Some New Fixed Point Results for Multi-Valued Weakly Picard Operators

Hassen Aydi ${ }^{\text {a,b }}$, Abdelbasset Felhi ${ }^{\text {c }}$, Erdal Karapınar ${ }^{\text {d }}$, Hind S. Alshahrani ${ }^{\text {e }}$
${ }^{a}$ Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
${ }^{b}$ Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
${ }^{c}$ Department of Mathematics and Physics, Preparatory Engineering Institute, Bizerte, Carthage University, Tunisia
${ }^{d}$ Department of Medical Research, China Medical University Hospital, China Medical University, 40402, Taichung, Taiwan
${ }^{e}$ Imam Abdulrahman Bin Faisal University, Department of Mathematics, College of Education of Jubail, P.O: 12020, Industrial Jubail 31961. Saudi Arabia

Abstract

In this paper, we present some extensions of Banach contraction principle for multi-valued maps. Corresponding convergence theorems for the Picard iteration associated to a class of multi-valued operators are obtained in the setting of modular metric spaces. The presented results improve many recent fixed points results in the setting of modular metric spaces and also generalize some classical known results. Moreover, some examples are given.

1. Introduction

In 1969, Nadler [21] introduced the notion of multi-valued Lipschitz mappings as a generalization of the Banach contraction principle in the setting of complete metric spaces. Since then, several authors investigated fixed point results in this direction, see [5-7, 9, 10, 13, 14, 20, 28]. In 2010, Chistyakov [11, 12] introduced the concept of modular metric spaces. There are different approaches for this concept. The class of modular metric spaces is viewed as the nonlinear version of the classical modular spaces introduced in $[18,19,24]$ (see also $[8,16]$). Recently, Abdou and Khamsi [1] investigated the fixed point property in the setting of modular spaces and introduced the analog of the Banach contraction principle theorem in the setting of modular metric spaces. In 2014, Abdou and Khamsi [2] established some fixed point theorems for multi-valued Lipschitzian mappings defined on some subsets of modular metric spaces. In 2012, Samet et al. [27] introduced the notion of $\alpha-\psi$-contractive mappings and α-admissible mappings in metric spaces and obtained many fixed point results. Recently, Ali et al. [3] generalized and extended the notion of $\alpha-\psi$-contractive mappings by introducing the notion of (α, ψ, ξ)-contractive multi-valued mappings and gave fixed point theorems for such type mappings in metric spaces.

Motivated by [2], the purpose of this paper is to extend the results of Abdou and Khamsi [1] by using the concept of α-admissible contractive mappings. We will establish some fixed point theorems involving such contractions in the setting of modular metric spaces.

[^0]
2. Preliminaries

Throughout the paper, \mathbb{N} and \mathbb{R} denote the set of positive integers and the set of all real numbers, respectively. In what follows, we recall some definitions and results we will need in the sequel.

Let X be a nonempty set. For a function $\omega:(0, \infty) \times X \times X \rightarrow(0, \infty)$, we denote by

$$
\omega_{\lambda}(x, y):=\omega(\lambda, x, y) \quad \text { for all } \lambda>0 \text { and } x, y \in X .
$$

Definition 2.1. [11] A function $\omega:(0, \infty) \times X \times X \rightarrow[0, \infty]$ is said to be a modular metric on X (or simply a modular if no ambiguity arises) if for all $x, y, z \in X$, the following three axioms hold:
(i) $x=y$ if and only if $\omega_{\lambda}(x, y)=0$ for all $\lambda>0$;
(ii) $\omega_{\lambda}(x, y)=\omega_{\lambda}(y, x)$ for all $\lambda>0$;
(iii) $\omega_{\lambda+\mu}(x, y) \leq \omega_{\lambda}(x, z)+\omega_{\mu}(z, y)$ for all $\lambda, \mu>0$.

The pair (X, ω) is then called a modular metric space.
Definition 2.2. [11] Let (X, ω) be a modular metric space.
(1) ω is said regular if the axiom (i) in Definition 2.1 is replaced by the following axiom:

$$
x=y \quad \text { if and only if } \omega_{\lambda}(x, y)=0 \quad \text { for some } \lambda>0 .
$$

(2) ω is said convex if for $\lambda, \mu>0$ and $x, y, z \in X$, the following inequality is satisfied:

$$
\omega_{\lambda+\mu}(x, y) \leq \frac{\lambda}{\lambda+\mu} \omega_{\lambda}(x, z)+\frac{\mu}{\lambda+\mu} \omega_{\mu}(z, y) .
$$

Definition 2.3. [11] Let (X, ω) be a modular metric space and $x_{0} \in X$ an arbitrarily element. Let

$$
X_{\omega}=X_{\omega}\left(x_{0}\right)=\left\{x \in X: \lim _{\lambda \rightarrow \infty} \omega_{\lambda}\left(x, x_{0}\right)=0\right\}
$$

and

$$
X_{\omega}^{\star}=X_{\omega}^{\star}\left(x_{0}\right)=\left\{x \in X: \exists \lambda=\lambda(x) \text { such that } \omega_{\lambda}\left(x, x_{0}\right)<\infty\right\} .
$$

The sets X_{ω} and X_{ω}^{\star} are called modular spaces (around x_{0}).
Note that if ω is a convex modular metric on X, then $X_{\omega}^{\star}=X_{\omega}$.
Proposition 2.4. [11] If (X, ω) is a modular metric space, then the modular set X_{ω} is a metric space with metric given by

$$
d_{\omega}(x, y)=\inf \left\{\lambda>0: \omega_{\lambda}(x, y) \leq \lambda\right\}, \quad x, y \in X_{\omega}
$$

Proposition 2.5. [11] Given a convex modular space (X, ω). Define

$$
d_{\omega}^{\star}(x, y)=\inf \left\{\lambda>0: \omega_{\lambda}(x, y) \leq 1\right\}, \quad x, y \in X_{\omega}^{\star} .
$$

Then $\left(X_{\omega}^{\star}, d_{\omega}^{\star}\right)$ is a metric space.
Definition 2.6. [11, 12](Topological concepts)
Let (X, ω) be a modular metric space.
(1) The sequence $\left\{x_{n}\right\}$ in X_{ω} is said ω-convergent to an element $x \in X_{\omega}$ if and only if

$$
\lim _{n \rightarrow \infty} \omega_{1}\left(x_{n}, x\right)=0
$$

We say then that x is an ω-limit of $\left\{x_{n}\right\}$.
(2) The sequence $\left\{x_{n}\right\}$ in X_{ω} is said ω-Cauchy if

$$
\lim _{n, m \rightarrow \infty} \omega_{1}\left(x_{n}, x_{m}\right)=0
$$

(3) We say that a subset M of X_{ω} is ω-closed if for any sequence $\left\{x_{n}\right\}$ in M such that $\lim _{n \rightarrow \infty} \omega_{1}\left(x_{n}, x\right)=0$, then, $x \in M$.
(4) We say that a subset M of X_{ω} is ω-complete if any ω-Cauchy sequence in M is ω-convergent in M.
(5) We say that a subset M of X_{ω} is ω-bounded if

$$
\delta_{\omega}(M)=\sup \left\{\omega_{1}(x, y): x, y \in M\right\}<\infty .
$$

(6) We say that a subset M of X_{ω} is ω-compact if any sequence in M has a subsequence ω-convergent in M.
(7) We say that ω satisfies the Fatou property if for every sequence $\left\{x_{n}\right\}$ in X_{ω} and all $x, y \in X_{\omega}$, we have

$$
\lim _{n \rightarrow \infty} \omega_{1}\left(x_{n}, x\right)=0 \Rightarrow \omega_{1}(x, y) \leq \liminf _{n \rightarrow \infty} \omega_{1}\left(x_{n}, y\right) .
$$

Definition 2.7. [2] We say that ω satisfies the Δ_{2}-condition, if $\lim _{n \rightarrow \infty} \omega_{\lambda}\left(x_{n}, x\right)=0$, for some $\lambda>0$ implies $\lim _{n \rightarrow \infty} \omega_{\lambda}\left(x_{n}, x\right)=0$, for all $\lambda>0$.

Following [2,11, 12], the ω-convergence and d_{ω}-convergence are equivalent if and only if ω satisfies the Δ_{2}-condition. Furthermore, if ω is a convex modular, then d_{ω} and d_{ω}^{\star} are equivalent.

Definition 2.8. [2] Let (X, ω) be a modular metric space. We say that ω satisfies the Δ_{2}-type condition, if for every $\mu>0$, there exits $C_{\mu}>0$ such that

$$
\omega_{\lambda / \mu}(x, y) \leq C_{\mu} \omega_{\lambda}(x, y), \quad \text { for all } \lambda>0, x, y \in X, \text { with } x \neq y .
$$

Obviously, if ω satisfies the Δ_{2}-type condition, then it satisfies the Δ_{2}-condition.
Definition 2.9. [2] Let (X, ω) be a modular metric space. Define the function Ω as

$$
\Omega(t)=\sup \left\{\frac{\omega_{\lambda / t}(x, y)}{\omega_{\lambda}(x, y)}: \lambda>0, x, y \in X_{\omega}, x \neq y\right\} \quad \text { for every } t>0
$$

Lemma 2.10. [2] Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-type condition. Then
(1) $\Omega(t)<\infty$, for each $t>0$;
(2) Ω is an increasing function with $\Omega(1)=1$;
(3) $\Omega(s t) \leq \Omega(s) \Omega(t)$ for each $s, t>0$;
(4) $\Omega^{-1}(s) \Omega^{-1}(t) \leq \Omega^{-1}(s t)$, where Ω^{-1} is the function inverse of Ω;
(5) for each $x, y \in X_{\omega}$, with $x \neq y$, we have

$$
d_{\omega}^{\star}(x, y) \leq \frac{1}{\Omega^{-1}\left(1 / \omega_{1}(x, y)\right)}
$$

We have the useful lemmas.
Lemma 2.11. [2] Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-type condition. Let $\left\{x_{n}\right\}$ be a sequence in X_{ω} such that

$$
\omega_{1}\left(x_{n+1}, x_{n}\right) \leq C \alpha^{n} \quad \forall n=0,1,2, \ldots
$$

where C is an arbitrary constant and $\alpha \in[0,1)$. Then $\left\{x_{n}\right\}$ is Cauchy for both ω and d_{ω}^{\star}.

Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}.
We denote by
(a) $K(M)$ the family of all nonempty and ω-compact subsets of M;
(b) $C L(M)$ the family of all nonempty and ω-closed subsets of M;
(c) $C B(M)$ the family of all nonempty, ω-closed and ω-bounded subsets of M.

For $A, B \in C B(M)$ and $x \in X$, set

$$
H_{\omega}(A, B)=\max \left\{\sup \left\{\omega_{1}(x, B): x \in A\right\}, \sup \left\{\omega_{1}(y, A): y \in B\right\}\right\}
$$

where $\omega_{1}(x, A)=\inf \left\{\omega_{1}(x, y): y \in A\right\} . H_{\omega}$ is the Hausdorff modular metric on $C B(M)$, induced by the modular metric ω.

Proposition 2.12. Let (X, ω) be a modular metric space. Consider the metric D_{ω} as

$$
D_{\omega}((x, y),(u, v))=d_{\omega}(x, u)+d_{\omega}(y, v) \quad \text { for all }(x, y),(u, v) \in X_{\omega} \times X_{\omega}
$$

Then $\left(X_{\omega} \times X_{\omega}, D_{\omega}\right)$ is a metric space.
Definition 2.13. Let (X, ω) be a modular metric space, M be a nonempty subset of X_{ω} and $T: M \rightarrow C L(M)$ be a multi-valued mapping. The graph of T denoted by $G(T)$ is the subset $\{(x, y): x \in M, y \in T x\}$ of $M \times M$. Then T is said to be closed if the graph of $G(T)$ is a closed subset of $\left(M \times M, D_{\omega}\right)$.

Definition 2.14. A function $f: X_{\omega} \rightarrow[0, \infty)$ is called lower semi-continuous (l.s.c) if, for any $x \in X_{\omega}$ and $\left\{x_{n}\right\} \subset X_{\omega}$ with $\lim _{n \rightarrow \infty} x_{n}=x$ in X_{ω}, we have

$$
f(x) \leq \lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

For a multi-valued map $T: M \rightarrow C B(M)$, let $f_{T}: M \rightarrow[0, \infty)$ be a function defined by

$$
f_{T}(x)=\omega_{1}(x, T x)
$$

Definition 2.15. [26] Let (X, d) be a metric space and $T: X \rightarrow C L(X)$ be a multivalued operator. We say that T is a multivalued weakly Picard (briefly, MWP) operator if for all $x \in X$ and $y \in T x$, there exists a sequence $\left\{x_{n}\right\}$ such that
(i) $x_{0}=x$ and $x_{1}=y$;
(ii) $x_{n+1} \in T x_{n}$ for all $n=0,1,2, \ldots$;
(iii) $\left\{x_{n}\right\}$ is convergent and its limit is a fixed point of T.

A sequence $\left\{x_{n}\right\}$ satisfying conditions (i) and (ii) in Definition 2.15 is said a sequence of successive approximations of T, starting from x_{0}.

As in $[4,17]$, we give the following definition.
Definition 2.16. Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}. let $T: M \rightarrow C B(M)$ be a multi-valued mapping. Such T is called α-admissible if, for each $x \in M$ and $y \in T x$ with $\alpha(x, y) \geq 1$, we have $\alpha(y, z) \geq 1$ for all $z \in T y$.

In this paper, we investigate several types of multivalued weakly Picard operators, and so we ensure the existence of fixed points. Some consequences and examples have been provided.

3. Fixed point of multi-valued weak contraction mappings

We start with the following useful technical lemmas (corresponding to the ones given in [21] on modular metric spaces).

Lemma 3.1. Let (X, ω) be a modular metric space, M be a nonempty subset of X_{ω} and $B \in C B(M)$. If a $\in M$ and $\omega_{1}(a, B)<c$ with $c>0$, then there exists $b \in B$ such that $\omega_{1}(a, b)<c$.

Lemma 3.2. [2] Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}. Let $A, B \in C B(M)$, then for every $\varepsilon>0$ and $x \in A$, there exists $y \in B$ such that

$$
\omega_{1}(x, y) \leq H_{\omega}(A, B)+\varepsilon
$$

Moreover, if B is ω-compact and ω satisfies the Fatou property, then for every $x \in A$ there exists $y \in B$ such that

$$
\omega_{1}(x, y) \leq H_{\omega}(A, B)
$$

Lemma 3.3. [2] Let (X, ω) be a modular metric space. Assume that ω satisfies the Δ_{2}-condition. Let M be a nonempty subset of X_{ω} and let A_{n} be a sequence of sets in $C B(M)$. Suppose that $\lim _{n \rightarrow \infty} H_{\omega}\left(A_{n}, A\right)=0$, for $A \in C B(M)$. Then if $x_{n} \in A_{n}$ and $\lim _{n \rightarrow \infty} x_{n}=x$, it follows that $x \in A$.

3.1. Result-I

In this subsection, we first introduce the notion of ω-quasi-contractions in modular metric spaces.
Definition 3.4. Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}. A multi-valued $T: M \rightarrow$ $C L(M)$ is said an ω-quasi-contraction if there exists a constant $k \in[0,1)$ such that for any $x, y \in M$ with $y \in T x$, there exists $z \in$ Ty such that

$$
\begin{equation*}
\omega_{1}(y, z) \leq k \max \left\{\omega_{1}(x, y), \omega_{1}(x, T x), \omega_{1}(y, T y)\right\} \tag{1}
\end{equation*}
$$

Now, we state and prove our first result.
Theorem 3.5. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-condition. Let M be a nonempty ω-complete subset of X_{ω}. Let $T: M \rightarrow C L(M)$ be a closed ω-quasi-contraction. Then T is a MWP operator.
Proof. Let $x_{0} \in M$ and $x_{1} \in T x_{0}$. Clearly, if $x_{0}=x_{1}$, then x_{1} is a fixed point of T and so this completes the proof. Now, we assume that $x_{0} \neq x_{1}$. Since T is ω-quasi-contraction, there exists $x_{2} \in T x_{1}$ such that

$$
\omega_{1}\left(x_{1}, x_{2}\right) \leq k \max \left\{\omega_{1}\left(x_{0}, x_{1}\right), \omega_{1}\left(x_{0}, T x_{0}\right), \omega_{1}\left(x_{1}, T x_{1}\right)\right\}
$$

If $x_{2}=x_{1}$, then x_{2} is a fixed point of T and so the proof is finished.
From now on, we assume that $x_{2} \neq x_{1}$. It follows that

$$
\omega_{1}\left(x_{1}, x_{2}\right) \leq k \max \left\{\omega_{1}\left(x_{0}, x_{1}\right), \omega_{1}\left(x_{0}, x_{1}\right), \omega_{1}\left(x_{1}, x_{2}\right)\right\}=k \max \left\{\omega_{1}\left(x_{0}, x_{1}\right), \omega_{1}\left(x_{1}, x_{2}\right)\right\}
$$

If $\max \left\{\omega_{1}\left(x_{0}, x_{1}\right), \omega_{1}\left(x_{1}, x_{2}\right)\right\}=\omega_{1}\left(x_{1}, x_{2}\right)$, then we obtain

$$
\omega_{1}\left(x_{1}, x_{2}\right) \leq k \omega_{1}\left(x_{1}, x_{2}\right)<\omega_{1}\left(x_{1}, x_{2}\right)
$$

which is a contradiction. Then we get

$$
\omega_{1}\left(x_{1}, x_{2}\right) \leq k \omega_{1}\left(x_{0}, x_{1}\right)
$$

Continuing in this fashion, we construct a sequence $\left\{x_{n}\right\}$ in M such that $x_{n+1} \in T x_{n}, x_{n+1} \neq x_{n}$ and

$$
\begin{equation*}
\omega_{1}\left(x_{n}, x_{n+1}\right) \leq k \omega_{1}\left(x_{n-1}, x_{n}\right) \quad \forall n=1,2,3, \ldots \tag{2}
\end{equation*}
$$

By induction, we get

$$
\begin{equation*}
\omega_{1}\left(x_{n}, x_{n+1}\right) \leq k^{n} \omega_{1}\left(x_{0}, x_{1}\right) \quad \forall n=0,1,2, \ldots \tag{3}
\end{equation*}
$$

By Lemma 2.11, we conclude that $\left\{x_{n}\right\}$ is ω-Cauchy. By completeness of (M, ω), there exists $u \in M$ such that $\lim _{n \rightarrow \infty} x_{n}=u$.

We shall prove that i is a fixed point of T. Since T is a closed multi-valued mapping and $x_{n+1} \in T x_{n}$, then $\left(x_{n}, x_{n+1}\right) \in G(T)$. Moreover, we have $D_{\omega}\left(\left(x_{n}, x_{n+1}\right),(u, u)\right)=d_{\omega}\left(x_{n}, u\right)+d_{\omega}\left(x_{n+1}, u\right)$. Since ω satisfies the Δ_{2}-condition, we get

$$
\lim _{n \rightarrow \infty} D_{\omega}\left(\left(x_{n}, x_{n+1}\right),(u, u)\right)=0
$$

Finally, since $G(T)$ is closed, it follows that $(u, u) \in G(T)$. Hence $u \in T u$, that is, u is a fixed point of T.

3.2. Result II

In this subsection, we give another characterization of $M W P$ operators.
Definition 3.6. Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}. A multi-valued $T: M \rightarrow$ $C B(M)$ is said an $\alpha-\omega$-weak contraction if there exist a function $\alpha: M \times M \rightarrow[0, \infty)$ and two constants $k \in[0,1)$ and $L \geq 0$ such that for any $x, y \in M$, with $\alpha(x, y) \geq 1$, we have

$$
\begin{equation*}
H_{\omega}(T x, T y) \leq k \omega_{1}(x, y)+L \omega_{1}(y, T x) \tag{4}
\end{equation*}
$$

Definition 3.7. Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}. The pair (M, α) is said ω-regular if the following condition holds: for any sequence $\left\{x_{n}\right\}$ in M with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x \in M$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, x\right) \geq 1$ for all $k \in \mathbb{N}$.

Remark 3.8. Definition 3.7 is valid for Result II and Result III.

We provide the following result.
Theorem 3.9. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-condition. Let M be a nonempty ω-complete subset of X_{ω}. Let $T: M \rightarrow C B(M)$ be an $\alpha-\omega$-weak contraction. Suppose also that
(1) T is α-admissible;
(2) there exit $x_{0} \in M$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(3) (M, α) is ω-regular or f_{T} is lower semi-continuous.

Then T is a MWP operator.
Proof. Let r be a real number such that $0<k<r<1$. By condition (2), there exist $x_{0} \in M$ and $x_{1} \in T x_{0}$ such that

$$
\alpha\left(x_{0}, x_{1}\right) \geq 1
$$

If $x_{0}=x_{1}$, then x_{1} is a fixed point of T and the proof is finished.
Now, we assume that $x_{0} \neq x_{1}$. Since $x_{1} \in T x_{0}$, by (9), we have

$$
\begin{aligned}
\omega_{1}\left(x_{1}, T x_{1}\right) & \leq H_{\omega}\left(T x_{0}, T x_{1}\right) \\
& \leq k \omega_{1}\left(x_{0}, x_{1}\right)+L \omega_{1}\left(x_{1}, T x_{0}\right) \leq k \omega_{1}\left(x_{0}, x_{1}\right)+L \omega_{1}\left(x_{1}, x_{1}\right) \\
& =k \omega_{1}\left(x_{0}, x_{1}\right)<r \omega_{1}\left(x_{0}, x_{1}\right)
\end{aligned}
$$

By Lemma 3.1, there exists $x_{2} \in T x_{1}$ such that

$$
\omega_{1}\left(x_{1}, x_{2}\right)<r \omega_{1}\left(x_{0}, x_{1}\right)
$$

T is α-admissible and $x_{2} \in T x_{1}$, so

$$
\alpha\left(x_{1}, x_{2}\right) \geq 1
$$

If $x_{2}=x_{1}$, then x_{2} is a fixed point of T and again the proof is finished. Now, we assume that $x_{2} \neq x_{1}$.
Since $x_{2} \in T x_{1}$ and $\alpha\left(x_{1}, x_{2}\right) \geq 1$, by (9), we have

$$
\begin{aligned}
\omega_{1}\left(x_{2}, T x_{2}\right) & \leq H_{\omega}\left(T x_{1}, T x_{2}\right) \\
& \leq k \omega_{1}\left(x_{1}, x_{2}\right)+L \omega_{1}\left(x_{2}, T x_{1}\right) \leq k \omega_{1}\left(x_{1}, x_{2}\right)+L \omega_{1}\left(x_{2}, x_{2}\right) \\
& =k \omega_{1}\left(x_{1}, x_{2}\right)<r \omega_{1}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Iterating this process, we can define a sequence $\left\{x_{n}\right\}$ such that

$$
\alpha\left(x_{n}, x_{n+1}\right) \geq 1, x_{n+1} \neq x_{n}, x_{n+1} \in T x_{n}
$$

and

$$
\begin{equation*}
\omega_{1}\left(x_{n}, x_{n+1}\right) \leq r \omega_{1}\left(x_{n-1}, x_{n}\right) \quad \forall n=1,2,3, \ldots \tag{5}
\end{equation*}
$$

Hence we obtain

$$
\omega_{1}\left(x_{n}, x_{n+1}\right) \leq r^{n} \omega_{1}\left(x_{0}, x_{1}\right) \quad \forall n=0,1,2, \ldots
$$

By Lemma 2.11, we deduce that $\left\{x_{n}\right\}$ is ω-Cauchy. Since M is ω-complete, there exists $v \in M$ such that $\lim _{n \rightarrow \infty} x_{n}=v$.

We shall prove that v is a fixed point of T. Since $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow v$, in view of the fact that (M, α) is ω-regular, there exists a subsequence $\left\{x_{n(m)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(m)}, v\right) \geq 1$ for all $m \in \mathbb{N}$. We have for any $m \geq 0$

$$
\begin{aligned}
H_{\omega}\left(T x_{n(m)}, T v\right) & \leq k \omega_{1}\left(x_{n(m)}, v\right)+L \omega_{1}\left(x_{n}, T x_{n(m)}\right) \\
& \leq k \omega_{1}\left(x_{n(m)}, v\right)+L \omega_{1}\left(v, x_{n(m)+1}\right) .
\end{aligned}
$$

Passing to limit as $m \rightarrow \infty$, we get $\lim _{m \rightarrow \infty} H_{\omega}\left(T x_{n(m)}, T v\right)=0$. Since $x_{n(m)+1} \in T x_{n(m)}$, by Lemma 3.3, we conclude that $v \in T v$, that is, v is a fixed point of T.

Now, passing to the case where f_{T} is lower semi-continuous, we have

$$
\omega_{1}(v, T v)=f_{T}(v) \leq \lim _{n \rightarrow \infty} \omega_{1}\left(x_{n}, T x_{n}\right) \leq \lim _{n \rightarrow \infty} \omega_{1}\left(x_{n}, x_{n+1}\right)=0 .
$$

Thus, $\omega_{1}(v, T v)=0$, and so $v \in T v$.

We give the following illustrated examples.
Example 3.10. Let $X=\mathbb{R}^{+}, M=[0,1]$ and $\omega_{\lambda}(x, y)=\frac{|x-y|}{\lambda}, \forall x, y \in X, \forall \lambda>0$. Mention that ω is a convex regular modular and satisfies the Δ_{2}-condition. Also, M is an ω-complete subset of X_{ω}. Define a mapping $T: M \rightarrow$ $C B(M) b y$

$$
T x=\left\{\begin{array}{l}
\left\{\frac{x}{3}\right\}, \quad 0 \leq x \leq \frac{1}{2} \\
{\left[\frac{5}{6}, \frac{x+2}{3}\right], \quad \frac{1}{2}<x \leq 1}
\end{array}\right.
$$

Let $\alpha: M \times M \rightarrow[0, \infty)$ be defined by $\alpha(x, y)=1$ for all $x, y \in M$.
Condition (2) of Theorem 3.9 is satisfied and (M, α) is ω-regular.
We show that (9) of Theorem 3.9 is satisfied for all $x, y \in M$ with $k \in\left[\frac{1}{3}, 1\right]$ and for $L \geq 3$.
We consider the following cases:
Case1: $\quad(x, y) \in\left[0, \frac{1}{2}\right] \times\left[\frac{1}{2}, 1\right]$. In this case, condition (9) reduces

$$
\begin{aligned}
H_{\omega}(T x, T y) & =\max \left\{\max \left\{\omega_{1}\left(\frac{x}{3},\left[\frac{y+2}{3}\right]\right), \sup \left\{\omega_{1}\left(a, \frac{x}{3}\right): \frac{5}{6} \leq a \leq \frac{y+2}{3}\right\}\right\}\right. \\
& =\max \left\{\left|\frac{x}{3}-\frac{5}{6}\right|,\left|\frac{x}{3}-\frac{y}{3}-\frac{2}{3}\right|\right\}=\left|\frac{x}{3}-\frac{y}{3}-\frac{2}{3}\right| \\
& \leq k|x-y|+L\left|y-\frac{x}{3}\right| .
\end{aligned}
$$

We have $\left|\frac{x}{3}-\frac{y}{3}-\frac{2}{3}\right| \leq 1$ and $\left|y-\frac{x}{3}\right| \geq \frac{1}{3}$ for all $x, y \in\left[0, \frac{1}{2}\right] \times\left[\frac{1}{2}, 1\right]$. In order the previous inequality holds, it suffices to take $L \geq 3$ and $k \in[0,1)$ to be arbitrary. Case2 : $\quad(x, y) \in\left(\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right]$. In this case, condition (9) is reduced to

$$
H_{\omega}(T x, T y)=\left|\frac{x}{3}+\frac{2}{3}-\frac{y}{3}\right| \leq k|x-y|+L\left|\frac{5}{6}-y\right|
$$

We have $\left|\frac{x}{3}+\frac{2}{3}-\frac{y}{3}\right| \leq 1$ and $\left|\frac{5}{6}-y\right| \geq \frac{1}{3}$ for all $x, y \in\left(\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right]$. Again, in order the previous inequality holds, it suffices to take $L \geq 3$ and $k \in[0,1)$ to be arbitrary. Case3 : $\quad x, y \in\left[0, \frac{1}{2}\right]$. In this case, the condition (9) is reduced

$$
H_{\omega}(T x, T y)=\omega_{1}\left(\frac{x}{3}, \frac{y}{3}\right)=\frac{1}{3}|x-y| \leq k|x-y|+L\left|y-\frac{x}{3}\right|
$$

and so condition (9) is satisfied with $k \in\left[\frac{1}{3}, 1\right)$ and $L \geq 0$.
Case4: $\quad x, y \in\left(\frac{1}{2}, 1\right]$. In this case, condition (9) becomes

$$
H_{\omega}(T x, T y)=H_{\omega}\left(\left[\frac{5}{6}, \frac{x+2}{3}\right],\left[\frac{5}{6}, \frac{y+2}{3}\right]\right)=\frac{1}{3}|x-y| \leq k|x-y|+L\left|y-\frac{x}{3}\right|
$$

and so condition (9) is satisfied with $k \in\left[\frac{1}{3}, 1\right)$ and $L \geq 0$. Now, by summarizing all cases, we conclude that the condition (9) is satisfied with $k \in\left[\frac{1}{3}, 1\right)$ and $L \geq 3$.

Hence, all hypotheses of Theorem 3.9 are satisfied and T has fixed points. Note that Fix $(T)=\{0\} \cup\left[\frac{5}{6}, 1\right]$ where Fix (T) denotes the set of fixed points of T.

On the other hand, the main result of Abdou and Khamsi [2] is not applicable. In fact, taking $x=0$ and $y=1$, we have $H_{\omega}(T x, T y)=1>k=k \omega_{1}(0,1)$ for each $k \in[0,1)$.

Example 3.11. Let $X=\mathbb{R}, M=[0,2]$ and $\omega_{\lambda}(x, y)=\frac{|x-y|}{\lambda}, \forall x, y \in X, \forall \lambda>0$. Mention that ω is convex regular modular satisfying the Δ_{2}-condition. Also, $M=[0,2]$ is an ω-complete subset of X_{ω}. Define a mapping $T: M \rightarrow C B(M) b y$

$$
T x=\left\{\begin{array}{lc}
\left\{0, \frac{1+x}{2}\right\}, & 0 \leq x \leq \frac{1}{2} \\
\left\{0, \frac{2-x}{2}\right\}, & \frac{1}{2}<x \leq 1 \\
{[0,1],} & 1<x \leq 2 .
\end{array}\right.
$$

Let $\alpha: M \times M \rightarrow[0, \infty)$ be defined by

$$
\alpha(x, y)= \begin{cases}1, & 0 \leq x, y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Condition (2) of Theorem 3.9 is satisfied with $x_{0}=0$ and $x_{1}=\frac{1}{2}$. Obviously, (M, α) is ω-regular.
We show that (9) of Theorem 3.9 is satisfied for all $x, y \in M$ such that $\alpha(x, y) \geq 1$ with $k \in\left[\frac{1}{2}, 1\right]$ and for all $L \geq 0$.
Let $x, y \in M$ be such that $\alpha(x, y) \geq 1$. Then $0 \leq x, y \leq 1$. We consider the following cases:
case 1: $\quad x, y \in\left[0, \frac{1}{2}\right]$. We have

$$
\begin{aligned}
H_{\omega}(T x, T y) & =\max \left\{\max \left\{\omega_{1}(0, T y), \omega_{1}\left(\frac{1+x}{2}, T y\right)\right\}, \max \left\{\omega_{1}(0, T x), \omega_{1}\left(\frac{1+y}{2}, T x\right)\right\}\right\} \\
& =\max \left\{\omega_{1}\left(\frac{1+x}{2}, T y\right), \omega_{1}\left(\frac{1+y}{2}, T x\right)\right\} \\
& =\max \left\{\min \left\{\frac{1+x}{2}, \frac{1}{2}|x-y|\right\}, \min \left\{\frac{1+y}{2}, \frac{1}{2}|x-y|\right\}\right\} \\
& =\frac{1}{2}|x-y| .
\end{aligned}
$$

case2: $\quad x \in\left[0, \frac{1}{2}\right], y=\in\left[\frac{1}{2}, 1\right]$. We have

$$
\begin{aligned}
H_{\omega}(T x, T y) & =\max \left\{\max \left\{\omega_{1}(0, T y), \omega_{1}\left(\frac{1+x}{2}, T y\right)\right\}, \max \left\{\omega_{1}(0, T x), \omega_{1}\left(\frac{2-y}{2}, T x\right)\right\}\right\} \\
& =\max \left\{\min \left\{\frac{1+x}{2}, \frac{1}{2}|x+y-1|\right\}, \min \left\{\frac{2-y}{2}, \frac{1}{2}|x+y-1|\right\}\right\} \\
& =\frac{1}{2}|x+y-1| \leq \frac{1}{2}|x-y| .
\end{aligned}
$$

case3: $\quad x, y \in\left[\frac{1}{2}, 1\right]$. We have

$$
\begin{aligned}
H_{\omega}(T x, T y) & =\max \left\{\max \left\{\omega_{1}(0, T y), \omega_{1}\left(\frac{1+x}{2}, T y\right)\right\}, \max \left\{\omega_{1}(0, T x), \omega_{1}\left(\frac{2-y}{2}, T x\right)\right\}\right\} \\
& =\max \left\{\min \left\{\frac{2-x}{2}, \frac{1}{2}|x-y|\right\}, \min \left\{\frac{2-y}{2}, \frac{1}{2}|x-y|\right\}\right\} \\
& =\frac{1}{2}|x-y| .
\end{aligned}
$$

Thus, all hypotheses of Theorem 3.9 are satisfied and T has two fixed points, that $\operatorname{is}, \operatorname{Fix}(T)=\left\{0, \frac{3}{2}\right\}$.
We can derive the following results.
Corollary 3.12. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-condition. Let M be a nonempty ω-complete subset of X_{ω}. Suppose that $T: M \rightarrow C B(M)$ is a given mapping. Suppose that there exist a function $\alpha: M \times M \rightarrow[0, \infty)$ and two constants $k \in[0,1)$ and $L \geq 0$ such that for any $x, y \in M$, we have

$$
\begin{equation*}
\alpha(x, y) H_{\omega}(T x, T y) \leq k \omega_{1}(x, y)+L \omega_{1}(y, T x) . \tag{6}
\end{equation*}
$$

Suppose also that
(1) T is α-admissible;
(2) there exit $x_{0} \in M$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(3) (M, α) is ω-regular or f_{T} is lower semi-continuous.

Then T is a MWP operator.
Proof. Let $x, y \in M$ be such that $\alpha(x, y) \geq 1$. Then if (7) holds, we have

$$
H_{\omega}(T x, T y) \leq \alpha(x, y) H_{\omega}(x, y) \leq k \omega_{1}(x, y)+L \omega_{1}(y, T x) .
$$

The proof is concluded from Theorem 3.9.
Corollary 3.13. ([2], Theorem 4.1) Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the $\Delta_{2}-$ condition. Let M be a nonempty ω-complete subset of X_{ω}. Given $T: M \rightarrow C B(M)$. Suppose that there exists a constant $k \in[0,1)$ such that for any $x, y \in M$, we have

$$
\begin{equation*}
H_{\omega}(T x, T y) \leq k \omega_{1}(x, y) . \tag{7}
\end{equation*}
$$

Then T is a MWP operator.
Corollary 3.14. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-condition. Let M be a nonempty ω-complete subset of X_{ω}. Given $T: M \rightarrow M$. Suppose that there exist two constants $k \in[0,1)$ and $L \geq 0$ with $0 \leq k+L<1$ such that for any $x, y \in M$, we have

$$
\begin{equation*}
\omega_{1}(T x, T y) \leq k \omega_{1}(x, y)+L \omega_{1}(y, T x) . \tag{8}
\end{equation*}
$$

Then T has a unique fixed point in X_{ω}.
Proof. We assume that there exist $x, y \in X$ such that $x=T x$ and $y=T y$ with $x \neq y$. We have

$$
0<\omega_{1}(x, y)=\omega_{1}(T x, T y) \leq k \omega_{1}(x, y)+L \omega_{1}(y, T x)=(k+L) \omega_{1}(x, y)<\omega_{1}(x, y)
$$

which is a contradiction. Hence $x=y$.

3.3. Result III

In this part, we give a general class of MWP operators.
Definition 3.15. Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}. A multi-valued $T: M \rightarrow$ $C B(M)$ is said an $\alpha-\omega$-generalized weak contraction if there exist a function $\alpha: M \times M \rightarrow[0, \infty)$, a function $\theta:[0, \infty) \rightarrow[0,1)$ satisfying $\lim \sup \theta(r)<1$, for every $t \in[0, \infty)$ and a constant $L \geq 0$ such that for any $x, y \in M$ with $\alpha(x, y) \geq 1$, we have

$$
\begin{equation*}
H_{\omega}(T x, T y) \leq \theta\left(\omega_{1}(x, y)\right) \omega_{1}(x, y)+L \omega_{1}(y, T x) \tag{9}
\end{equation*}
$$

Theorem 3.16. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-condition. Let M be a nonempty ω-complete subset of X_{ω}. Let $T: M \rightarrow C B(M)$ be a $\alpha-\omega$-generalized weak contraction.

Suppose that
(1) T is α-admissible;
(2) there exit $x_{0} \in M$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$;
(3) (M, α) is ω-regular or f_{T} is lower semi-continuous.

Then T is a MWP operator.
Proof. The proof is inspired from Theorem 2.1 in [14].
By condition (2), there exist $x_{0} \in M$ and $x_{1} \in T x_{0}$ such that

$$
\alpha\left(x_{0}, x_{1}\right) \geq 1
$$

If $x_{0}=x_{1}$, then x_{1} is a fixed point of T and so the proof is finished. Now, we assume that $x_{0} \neq x_{1}$. Select a positive integer n_{1} such that

$$
\theta^{n_{1}}\left(\omega_{1}\left(x_{0}, x_{1}\right)\right)<\left[1-\theta\left(\omega_{1}\left(x_{0}, x_{1}\right)\right)\right] \omega_{1}\left(x_{0}, x_{1}\right)
$$

By Lemma 3.2, we can select $x_{2} \in T x_{1}$ such that

$$
\omega_{1}\left(x_{1}, x_{2}\right) \leq H_{\omega}\left(T x_{0}, T x_{1}\right)+\theta^{n_{1}}\left(\omega_{1}\left(x_{0}, x_{1}\right)\right)
$$

Since $\alpha\left(x_{0}, x_{1}\right) \geq 1$ then by (9), we have

$$
\begin{aligned}
\omega_{1}\left(x_{1}, x_{2}\right) & \leq H_{\omega}\left(T x_{0}, T x_{1}\right)+\theta^{n_{1}}\left(\omega_{1}\left(x_{0}, x_{1}\right)\right) \\
& \leq \theta\left(\omega_{1}\left(x_{0}, x_{1}\right)\right) \omega_{1}\left(x_{0}, x_{1}\right)+L \omega_{1}\left(x_{1}, T x_{0}\right)+\theta^{n_{1}}\left(\omega_{1}\left(x_{0}, x_{1}\right)\right) \\
& =\theta\left(\omega_{1}\left(x_{0}, x_{1}\right)\right) \omega_{1}\left(x_{0}, x_{1}\right)+\theta^{n_{1}}\left(\omega_{1}\left(x_{0}, x_{1}\right)\right) \\
& <\omega_{1}\left(x_{0}, x_{1}\right)
\end{aligned}
$$

The mapping T is α-admissible and $x_{2} \in T x_{1}$, so

$$
\alpha\left(x_{1}, x_{2}\right) \geq 1
$$

If $x_{2}=x_{1}$, then x_{2} is a fixed point of T and again the proof is finished.
Now, we assume that $x_{2} \neq x_{1}$. We choose a positive integer $n_{2}>n_{1}$ such that

$$
\theta^{n_{2}}\left(\omega_{1}\left(x_{1}, x_{2}\right)\right)<\left[1-\theta\left(\omega_{1}\left(x_{1}, x_{2}\right)\right)\right] \omega_{1}\left(x_{1}, x_{2}\right)
$$

By Lemma 3.2, we may select $x_{3} \in T x_{2}$ such that

$$
\omega_{1}\left(x_{2}, x_{3}\right) \leq H_{\omega}\left(T x_{1}, T x_{2}\right)+\theta^{n_{2}}\left(\omega_{1}\left(x_{1}, x_{2}\right)\right)
$$

Since $\alpha\left(x_{1}, x_{2}\right) \geq 1$, by (9), we have

$$
\begin{aligned}
\omega_{1}\left(x_{2}, x_{3}\right) & \leq H_{\omega}\left(T x_{1}, T x_{2}\right)+\theta^{n_{2}}\left(\omega_{1}\left(x_{1}, x_{2}\right)\right) \\
& \leq \theta\left(\omega_{1}\left(x_{1}, x_{2}\right)\right) \omega_{1}\left(x_{1}, x_{2}\right)+L \omega_{1}\left(x_{2}, T x_{1}\right)+\theta^{n_{2}}\left(\omega_{1}\left(x_{1}, x_{2}\right)\right) \\
& =\theta\left(\omega_{1}\left(x_{1}, x_{2}\right)\right) \omega_{1}\left(x_{1}, x_{2}\right)+\theta^{n_{2}}\left(\omega_{1}\left(x_{1}, x_{2}\right)\right) \\
& <\omega_{1}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Continuing in this process, we may select a positive integer n_{k} such that

$$
\theta^{n_{k}}\left(\omega_{1}\left(x_{k-1}, x_{k}\right)\right)<\left[1-\theta\left(\omega_{1}\left(x_{k-1}, x_{k}\right)\right)\right] \omega_{1}\left(x_{k-1}, x_{k}\right)
$$

where $x_{k-1} \neq x_{k}$ and $\alpha\left(x_{k-1}, x_{k}\right) \geq 1$. By Lemma 3.2, we may select $x_{k+1} \in T x_{k}$ such that

$$
\omega_{1}\left(x_{k}, x_{k+1}\right) \leq H_{\omega}\left(T x_{k-1}, T x_{k}\right)+\theta^{n_{k}}\left(\omega_{1}\left(x_{k-1}, x_{k}\right)\right)
$$

In view of T is α-admissible and $x_{k+1} \in T x_{k}$, we have

$$
\omega_{1}\left(x_{k}, x_{k+1}\right) \geq 1
$$

Since $\alpha\left(x_{k-1}, x_{k}\right) \geq 1$, by (9), we get

$$
\omega_{1}\left(x_{k}, x_{k+1}\right)<\omega_{1}\left(x_{k-1}, x_{k}\right) \quad \text { for all } k=1,2,3, \ldots
$$

It follows that $\left\{a_{k} \equiv \omega_{1}\left(x_{k}, x_{k+1}\right)\right\}$ is a nonincreasing sequence of nonnegative numbers. Then there exists a constant $c \geq 0$ such that $\lim _{k \rightarrow \infty} a_{k}=c$. By assumption, $\limsup _{t \rightarrow c^{+}} \theta(t)<1$. This implies that there exists a positive integer N such that for $k \geq N$, we have $\theta\left(\omega_{1}\left(x_{k}, x_{k+1}\right)\right) \stackrel{\substack{t \rightarrow c^{+}}}{<h}$ where $\underset{t \rightarrow c^{+}}{\limsup } \theta(t)<h<1$.

Now, by (9), we have for $k \geq N$

$$
\begin{aligned}
a_{k}=\omega_{1}\left(x_{k}, x_{k+1}\right) & \leq \theta\left(a_{k}\right) a_{k-1}+\theta^{n_{k}}\left(a_{k-1}\right) \\
& \leq \theta\left(a_{k}\right) \theta\left(a_{k-1}\right) a_{k-2}+\theta\left(a_{k}\right) \theta^{n_{k-1}}\left(a_{k-2}\right)+\theta^{n_{k}}\left(a_{k-1}\right) \\
& \vdots \\
& \leq \prod_{i=1}^{k} \theta\left(a_{i}\right) a_{0}+\sum_{m=1}^{k-1} \prod_{i=m+1}^{k} \theta\left(a_{i}\right) \theta^{n_{m}}\left(a_{m}\right)+\theta^{n_{k}}\left(a_{k-1}\right) \\
& \leq \prod_{i=1}^{k} \theta\left(a_{i}\right) a_{0}+\sum_{m=1}^{k-1} \prod_{i=\max \left\{k_{0}, m+1\right\}}^{k} \theta\left(a_{i}\right) \theta^{n_{m}}\left(a_{m}\right)+\theta^{n_{k}}\left(a_{k-1}\right) \\
& \leq h^{k-k_{0}+1} \prod_{i=1}^{k_{0}-1} \theta\left(a_{i}\right) a_{0}+\left(k_{0}-1\right) h^{k-k_{0}+1} \sum_{m=1}^{k_{0}-1} \theta^{n_{m}}\left(a_{m}\right) \\
& +\sum_{m=k_{0}}^{k-1} h^{k-m} \theta^{n_{m}}\left(a_{m}\right)+\theta^{n_{k}}\left(a_{k-1}\right) \\
& \leq C_{1} h^{k}+C_{2} h^{k}+C_{3} h^{k}+h^{n_{k}} \leq C h^{k},
\end{aligned}
$$

where C_{1}, C_{2}, C_{3}, C are appropriate constants.
For $k \geq N$, we have

$$
\omega_{1}\left(x_{k}, x_{k+1}\right) \leq C h^{k}
$$

Proceeding as in proof of Theorem 3.9, we may prove that x_{n} is ω-Cauchy in M. By completeness of (M, ω), there exists a $u \in M$ such that $\lim _{n \rightarrow \infty} x_{n}=u$. We shall prove that u is a fixed point of T. Since $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}, x_{n} \rightarrow u$ and (M, α) is ω-regular, there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, u\right) \geq 1$ for all $k \in \mathbb{N}$.

We have for any $k \geq 0$

$$
\begin{aligned}
H_{\omega}\left(T x_{n(k)}, T u\right) & \leq \theta\left(\omega_{1}\left(x_{n(k)}, u\right)\right) \omega_{1}\left(x_{n(k)}, u\right)+L \omega_{1}\left(x_{n}, T x_{n(k)}\right) \\
& \leq \omega_{1}\left(x_{n(k)}, u\right)+L \omega_{1}\left(u, x_{n(k)+1}\right) .
\end{aligned}
$$

Passing to limit as $k \rightarrow \infty$, we get $\lim _{k \rightarrow \infty} H_{\omega}\left(T x_{n(k)}, T u\right)=0$.
Since $x_{n(k)+1} \in T x_{n(k)}$, by Lemma 3.3, we conclude that $u \in T u$, that is, u is a fixed point of T.
Now, passing to the case where f_{T} is lower semi-continuous, we get again $u \in T u$.

3.4. Result IV

In [15], Edelstein proved that if X is a complete ε-chainable metric space and $f: X \rightarrow X$ is an (ε, λ)-uniformly locally contractive mapping, then f has a fixed point. Nadler [21] extended this result to multi-valued mappings and he proved that if (X, d) is a complete ε-chainable metric space and $F: X \rightarrow 2^{X}$ is an (ε, λ)-uniformly locally contractive multi-valued mapping, then F has a fixed point. We generalize this result to $\alpha-\omega$-weak contractions in the setting of modular metric spaces.

Definition 3.17. Let (X, ω) be a modular metric space. A nonempty subset M of X_{ω} is called to be finitely ε-chainable (where $\varepsilon>0$ is fixed) if and only if given $x, y \in M$, there is an ε-chain from x to y (that is, a finite set of points $x_{0}, x_{1}, \ldots, x_{p} \in M$ such that $x_{0}=x, x_{p}=y$, and $\omega_{1}\left(x_{i-1}, x_{i}\right)<\varepsilon$ for all $i=1,2, \ldots, p$).

Definition 3.18. Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}. A multi-valued $T: M \rightarrow$ $C B(M)$ is called to be an $(\varepsilon, k, L)-\omega$-uniformly locally weak contraction if there exist two constants $k \in[0,1), L \geq 0$ such that for any $x, y \in M$, we have

$$
\begin{equation*}
H_{\omega}(T x, T y) \leq k \omega_{1}(x, y)+L \omega_{1}(y, T x), \quad \text { whenever } \quad \omega_{1}(x, y)<\varepsilon \tag{10}
\end{equation*}
$$

Theorem 3.19. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-type condition and the Fatou property. Let M be a nonempty ω-complete and ω-compact subset of X_{ω}, which is finitely ε-chainable, for some $\varepsilon>0$. Let $T: M \rightarrow C B(M)$ be an $(\varepsilon, k, L)-\omega$-uniformly locally weak contraction.

Then T is a MWP operator.
Proof. Let $(x, y) \in M \times M$. Take

$$
\omega^{\varepsilon}(x, y)=\inf \left\{\sum_{i=1}^{p} \omega_{1}\left(x_{i-1}, x_{i}\right): x_{0}=x, x_{1}, \ldots, x_{p}=y \text { is an } \varepsilon-\text { chain from } x \text { to } y\right\} .
$$

It is clear that $\omega^{\varepsilon}(x, y)<\infty$ for every $x, y \in M$ and $\omega^{\varepsilon}(x, y)=\omega_{1}(x, y)$ for all $x, y \in M$ such that $\omega_{1}(x, y)<\varepsilon$. Moreover, by definition of ω, we have for all $x, y \in M$

$$
\omega_{n}(x, y) \leq \inf \left\{\omega_{1}\left(x, x_{1}\right)+\omega_{1}\left(x_{1}, x_{2}\right)+\ldots+\omega_{1}\left(x_{n-1}, y\right)\right\}=\omega^{\varepsilon}(x, y)
$$

Let $z_{0} \in M$ and $z_{1} \in T z_{0}$. Letting $x_{0}, x_{1}, \ldots, x_{p}$ be a ε-chain from z_{0} to z_{1}. Since $T x_{1}$ is ω-compact, by Lemma 3.2 , there exists $y_{1} \in T x_{1}$ such that

$$
\omega_{1}\left(z_{1}, y_{1}\right) \leq H_{\omega}\left(T z_{0}, T x_{1}\right)
$$

Similarly, there exists $y_{2} \in T x_{2}$ such that

$$
\omega_{1}\left(y_{1}, y_{2}\right) \leq H_{\omega}\left(T x_{1}, T x_{2}\right)
$$

Continuing in this fashion, we can find y_{3}, \ldots, y_{n} such that $y_{i} \in T x_{i}$ and

$$
\begin{aligned}
\omega_{1}\left(y_{i}, y_{i+1}\right) & \leq H_{\omega}\left(T x_{i}, T x_{i+1}\right) \leq k \omega_{1}\left(x_{i}, x_{i+1}\right)+L \omega_{1}\left(x_{i+1}, T x_{i}\right) \\
& \leq k \omega_{1}\left(x_{i}, x_{i+1}\right)+L \omega_{1}\left(x_{i+1}, x_{i+1}\right)=k \omega_{1}\left(x_{i}, x_{i+1}\right) .
\end{aligned}
$$

Obviously, $z_{0}, y_{1}, \ldots, y_{p}$ is a ε-chain from z_{0} to y_{p} with $y_{n} \in T z_{1}$. Take $z_{2}=y_{p}$.
Since T is an $(\varepsilon, k, L)-\omega$-uniformly locally weak contraction, we obtain

$$
\omega^{\varepsilon}\left(z_{1}, z_{2}\right) \leq k \omega^{\varepsilon}\left(z_{0}, z_{1}\right)
$$

Proceeding as above, we may construct a sequence $\left\{z_{n}\right\}$ in M such that for all $n \geq 1$, we have $z_{n+1} \in T z_{n}$ and

$$
\omega^{\varepsilon}\left(z_{n}, z_{n+1}\right) \leq k \omega^{\varepsilon}\left(z_{n-1}, z_{n}\right)
$$

By induction, we get

$$
\omega^{\varepsilon}\left(z_{n}, z_{n+1}\right) \leq k^{n} \omega^{\varepsilon}\left(z_{0}, z_{1}\right)
$$

Considering that ω satisfies the Δ_{2}-type condition, so there exists a constant $C>0$ such that for all $n \geq 1$

$$
\omega_{1}\left(z_{n}, z_{n+1}\right) \leq C \omega_{n}\left(z_{n}, z_{n+1}\right) \leq C \omega^{\varepsilon}\left(z_{n}, z_{n+1}\right) \leq C k^{n} \omega^{\varepsilon}\left(z_{0}, z_{1}\right)
$$

Using Lemma 2.11, we conclude that $\left\{z_{n}\right\}$ is ω-Cauchy. By completeness of (M, ω), there exists a point $z \in M$ such that $\lim _{n \rightarrow \infty} z_{n}=z$.

Proceeding as the above, there exists $y_{n} \in T z$ such that

$$
\omega_{1}\left(x_{n+1}, y_{n}\right) \leq H_{\omega}\left(x_{n}, z\right)
$$

The mapping T is an $(\varepsilon, k, L)-\omega$-uniformly locally weak contraction, so

$$
\omega^{\varepsilon}\left(x_{n+1}, y_{n}\right) \leq k \omega^{\varepsilon}\left(x_{n}, z\right)
$$

Since $\lim _{n \rightarrow \infty} z_{n}=z$, there exists $N \geq 1$ such that for $n \geq N$, we have $\omega_{1}\left(x_{n}, z\right)<\varepsilon$. It follows that $\omega^{\varepsilon}\left(x_{n}, z\right)=$ $\omega_{1}\left(x_{n}, z\right)$.

We have for $n \geq N$,

$$
\begin{aligned}
\omega_{p+1}\left(y_{n}, z\right) & \leq \omega_{p}\left(y_{n}, x_{n+1}\right)+\omega_{1}\left(x_{n+1}, z\right) \leq \omega^{\varepsilon}\left(x_{n+1}, y_{n}\right)+\omega_{1}\left(x_{n+1}, z\right) \\
& \leq \omega_{1}\left(x_{n+1}, z\right)+k \omega_{1}\left(x_{n}, z\right) .
\end{aligned}
$$

Passing to limit as $n \rightarrow \infty$, we get $\lim _{n \rightarrow \infty} \omega_{p+1}\left(y_{n}, z\right)$. Since ω satisfies the Δ_{2}-type condition and $T z$ is closed, we conclude that $z \in T z$.

4. Fixed point theory in ordered modular metric spaces

The study of fixed points in partially ordered sets was developed in [22, 23, 25]. In this section, we give some results of fixed point for multi-valued mappings in the concept of partially ordered modular metric spaces. We say that $x, y \in X_{\omega}$ are comparable if $x \leq y$ or $y \leq x$ holds. Moreover, for $A, B \subseteq X_{\omega}$, we have $A \leq B$ whenever for each $x \in A$, there exists $y \in B$ such that $x \leq y$. Now, we introduce the following concepts.
Definition 4.1. Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}. A multi-valued $T: M \rightarrow$ $C B(M)$ is called to be weak continuous if the following condition holds: if $\left\{x_{n}\right\}$ is an ω-convergent sequence in M to $x \in M$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{k \rightarrow \infty} H_{\omega}\left(T x_{n(k)}, T x\right)=0$.
Definition 4.2. Let (X, ω) be a modular metric space and M be a nonempty subset of X_{ω}. The pair (M, \leq) is said to be ω-regular if the following condition holds: for any sequence $\left\{x_{n}\right\}$ in M with $T x_{n} \leq T x_{n+1}$, for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x \in M$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $T x_{n(k)} \leq T x$, for all $k \in \mathbb{N}$.

We have the following theorem.
Theorem 4.3. Let (X, ω, \leq) be a partially ordered modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-condition. Let M be a nonempty ω-complete subset of X_{ω}. Suppose that $T: M \rightarrow C B(M)$ is a multi-valued mapping. Assume that there exist a function $\theta:[0, \infty) \rightarrow[0,1)$ satisfying $\limsup _{r \rightarrow t^{+}} \theta(r)<1$ for every $t \in[0, \infty)$ and a constant $L \geq 0$ such that

$$
\begin{equation*}
\left.H_{\omega}(T x, T y)\right) \leq \theta\left(\omega_{1}(x, y)\right) \omega_{1}(x, y)+L \omega_{1}(y, T x) \tag{11}
\end{equation*}
$$

for all $x, y \in M$, with $T x \leq T y$.
Suppose also that

1. there exist $x_{0} \in M$ and $x_{1} \in T x_{0}$ such that $T x_{0} \leq T x_{1}$;
2. for each $x \in M$ and $y \in T x$ with $T x \leq T y$, we have $T y \leq T z$ for all $z \in T y$;
3. T is weak continuous.

Then T is a MWP operator.
Proof. Given $\alpha: M \times M \rightarrow[0, \infty)$ as

$$
\alpha(x, y)=\left\{\begin{array}{l}
1 \text { if } T x \leq T y \\
0 \quad \text { otherwise }
\end{array}\right.
$$

The multi-valued mapping T is α-admissible. In fact, if $x \in M$ and $y \in T y$ with $\alpha(x, y) \geq 1$, then $T x \leq T y$. By condition (2), we have $T y \leq T z$ for all $z \in T y$, then $\alpha(y, z)=1$. Also, by (11), T verifies (9). Proceeding as in proof of Theorem 3.16, we may construct an ω-convergent sequence $\left\{x_{n}\right\}$ to $x \in M$ such that $x_{n+1} \in T x_{n}$ for all $n \in \mathbb{N}$. Finally, by condition (3) and Lemma 3.3, we conclude that x is a fixed point of T.

Theorem 4.3 remains true if the continuity hypothesis is replaced by the ω-regularity of (M, \preceq).
This statement is given as follows.
Theorem 4.4. Let (X, ω, \leq) be a partially ordered modular metric space. Assume that ω is a convex regular modular satisfying the Δ_{2}-condition. Let M be a nonempty ω-complete subset of X_{ω}. Suppose that $T: M \rightarrow C B(M)$ is a multi-valued mapping. Assume that there exist a function $\theta:[0, \infty) \rightarrow[0,1)$ satisfying $\lim \sup \theta(r)<1$ for every $t \in[0, \infty)$ and a constant $L \geq 0$ such that

$$
\begin{equation*}
\left.H_{\omega}(T x, T y)\right) \leq \theta\left(\omega_{1}(x, y)\right) \omega_{1}(x, y)+L \omega_{1}(y, T x) \tag{12}
\end{equation*}
$$

for all $x, y \in M$, with $T x \leq T y$.
Suppose also that

1. there exist $x_{0} \in M$ and $x_{1} \in T x_{0}$ such that $T x_{0} \leq T x_{1}$;
2. for each $x \in M$ and $y \in T x$ with $T x \leq T y$, we have $T y \leq T z$ for all $z \in T y$;
3. (M, \leq) is ω-regular.

Then T is a MWP operator.
Proof. As in proof of the above theorem, we define the function $\alpha: M \times M \rightarrow[0, \infty)$ as follows

$$
\alpha(x, y)=\left\{\begin{array}{l}
1 \text { if } T x \leq T y \\
0 \quad \text { otherwise }
\end{array}\right.
$$

It is clear that the multi-valued mapping T is α-admissible. Also, by (12), T verifies the contraction (9). Finally, by condition (3), the sequence (M, α) is ω-regular. Thus, all hypotheses of Theorem 3.16 are satisfied and hence T has a fixed point.

Authors contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

References

[1] A.A.N. Abdou, M.A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl., 2013 (2013), 163 (2013).
[2] A.A.N. Abdou, M.A. Khamsi, Fixed points of multivalued contraction mappings in modular metric spaces, Fixed Point Theory Appl., 2014, 2014:249.
[3] M.U. Ali, T. Kamran, E. Karapınar, (α, ψ, ξ)-contractive multi-valued mappings, Fixed Point Theory Appl., 2014, 2014:7.
[4] J.H. Asl, S. Rezapour, N. Shahzad, On fixed points of $\alpha-\psi$-contractive multifunctions, Fixed Point Theory Appl., 2012, 2012:212.
[5] H. Aydi, A. Felhi, E. Karapinar, S. Sahmim, A Nadler-type fixed point theorem in dislocated spaces and applications, Miscolc Math. Notes, 19 (1), (2018), 111-124.
[6] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff Metric and Nadler's Fixed Point Theorem on Partial metric Spaces, Topology and its Applications, 159 (2012), 3234-3242.
[7] H. Aydi, M. Abbas, C. Vetro, Common Fixed points for multivalued generalized contractions on partial metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 108 (2014), 483-501.
[8] H. Aydi, A. Felhi, Fixed points in modular spaces via α-admissible mappings and simulation functions, J. Nonlinear Sci. Appl. 9 (2016), 3686-3701.
[9] H. Aydi, N. Tas, N.Y. Ozgur, N. Mlaiki, Fixed-discs in rectangular metric spaces, Symmetry, 11 (2), (2019), 294.
[10] H. Aydi, E. Karapınar, M.F. Bota, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012, 2012:88.
[11] V.V. Chistyakov, Modular metric spaces, I: basic concepts, Nonlinear Anal. 72(1) (2010), 1-14.
[12] V.V. Chistyakov, Modular metric spaces, II: application to superposition operators, Nonlinear Anal. 72(1) (2010), 15-30.
[13] S.H. Cho, Fixed point theorem for Ćirić-Berinde Type contractive multi-valued mappings, Abstract and Applied Analysis, Volume 2015 (2015), Article ID 768238, 6 pages.
[14] P.Z. Daffer, H. Kaneko, Fixed point of generalized contractive multi-valued mappings, J. Math. Anal. Appl. 192(1995), 655-666.
[15] M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10.
[16] Z.D. Mitrovic, S. Radenović, H. Aydi, A.A. Altasan, C. Ozel, On two new approaches in modular spaces, Italian Journal of Pure and Applied Mathematics, 41 (2019), 679-690.
[17] B. Mohammadi, S. Rezapour, N. Shahzad, Some results on fixed points of $\alpha-\psi$-Ćirić generalized multifunctions, Fixed Point Theory Appl. 2013, 2013:24.
[18] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. Volume 1034. Springer, Berlin, (1983).
[19] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, (1950).
[20] M. Nazam, H. Aydi, M.S. Noorani, H. Qawaqneh, Existence of fixed points of four maps for a new generalized F-contraction and an application, Journal of Function Spaces, vol. 2019, Article ID 5980312, 8 pages, 2019.
[21] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[22] J.J. Nieto, R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239.
[23] J.J. Nieto, R.R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (English Ser.), 23 (2007), 2205-2212.
[24] W. Orlicz, Collected Papers. Parts I, II. PWN, Warsaw (1988).
[25] A.C.M. Ran, M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443.
[26] I.A. Rus, A. Petrusel, A. Sintamarian, Data dependence of the fixed points set of multivalued weakly Picard operators, Stud. Univ. Babes-Bolyai Math. 46 (2001), 111-121.
[27] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.
[28] N. Tahat, H. Aydi, E. Karapınar, W. Shatanawi, Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl. 2012, 2012:48.

[^0]: 2010 Mathematics Subject Classification. 47H10; 54H25; 46J10
 Keywords. modular metric spaces, Δ_{2}-condition, multi-valued mapping, fixed point
 Received: 22 December 2017; Accepted: 01 July 2018
 Communicated by Dragan S. Djordjević
 Corresponding author: Erdal Karapınar
 Email addresses: hassen. aydi@tdtu.edu.vn (Hassen Aydi), abdelbassetfelhi@gmail.com, abdelbasset.felhi@ipeib.rnu.tn (Abdelbasset Felhi), erdalkarapinar@yahoo.com (Erdal Karapınar), hsalshahrani@iau.edu.sa (Hind S. Alshahrani)

