−1XT and D = S−1CT):

||AX − XB − C||2F = ||SJAS−1X − XTJBT−1
− C||2F =

= ||S
(
JA(S−1XT) − (S−1XT)JB − (S−1CT)

)
T−1
||

2
F =

= ||S(JAY − YJB −D)T−1
||

2
F ≤

≤ ||S||2F||T
−1
||

2
F||JAY − YJB −D||2F =

= α2(S,T) ||JAY − YJB −D||2F.

We used the notation α(S,T) = ||S||F||T−1
||F. Remark that if S and T are unitary matrices, then equality is

attained in the previous formula.
Because of:

JAY − YJB −D = [J(λi; pi1, ..., pi,ki )][Yi j] − [Yi j][J(λ j; q j1, ..., q j,` j )] − [Di j] =

= [J(λi; pi1, ..., pi,ki )Yi j − Yi j J(λ j; q j1, ..., q j,` j ) −Di j]s×s =

= [Jpi,u (λi)Y
(i j)
uv − Y(i j)

uv Jq j,v (λ j) −D(i j)
uv ]u=1,ki, v=1,` j, i, j=1,s,

we have

||JAY − YJB −D||2F =

s∑
i, j=1

||J(λi; pi1, ..., pi,ki )Yi j − Yi j J(λ j; q j1, ..., q j,` j ) −Di j||
2
F =

=

s∑
i, j=1

ki∑
u=1

` j∑
v=1

||Jpi,u (λi)Y
(i j)
uv − Y(i j)

uv Jq j,v (λ j) −D(i j)
uv ||

2
F.

Now, we distinguish two cases:

• if λi , λ j, then by Theorem 1.1 the equation Jpi,u (λi)Y
(i j)
uv − Y(i j)

uv Jq j,v (λ j) = D(i j)
uv has unique solution Ŷ(i j)

uv ,

so ||Jpi,u (λi)Ŷ
(i j)
uv − Ŷ(i j)

uv Jq j,v (λ j) −D(i j)
uv ||

2
F = 0.

• if λi = λ j, then the equation Jpi,u (λi)Y
(i j)
uv − Y(i j)

uv Jq j,v (λ j) = D(i j)
uv , after translation for λi, reduces to

Jpi,u (0)Y(ii)
uv − Y(ii)

uv Jqi,v (0) = D(ii)
uv . From Theorem 1.1 we already know that there may be either infinitely

many solutions, or no solutions at all.

Therefore,

||AX − XB − C||2F ≤ α
2(S,T)||JAY − YJB −D||2F =

= α2(S,T)
s∑

i=1

ki∑
u=1

`i∑
v=1

||Jpi,u (λi)Y
(ii)
uv − Y(ii)

uv Jqi,v (λi) −D(ii)
uv ||

2
F =

= α2(S,T)
s∑

i=1

ki∑
u=1

`i∑
v=1

||Jpi,u (0)Y(ii)
uv − Y(ii)

uv Jqi,v (0) −D(ii)
uv ||

2
F.
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Now we can take minimum over all X (equivalently, over all Y, since they are similar matrices):

min
X
||AX − XB − C||2F ≤ α

2(S,T) min
Y
||JAY − YJB −D||2F =

= α2(S,T)
s∑

i=1

ki∑
u=1

`i∑
v=1

min
Y(ii)

uv

||Jpi,u (0)Y(ii)
uv − Y(ii)

uv Jqi,v (0) −D(ii)
uv ||

2
F.

Therefore, in order to solve the Problem 1, we need to investigate the following simpler versions of
original problems:

Problem 1’. Find the set S of all least-squares solutions X̂, i.e.

min
X∈Cm×n

||Jm(0)X − XJn(0) − C||F = ||Jm(0)X̂ − X̂Jn(0) − C||F.

Problem 2’. Among all X̂ ∈ S find the one, X̂0, with the smallest Frobenius norm, i.e.

min
X̂∈S
||X̂||F = ||X̂0||F.

We will prove that such X̂ is unique, and give a method for its explicit finding.

5. Least-squares Solutions for the Simplest Case

Let us denote p = min{m,n} for m,n ∈N. For given matrix A ∈ Cm×n, the set

dk(A) := {ai j : j − i = k}, k = −m + 1,n − 1,

will be called k−th small diagonal. For k = 0 we have ”the” diagonal, i.e. the set {aii : i = 1, p}. When we
refer to some small diagonal, we assume that its elements are ordered accordingly to increase of the index
i. For example, if we are dealing with 0−th small diagonal, we assume that the set d0(A) = {a11, a22, ..., app} is
ordered. We will denote by σm+k sum of all elements along the k−th small diagonal dk:

σm+k(A) =
∑
ai j∈dk

ai j, k = −m + 1,n − 1.

Theorem 5.1. Sylvester equation Jm(0)X − XJn(0) = C has a least-squares solution X̂ given by

X̂ = Xh + Xp + Xc, (7)

where Xh denotes the solution of appropriate homogeneous equation:

Xh =


[

pn−1(Jn(0))
0(m−n)×n

]
, m ≥ n,[

0m×(n−m) qm−1(Jm(0))
]
, m ≤ n,

Xp is an expression given by

Xp =


n−1∑
k=0

(
Jm(0)T

)k+1
CJn(0)k, m ≥ n,

−

m−1∑
k=0

Jm(0)kC
(
Jn(0)T

)k+1
, m ≤ n,
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and

Xc =


[

0(m−n)×n
W

]
, m ≥ n,[

−WT 0m×(n−m)

]
, m ≤ n,

where we denoted

W = −


0 0 ... 0 0

σp/p 0 ... 0 0
... ... ... ... ...
σ3/3 2σ4/4 ... 0 0
σ2/2 2σ3/3 ... (p − 1)σp/p 0


p×p

.

The magnitude of the deviation is:

∆(X̂; C) = min
X

∆(X; C) =

p∑
k=1

σ2
k

k
,

where σk is a sum of elements over the (m + k)−th small diagonal from the matrix C.

Proof. In expanded form, matrix expression R ≡ R(X) = Jm(0)X − XJn(0) − C = [ri j] is:


x21 − c11 x22 − x11 − c12 ... x2n − x1,n−1 − c1n
x31 − c21 x32 − x21 − c22 ... x3n − x2,n−1 − c2n
... ... ... ...

xm1 − cm−1,1 xm2 − xm−1,1 − cm−1,2 ... xmn − xm−1,n−1 − cm−1,n
−cm1 −xm1 − cm2 ... −xm,n−1 − cmn

 .

As we can see, any fixed small diagonal contains some unknowns and parameters, and those unknowns
and parameters cannot be found in any other small diagonal. Therefore, we will make summation over all
small diagonals, and then of all elements on each od small diagonals. Since all those summations of the
elements can have one of possible 3 forms, described by functions M1,M2 and M4 for m ≥ n (or M1,M3 and
M4 for m ≤ n) from Proposition 8.1 (see Appendix), it is customary to separate into three sums. So we have:

||R(X)||2F =

m∑
i=1

n∑
j=1

r2
i j =

n−1∑
k=−m+1

∑
ri j∈dk

r2
i j =

= r2
m1 +

−m+p∑
k=−m+2

∑
ri j∈dk

r2
i j +

n−p∑
k=−m+p+1

∑
ri j∈dk

r2
i j +

n−1∑
k=n−p+1

∑
ri j∈dk

r2
i j =

= c2
m1 +

−m+p∑
k=−m+2

M1(xi j ∈ dk; ai j ∈ dk) +

n−p∑
k=−m+p+1

M2∨3(xi j ∈ dk; ai j ∈ dk)+

+

n−1∑
k=n−p+1

M4(xi j ∈ dk; ai j ∈ dk)

Since all summands are nonnegative, the minimization works independently for each of the small diagonal
in some of three sums by using Proposition 8.1. We denote by ”hat” the elements on which the minimum
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is attained. Therefore:

min
X
||R(X)||2F = c2

m1 +

−m+p∑
k=−m+2

min M1(xi j ∈ dk; ai j ∈ dk) +

n−p∑
k=−m+p+1

min M2∨3(xi j ∈ dk; ai j ∈ dk)+

+

n−1∑
k=n−p+1

min M4(xi j ∈ dk; ai j ∈ dk) =

= c2
m1 +

−m+p∑
k=−m+2

M1(x̂i j ∈ dk; ai j ∈ dk) +

n−p∑
k=−m+p+1

M2∨3(x̂i j ∈ dk; ai j ∈ dk)+

+

n−1∑
k=n−p+1

M4(x̂i j ∈ dk; ai j ∈ dk) =

= c2
m1 +

−m+p∑
k=−m+2

M1(x̂i j ∈ dk; ai j ∈ dk) + 0 + 0 =

=

p−1∑
k=1

σ2
k

k
.

During the minimization process of the functions M1,M2 (or M3) and M4, we have obtained the following:

• the unique x̂i j lying on the diagonals dk, k = −m + 1,−m + p − 1;

• the unique x̂i j lying on the diagonals dk, k = −m + p,n − p − 1;

• the elements on each of diagonals dk, k = n − p,n − 1, depend on one real parameter, and we assume
this element is from the first row in the case m ≥ n, and in the last column if m ≤ n.

If we rearrange the matrix X̂ whose elements are known, we obtain precisely (7). Such rearrangement looks
rather cumbersome in general case, and some insight can be brought after looking at Examples 6.1 and 6.2.

Let us prove that any X̂ = Xh + Xp + Xc given by (7) is indeed a least-square solution:

Jm(0)X − XJn(0) − C = (Jm(0)Xh − Xh Jn(0)) +
(
Jm(0)Xp − Xp Jn(0) − C

)
+

+ Jm(0)Xc − Xc Jn(0) =

=
(
Jm(0)Xp − Xp Jn(0) − C

)
+ Jm(0)Xc − Xc Jn(0)

It is not hard to check that Jm(0)Xp −Xp Jn(0) − C is a matrix whose all entries are zero, except the m−th row
(case m ≥ n) or the first column (case m ≤ n):

Jm(0)Xp − Xp Jn(0) − C =


0 0 ... 0
... ... ... ...
0 0 ... 0
−σ1 −σ2 ... −σn

 or


−σn 0 ... 0
... ... ... ...
−σ2 0 ... 0
−σ1 0 ... 0

 .
On the similar way it can be shown that for m ≥ n

Jm(0)Xc − Xc Jn(0) =



0 0 0 ... 0 0
−σn/n 0 ... ... ... ...

−σn−1/(n − 1) −σn/n ... ... ...
... ... ... ... ... ...
−σ3/3 −σ4/4 ... ... ...
−σ2/2 −σ3/3 −σ4/4 ... −σn/n 0

0 σ2/2 2σ3/3 (n − 2)σn−1/(n − 1) (n − 1)σn/n


,
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(and just transposed matrix if m ≤ n), so we conclude that

Jm(0)X − XJn(0) − C = −



0(m−n)×n
σn/n 0 ... 0 0

σn−1/(n − 1) σn/n ... 0 0
... ... ... ... ...
σ2/2 σ3/3 ... σn/n 0
σ1 σ2/2 ... σn−1/(n − 1) σn/n


= −

[
0(m−n)×n

qp−1(Jp(0))T

]

if m ≥ n, and transpose of this matrix if m ≤ n. The Frobenius norm of this matrix is

||Jm(0)X − XJn(0) − C||2F =

n∑
k=1

k
(
σk

k

)2
=

n∑
k=1

σ2
k

k
,

so we have the proof.

Corollary 5.1. Sylvester equation Jm(0)X − XJn(0) = C is consistent if and only if σk = 0, k = 1, p, i.e. iff
Xc = 0, and its general solution is given by (7).

Remark that this result agrees with Theorems 2.3 and 2.5 from [7].

Corollary 5.2. The least-squares solution for the equation Jn(0)X − XJn(0) = In is

X̂ = pn−1(Jn(0)),

for any complex polynomial pn−1, and ||Jn(0)X̂ − X̂Jn(0) − In||
2
F = n.

6. Minimal-norm Least-squares Solution for the Simplest Case

In the previous section, we observed that there is a whole class of the least-squares solutions, depending
on some parameters, whether or not the equation is consistent. Now we prove that those free parameters
can be chosen such that the solution is with minimal Frobenius norm. If we look at the structure of matrices
Xh and Xc from Theorem 5.1, we see that they do not have any non-zero entry on the same position (for
m ≥ n matrix Xh is upper triangular, while Xc is strictly lower triangular; the case m ≤ n is just transposed
situation), therefore only matrix Xp may have the influence on the minimization. So far, we concluded that

min
X̂∈S
||X̂||2F = min

Xh
||Xh + Xp||

2
F + ||Xc||

2
F.

Remark that ||Xc||F is a constant, which is zero iff the equation is consistent and strictly positive otherwise.

Theorem 6.1. There is a unique least-squares minimal-norm solution for the Sylvester equation Jm(0)X −
XJn(0) = C, given by

X̂0 = X̃h + Xp + Xc, (8)

where

X̃h =


[

p∗n−1(Jn(0))
0(m−n)×n

]
, m ≥ n,[

0m×(n−m) q∗m−1(Jm(0))
]
, m ≤ n,

and p∗n−1 and q∗m−1 are uniquely determined polynomials.
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Proof. According to the Theorem 5.1, such X̂0 is a least-squares solution. We must show that it has minimal
norm among all least-squares solutions.

Let us consider the matrix T = Xh + Xp = [ti j]m×n. The only entries that can be minimized include
x11, ..., x1n (when m ≥ n) or x1m, ..., xnm (when m ≤ n), and they are precisely along the small diagonals from
n − p to n − 1:

||T||2F =

n−1∑
k=−m+1

∑
ti j∈dk

t2
i j =

n−p−1∑
k=−m+1

∑
ti j∈dk

t2
i j +

n−1∑
k=n−p

∑
ti j∈dk

t2
i j =

=

n−p−1∑
k=−m+1

∑
ti j∈dk

t2
i j +

n−1∑
k=−m+1

G(xi j ∈ dk; ci j ∈ dk),

||X̂0|| = min
X̂∈S
||X̂||2F = min

Xh
||Xh + Xp||

2
F + ||Xc||

2
F =

=

n−p−1∑
k=−m+1

∑
ti j∈dk

t2
i j +

n−1∑
k=−m+1

min G(xi j ∈ dk; ci j ∈ dk) + ||Xc||
2
F =

=

n−p−1∑
k=−m+1

∑
ti j∈dk

t2
i j +

n−1∑
k=−m+1

G(x∗i j ∈ dk; ci j ∈ dk) + ||Xc||
2
F.

Therefore, for such x∗1i, i = 1,n (when m ≥ n), or x∗im, i = 1,m (when m ≤ n), which is given by Proposition 8.2,
we obtained the unique least-squares minimum-norm solution. Since it is already known that homogeneous
solution is block-polynomial matrix, we have the result.

Corollary 6.1. There is unique minimal-norm solution for consistent Sylvester equation, and it is given by
X̂0 = X̃h + Xp, with notations as in the previous Theorem.

In order to clarify and illustrate the constructions given in previous two theorems about least-squares
and minimal-norm solutions, we present the following two in-detailed examples. The first is dealing with
case when m ≥ n, and the second one with the case m ≤ n.

Example 6.1. Let us find the minimum-norm least-squares solution of the equation J4(0)X−XJ3(0) = C, C ∈
R4×3, i.e. we want to find all X ∈ R4×3 such that ||∆(X)||2F = ||J4(0)X − XJ3(0) − C||2F is minimal, and among
them such X which is minimal-Frobenius-norm matrix.

We can arrange the small diagonals of matrix C as follows (below the matrix there are the indices for
small diagonals): c21 c11 c12 c13

c31 c32 c22 c23
c41 c42 c43 c33

 ,
−3 −2 −1 0 1 2

and let us denote by σk, k = 1, 3, sum over the (4 + k)−th small diagonal (k = −3, 2) of the matrix C, i.e.

σ1 = c41, σ2 = c31 + c42, σ3 = c21 + c32 + c43.

We can arrange the small diagonal for the matrix J4(0)X − XJ3(0) − C as well: x31 − c21 x21 − c11 x22 − x11 − c12 x23 − x12 − c13
x41 − c31 x42 − x31 − c32 x32 − x21 − c22 x33 − x22 − c23

−c41 −x41 − c42 −x42 − c43 x43 − x32 − c33
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Vertical bars partition the small diagonals according to the entries they have. By using the properties of
the Frobenius norm, it is clear that ||J4(0)X − XJ3(0) − C||2F can be obtained as a sum of squared entries over
each of the columns. For left submatrix, those sums are precisely the function M1 applied to all its columns
except the first one (we enlist unknown variables xi j and parameters ci j from top to the bottom); for central
submatrix we have function M2, while for right submatrix function M4 is applied for each of its columns.
Hence, we have

H(x11, ..., x43) = (−c41)2 +
(
(x41 − c31)2 + (−x41 − c42)2

)
+

+
(
(x31 − c21)2 + (x42 − x31 − c32)2 + (−x42 − c43)2

)
+

+
(
(x21 − c11)2 + (x32 − x21 − c22)2 + (x43 − x32 − c33)2

)
+

+
(
(x22 − x11 − c12)2 + (x33 − x22 − c23)2

)
+ (x23 − x12 − c13)2 =

= c2
41 + M1(x41; c31, c42) + M1(x31, x42; c21, c32, c43)+

+ M2(x21, x32, x43; c11, c22, c33)+
+ M4(x11, x22, x33; c12, c23) + M4(x12, x23; c13).

By the Theorem 8.1, we have unique x̂21, x̂31, x̂32, x̂41, x̂42, x̂43, given by:

x̂41 =
1
2

(c31 − c42),

x̂31 =
1
3

(2c21 − c32 − c43), x̂42 =
1
3

(c21 + c32 − 2c43),

x̂21 = c11, x̂32 = c11 + c22, x̂43 = c11 + c22 + c33,

such that M1 (̂x41; c31, c42) = σ2
2/2 and M1 (̂x31, x̂42; c21, c32, c43) = σ2

3/3, while x̂11, x̂12, x̂13, x̂22, x̂23, x̂33 are depend-
ing of parameters denoted by x11, x12, x13:

x̂11 = x11, x̂22 = x11 + c12, x̂33 = x11 + c12 + c23,

x̂12 = x12, x̂23 = x12 + c13,

x̂13 = x13,

for them minima of all M2 and M4 are zeros. Therefore, the minimum of the function H is:

H(̂x11, ..., x̂43) = σ2
1 +

σ2
2

2
+
σ2

3

3
=

3∑
k=1

σ2
k

k
.

It is clear that H(̂x11, ..., x̂43) = 0 ⇔ σk = 0, k = 1, 3, which is precisely the consistency condition (Theorem
2.3 from [7]). If we decompose such X̂ as:

X̂ =


x11 x12 x13
c11 x11 + c12 x12 + c13

1
3 (2c21 − c32 − c43) c11 + c22 x11 + c12 + c23

1
2 (c31 − c42) 1

3 (c21 + c32 − 2c43) c11 + c22 + c33

 =

=


x11 x12 x13
0 x11 x12
0 0 x11
0 0 0

 +


0 0 0

c11 c12 c13
c21 c11 + c22 c12 + c23
c31 c21 + c32 c11 + c22 + c33

 +


0 0 0
0 0 0
−
σ3
3 0 0
−
σ2
2 −

2σ3
3 0

 =

= Xh + Xp + Xc,
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where Xh,Xp and Xc are as in the Theorem 7. Also, remark that:

J4(0)X̂ − X̂J3(0) − C =


0 0 0
−
σ3
3 0 0
−
σ2
2 −

σ3
3 0

−σ1 −
σ2
2 −

σ3
3

 = −

[
01×3

p2(J3(0))T

]
,

where p2(t) = σ3/3 + σ2/2 · t + σ1 · t2.
In order to obtain minimum-norm solution among all least-squares solutions, let us arrange small

diagonals of X̂ as follows (vertical bars separate those small diagonals which take parts in minimization
from the others):

c11 x11 x12 x13

c21 −
σ3

3
c11 + c22 x11 + c12 x12 + c13

c31 −
σ2

2
c21 + c32 −

2σ3

3
c11 + c22 + c33 x11 + c12 + c23

 .
There are three parameters, x11, x12 and x13, which can be used for the minimization of sums over the
columns of right submatrix. In order to obtain such solution, we should minimize the following function
(by using the Theorem 8.2) h : R3

→ R:

h(x11, x12, x13) = x2
11 + (x11 + c12)2 + (x11 + c12 + c23)2 + x2

12 + (x12 + c13)2 + x2
13 =

= F(x11; c12, c12 + c23) + F(x21; c13) + x2
13.

According to Theorem 8.2, the minimum is obtained for

x∗11 = −
2c12 + c23

3
, x∗12 = −

c13

2
, x∗13 = 0,

and it is h(x∗11, x
∗

12, x
∗

13) = (3c2
13 + 4(c2

12 + c12c23 + c2
23))/6.

Therefore, the least-squares minimal-norm solution is:

X̂0 =


−(2c12 + c23)/3 −c13/2 0

c11 (c12 − c23)/3 c13/2
(2c21 − c32 − c43)/3 c11 + c22 (c12 + 2c23)/3

(c31 − c42)/2 (c21 + c32 − 2c43)/3 c11 + c22 + c33

 .
Note that the solution depends on all entries of the matrix C except c41.

Example 6.2. Let us find the minimum-norm least-squares solution of the equation J3(0)X−XJ4(0) = C, C ∈
R3×4, i.e. we want to find all X ∈ R3×4 such that ||∆(X)||2F = ||J3(0)X − XJ4(0) − C||2F is minimal, and among
them such X which is minimal-Frobenius-norm matrix.

We can arrange the small diagonals of matrix C as follows (below the matrix there are the indices for
small diagonals): c11 c12 c13 c14

c21 c22 c23 c24
c31 c32 c33 c34

 ,
−2 −1 0 1 2 3

and let us denote by σk, k = 1, 3, sum over the (3 + k)−th small diagonal (k = −2, 3) of the matrix C, i.e.

σ1 = c31, σ2 = c21 + c32, σ3 = c11 + c22 + c33.
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We can arrange the small diagonal for the matrix J3(0)X − XJ4(0) − C as well: x21 − c11 x22 − x11 − c12 x23 − x12 − c13 x24 − x13 − c14
x31 − c21 x32 − x21 − c22 x33 − x22 − c23 x34 − x23 − c24

−c31 −x31 − c32 −x32 − c33 −x33 − c34


Vertical bars partition the small diagonals according to the entries they have. By using the properties of
the Frobenius norm, it is clear that ||J3(0)X − XJ4(0) − C||2F can be obtained as a sum of squared entries over
each of the columns. For left submatrix, those sums are precisely the function M1 applied to all its columns
except the first one (we enlist unknown variables xi j and parameters ci j from top to the bottom); for central
submatrix we have function M3, while for right submatrix function M4 is applied for each of its columns.
Hence, we have

H(x11, ..., x34) = (−c41)2 +
(
(x31 − c21)2 + (−x31 − c32)2

)
+

+
(
(x21 − c11)2 + (x32 − x21 − c22)2 + (−x32 − c33)2

)
+

+
(
(x22 − x11 − c12)2 + (x33 − x22 − c23)2 + (−x33 − c34)2

)
+

+
(
(x23 − x12 − c13)2 + (x34 − x23 − c24)2

)
+ (x24 − x13 − c14)2 =

= c2
41 + M1(x31; c21, c32) + M1(x21, x32; c11, c22, c33)+

+ M3(x11, x22, x33; c12, c23, c34)+
+ M4(x12, x23, x34; c13, c24) + M4(x13, x24; c14).

By Theorem 8.1, we have unique x̂11, x̂21, x̂22, x̂31, x̂32, x̂33, given by:

x̂31 =
1
2

(c21 − c32),

x̂21 =
1
3

(2c11 − c22 − c33), x̂32 =
1
3

(c11 + c22 − 2c33),

x̂11 = −(c12 + c23 + c34), x22 = −(c23 + c34), x̂33 = −c34,

such that M1 (̂x31; c21, c32) = σ2
2/2 and M1 (̂x21, x̂32; c11, c22, c33) = σ2

3/3, while x̂12, x̂13, x̂14, x̂23, x̂24, x̂34 are depend-
ing of parameters denoted by x14, x24, x34 (this is important difference from the previous example!):

x̂34 = x34, x̂23 = x34 − c24, x̂12 = x34 − c13 − c24,

x̂24 = x24, x̂13 = x24 − c14,

x̂14 = x14,

for them minima of all M3 and M4 are zeros. Therefore, the minimum of the function H is:

H(̂x11, ..., x̂34) = σ2
1 +

σ2
2

2
+
σ2

3

3
=

3∑
k=1

σ2
k

k
.

It is clear that H(̂x11, ..., x̂34) = 0 ⇔ σk = 0, k = 1, 3, which is precisely the consistency condition (Theorem
2.5 from [7]). If we decompose such X̂ as:

X̂ =

 −(c12 + c23 + c34) x34 − c13 − c24 x24 − c14 x14
1
3 (2c11 − c22 − c33) −(c23 + c34) x34 − c24 x24

1
2 (c21 − c32) 1

3 (c11 + c22 − 2c33) −c34 x34

 =

=

 0 x34 x24 x14
0 0 x34 x24
0 0 0 x34

 +

 −(c12 + c23 + c34) −(c13 + c24) −c14 0
−(c22 + c33) −(c23 + c34) −c24 0
−c32 −c33 −c34 0

 +

 0 0 0 0
2σ3
3 0 0 0
σ2
2

σ3
3 0 0

 =

= Xh + Xp + Xc,
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where Xh,Xp and Xc are as in the Theorem 7. Also, remark that:

J3(0)X̂ − X̂J4(0) − C =

 −
σ3
3 0 0 0
−
σ2
2 −

σ3
3 0 0

−σ1 −
σ2
2 −

σ3
3 0

 = −
[

p2(J3(0))T 03×1

]
,

where p2(t) = σ3/3 + σ2/2 · t + σ1 · t2.
In order to obtain minimum-norm solution among all least-squares solutions, let us arrange small

diagonals of X̂ as follows (vertical bars separate those small diagonals which take parts in minimization
from the others):

−(c12 + c23 + c34) x34 − c13 − c24 x24 − c14 x14
2σ3

3
− c22 − c33 −(c23 + c34) x34 − c24 x24

σ2

2
− c32

σ3

3
− c33 −c34 x34

 .
There are three parameters, x14, x24 and x34, which can be used for the minimization of sums over the
columns of right submatrix. In order to obtain such solution, we should minimize the following function
(by using the Theorem 8.2) h : R3

→ R:

h(x14, x24, x34) = x2
34 + (x34 − c24)2 + (x34 − c24 − c13)2 + x2

24 + (x24 − c14)2 + x2
14 =

= G(x34;−c24,−c13) + G(x24;−c14) + x2
14.

According to Theorem 8.2, the minimum is obtained for

x∗34 =
2c24 + c13

3
, x∗24 =

c14

2
, x∗14 = 0,

and it is h(x∗14, x
∗

24, x
∗

34) = (3c2
14 + 4(c2

24 + c24c13 + c2
13))/6.

Therefore, the least-squares minimal-norm solution is:

X̂0 =

 −(c12 + c23 + c34) −(2c24 + c13)/3 −c14/2 0
(2c11 − c22 − c33)/3 −(c23 + c34) (c13 − c24)/3 c14/2

(c21 − c32)/2 (c11 + c22 − 2c33)/3 −c34 (c13 + 2c24)/3

 .
Note that the solution depends on all entries of the matrix C except c31.

7. Return to the Main Case

We have thoroughly examined the simplest case, so we can return to our original problem.

min
X
||AX − XB − C||2F ≤ α

2(S,T) min
Y
||JAY − YJB −D||2F =

= α2(S,T)
s∑

i=1

ki∑
u=1

`i∑
v=1

min
Y(ii)

uv

||Ju(0)Y(ii)
uv − Y(ii)

uv Jv(0) −D(ii)
uv ||

2
F =

= α2(S,T)
s∑

i=1

ki∑
u=1

`i∑
v=1

min{u,v}?∑
k=1

σ2
k(D(ii)

uv )

k

If the right hand side is zero, i.e.

σk(D(ii)
uv ) = 0, k = 1,min{u, v}, i = 1, s,
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then the equation is consistent. This result is independent of the choice of matrices S and T (except the
request that proper Jordan blocks should be on appropriate positions).

If the right hand side is not zero, at least we have an upper bound (which need not be the best possible!)
for the error.

Remark that if A = SJAS−1, then A = (γS)JA(γS)−1 for any γ , 0, so one can further analyze quantity
α(S,T).

8. Appendix: Some Auxiliary Results on the Minimum of the Functions

Suppose that C ∈ Cm×n is a complex matrix. It can be written on the unique way as C = C′ + iC′′, where
C′,C′′ ∈ Rm×n. Note that ||C||2F = ||C′||2F + ||C′′||2F. Because of:

∆(X; C) : = ||Jm(0)X − XJn(0) − C||2F =

= ||Jm(0)(X′ + iX′′) − (X′ + iX′′)Jn(0) − (C′ + iC′′)||2F =

= ||Jm(0)X′ − X′ Jn(0) − C′ + i(Jm(0)X′′ − X′′ Jn(0) − C′′)||2F =

= ||Jm(0)X′ − X′ Jn(0) − C′||2F + ||Jm(0)X′′ − X′′ Jn(0) − C′′||2F =

= ∆(X′; C′) + ∆(X′′; C′′),

it is enough to consider minimization of appropriate real function.
The following two results can be easily proven by elementary calculations, but since they are the

backbone for Theorems 5.1–6.1, we formulate them as propositions.

Proposition 8.1. 1) The function M1 : Rn
→ R depending on n + 1 real parameters a1, ..., an+1,

M1(x1, ..., xn; a1, ..., an, an+1) = (x1 − a1)2 +

n−1∑
k=1

(xk+1 − xk − ak+1)2 + (xn + an+1)2

attains its minimum for the uniquely determined arguments

x̂k =
1

n + 1

(n + 1 − k)
k∑

i=1

ai − k
n+1∑

i=k+1

ai

 =

k∑
i=1

ai −
k

n + 1

n+1∑
i=1

ai, k = 1,n,

and this minimal value is

M1 (̂x1, ..., x̂n; a1, ..., an+1) =
1

n + 1

n+1∑
i=1

ai


2

.

2) The function M2 : Rn
→ R, depending on n real parameters a1, ..., an,

M2(x1, ..., xn; a1, ..., an) = (x1 − a1)2 +

n−1∑
k=1

(xk+1 − xk − ak+1)2

attains its minimum 0 for the uniquely determined arguments

x̂k =

k∑
i=1

ai, k = 1,n.

3) The function M3 : Rn
→ R, depending on n real parameters a1, ..., an,

M3(x1, ..., xn; a1, ..., an) =

n−1∑
k=1

(xk+1 − xk − ak)2 + (xn + an)2
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attains its minimum 0 for the uniquely determined arguments

x̂k = −

n∑
i=k

ai, k = 1,n.

4) The function M4 : Rn
→ R, depending on n − 1 real parameters a1, ..., an−1,

M4(x1, ..., xn; a1, ..., an−1) =

n−1∑
k=1

(xk+1 − xk − ak)2

attains its minimum 0 for the one-parameter set of the arguments

x̂k = x1 +

k∑
i=2

ai−1, k = 2,n,

or

x̂k = xn −

n−1∑
i=k

ai, k = 1,n − 1.

Proposition 8.2. 1) The function F : R→ R, depending on n real parameters a1, ..., an:

F(x; a1, ..., an) = x2 + (x + a1)2 + ... + (x + an)2,

attains its minimum at
x∗ = −

a1 + ... + an

n + 1
,

and this minimal value is

F(x∗; a1, ..., an) =

n∑
k=1

a2
k −

1
n + 1

 n∑
k=1

ak


2

=
1

n + 1

n
n∑

j=1

a2
j − 2

∑
j<k

a jak

 .
2) The function G(x; a1, ..., an) = F(x; a1, a1 + a2, ..., a1 + a2 + ... + an), depending on n real parameters a1, ..., an,
attains its minimum for

x∗ = −

n∑
j=1

n + 1 − j
n + 1

a j,

and

G(x∗; a1, ..., an) =

n∑
k=1

 k∑
j=1

a j


2

−
1

n + 1

 n∑
k=1

k∑
j=1

a j


2

.
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