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On [p, q]-Order of Growth of Solutions of Complex Linear Differential
Equations near a Singular Point

Jianren Longa, Sangui Zenga

aSchool of Mathematical Science, Guizhou Normal University, Guiyang, 550025, P.R. China.

Abstract. We investigate the [p, q]-order of growth of solutions of the following complex linear differential
equation

f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = 0,

where A j(z) are analytic in C − {z0}, z0 ∈ C. Some estimations of [p, q]-order of growth of solutions of the
equation are obtained, which is generalization of previous results from Fettouch-Hamouda.

1. Introduction and Main Results

For the following complex linear differential equation

f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = 0, (1)

where A j(z) are analytic in a complex domain, j = 0, 1, . . . , k− 1, k ≥ 2. The growth of solutions of (1) is very
interesting topic after Wittich’s work [16], the main tool is Nevanlinna theory of meromorphic functions
which can be found in [6, 10, 18]. Many results have been obtained by many different researchers, for the
case of complex plane C, see, for example, [10–13, 17] and therein references, for the case of unit discD, see,
for example [1, 2, 4, 7, 14] and therein references. Recently, Fettouch and Hamouda investigated the growth
of solutions of equation (1) by using a new idea, in which the coefficients are analytic function except a
finite singular point, more details can be found in [3, 5]. The concepts of [p, q]-order and [p, q]-type of entire
functions was introduced by Juneja et al. in [8, 9], more recently, some related development was founded
by Srivastava et al., see [15] for more details. It inspired us to investigate the [p, q]-order of solutions of
equation (1). We firstly recall some related notations for our results. Let f (z) be meromorphic in C − {z0},
where C = C ∪ {∞}, z0 ∈ C. Define the counting function of f (z) near z0 by

Nz0 (r, f ) = −

∫ r

∞

n(t, f ) − n(∞, f )
t

dt − n(∞, f ) log r,
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where n(t, f ) denotes the number of poles of f (z) in the region {z ∈ C : t ≤ |z − z0|} ∪ {∞} counting its
multiplicities; the proximity function near z0 is defined by

mz0 (r, f ) =
1

2π

∫ 2π

0
log+

| f (z0 − reiϕ)|dϕ.

The characteristic function of f (z) near z0 is defined by

Tz0 (r, f ) = mz0 (r, f ) + Nz0 (r, f ).

Similarly to the case of complex plane, for all R ∈ (0,∞), we define exp1 R = eR and expp+1 R =

exp(expp R), log1 R = log R and logp+1 R = log(logp R). Let f (z) be meromorphic in C − {z0}, p and q be two
integers with p ≥ q ≥ 1. The [p, q]-order of f (z) near z0 is defined by

σ[p,q],T( f , z0) = lim sup
r→0

log+
p Tz0 (r, f )

logq
1
r

. (2)

For an analytic function f (z) in C − {z0}, the [p, q]-order of f (z) is defined by

σ[p,q],M( f , z0) = lim sup
r→0

log+
p+1 Mz0 (r, f )

logq
1
r

, (3)

where Mz0 (r, f ) = max{| f (z)| : |z − z0| = r}.

Remark 1.1. Suppose that f (z) is an analytic function in C − {z0}. Then we get σ[p,q],M( f , z0) = σ[p,q],T( f , z0) by
using [3, Lemma 2.2]. Therefore, in the sequel, we denote σ[p,q]( f , z0) = σ[p,q],M( f , z0) = σ[p,q],T( f , z0).

Let f (z) = e
1

(z0−z)n , where n is a positive integer. Obviously, f (z) is analytic inC−{z0}. We get Mz0 (r, f ) = e
1

rn

and Tz0 (r, f ) = n
πrn . This shows that σ[1,1],T( f , z0) = σ[1,1],M( f , z0) = n.

We define [p, q]-type near z0 by using similar reason as in the case of complex plane. Let f (z) be an
analytic in C − {z0}with σ[p,q]( f , z0) = σ ∈ (0,∞). Then its [p, q]-type is defined by

τ[p,q],M( f , z0) = lim sup
r→0

log+
p Mz0 (r, f )

(logq−1
1
r )σ

. (4)

Here, we study the growth of solutions of (1) by using the concepts of [p, q]-order and [p, q]-type.

Theorem 1.2. Let A0(z),A1(z), . . . ,Ak−1(z) be analytic functions in C − {z0} satisfying max{σ[p,q](A j, z0) : j , 0} <
σ[p,q](A0, z0) < ∞. Then, every nontrivial solution f (z) of (1), that is analytic in C − {z0}, satisfies σ[p+1,q]( f , z0) =
σ[p,q](A0, z0).

The following example shows that the Theorem 1.2 is sharp. f (z) = ee
1

(z−z0)n
solves the following equation

f ′′ + A1(z) f ′ + A0(z) f = 0, (5)

where A1(z) = − n
(z0−z)n+1 −

n+1
z0−z ,A0(z) = n2

(z0−z)2n+2 e
2

(z0−z)n . Then σ[1,1](A1, z0) = 0 < n = σ[1,1](A0, z0) and
σ[2,1]( f , z0) = n.

In Theorem 1.2, we know that the coefficient A0(z) is a dominant coefficient in terms of [p, q]-order. The
following result shows that the coefficient A0(z) is a dominant coefficient in terms of [p, q]-type.

Theorem 1.3. Let A0(z),A1(z), . . . ,Ak−1(z) be analytic functions in C − {z0} satisfying the following conditions:
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(i) max{σ[p,q](A j, z0) : j , 0} ≤ σ[p,q](A0, z0) < ∞;
(ii) max{τ[p,q],M(A j, z0) : σ[p,q](A j, z0) = σ[p,q](A0, z0)} < τ[p,q],M(A0, z0).

Then, every nontrivial solution f (z) of (1), that is analytic in C − {z0}, satisfies σ[p+1,q]( f , z0) = σ[p,q](A0, z0).

We get two results above concerning the growth of solutions of equation (1) when the coefficient A0(z)
is a dominant coefficient. A natural question is: what can we say about the growth of solutions of equation
(1) when the coefficient As(z) is a dominant coefficient, where s , 0. Next we study also this question, and
prove the following result.

Theorem 1.4. Let A0(z),A1(z), . . . ,Ak−1(z) be analytic functions in C − {z0} satisfying max{σ[p,q](A j, z0) : j , s} <
σ[p,q](As, z0) < ∞. Then, every nontrivial solution f (z) of (1), that is analytic in C − {z0}, satisfies σ[p+1,q]( f , z0) ≤
σ[p,q](As, z0) ≤ σ[p,q]( f , z0).

In our results, we suppose always that f (z) is analytic in C − {z0}, the following example shows there
exists a solution f (z) of equation (1) such that f (z) is not analytic in C− {z0} provided all coefficients A j(z) of

(1) are analytic in C − {z0}. We consider the equation (5) again, where A1(z) = e
1

(z0−z) ,A0(z) = 1
(z0−z) e

1
(z0−z) . The

function f (z) = z0 − z solves (5), and f (z) is not analytic in C − {z0}.

2. Preliminary results

In order to prove our results, the following preliminary results are needed. Firstly, we denote the
logarithmic measure of a set E ⊂ (0, 1) by ml(E) =

∫
E

1
t dt, denote the central index of an analytic function

1(z) in C by V(r, 1) which can be found in [10, p. 50], and denote the central index of an analytic function
f (z) in C − {z0} by Vz0 (r, f ) which can be found in [5, p. 996].

We get the first lemma which the [p, q]-order of an analytic function f (z) in C − {z0} is described by its
central index Vz0 (r, f ).

Lemma 2.1. Let f (z) be a nonconstant analytic function in C − {z0}. Then

lim sup
r→0

log+
p Vz0 (r, f )

logq
1
r

= σ[p,q]( f , z0).

Proof. Set 1(ω) = f (z0 −
1
ω ) and σ[p,q](1) = lim sup

R→∞

log+
p+1 M(R,1)
logq R . By [5, Remark 7], then 1 is an entire function in

C and

Vz0 (r, f ) = V(R, 1), R =
1
r
. (6)

From [8, p. 57], we get

lim sup
R→∞

log+
p V(R, 1)

logq R
= σ[p,q](1). (7)

It follows from [3, Lemma 2.2] that T(R, 1) = Tz0 (r, f ), and then

σ[p,q](1) = σ[p,q]( f , z0).

Combining (6) and (7), we get that the conclusion holds.

The following two lemmas plays an important role in the proof of our results.
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Lemma 2.2. Let f (z) be a nonconstant analytic function in C − {z0} with σ[p,q]( f , z0) = σ. Then there exists a set
E ⊂ (0, 1) having infinite logarithmic measure such that for all |z − z0| = r ∈ E,

lim
r→0

logp+1 Mz0 (r, f )

logq
1
r

= σ.

Proof. By (3), then there exists a sequence {rn}
∞

n=1 tending to 0 satisfying rn+1 < n
n+1 rn and lim

n→∞

logp+1 Mz0 (rn, f )

logq
1

rn
= σ.

Therefore, there exists an n0 ∈ N+ such that for all n > n0 and for any r ∈ [ n
n+1 rn, rn], we get

logp+1 Mz0 (rn, f )

logq
1

n
n+1 rn

≤

logp+1 Mz0 (r, f )

logq
1
r

≤

logp+1 Mz0 ( n
n+1 rn, f )

logq
1
rn

.

Since lim
n→∞

logp+1 Mz0 (rn, f )

logq
1

n
n+1 rn

= σ, lim
n→∞

logp+1 Mz0 ( n
n+1 rn, f )

logq
1

rn
= σ, then for any r ∈

[
n

n+1 rn, rn

]
, we get

lim
r→0

logp+1 Mz0 (r, f )

logq
1
r

= σ.

Set E =

∞⋃
n=n0

[ n
n + 1

rn, rn

]
. Then

ml(E) =

∫
E

1
t

dt =

∞∑
n=n0

∫ rn

n
n+1 rn

1
t

dt =

∞∑
n=n0

log
(
1 +

1
n

)
= ∞.

Remark 2.3. If f (z) is a nonconstant meromorphic function in C − {z0} with σ[p,q]( f , z0) = σ, then by (2) and using
similar way as in the proof of Lemma 2.2, we can easily get that there exists a set E ⊂ (0, 1) having infinite logarithmic
measure such that for all |z − z0| = r ∈ E,

lim
r→0

logp Tz0 (r, f )

logq
1
r

= σ.

Lemma 2.4. Let f (z) be a nonconstant analytic function inC−{z0}with σ[p,q]( f , z0) = σ ∈ (0,∞) and τ[p,q],M( f , z0) =
τ ∈ (0,∞). Then, for any giving β ∈ (0, τ), there exists a set F ⊂ (0, 1) of infinite logarithmic measure such that for
all |z − z0| = r ∈ F,

log Mz0 (r, f ) ≥ expp−1

(
β(logq−1

1
r

)σ
)
.

Proof. By using similar method as in the proof of Lemma 2.2, the conclusion is hold. Here we omit the
details.

In order to prove Lemma 2.6, the following Lemma 2.5 is needed.

Lemma 2.5. Let 1 : (0, 1) → R, h : (0, 1) → R be monotone decreasing functions such that 1(r) ≥ h(r) possibly
outside an exceptional set E ⊂ (0, 1) that has finite logarithmic measure (

∫
E

1
t dt < ∞). Then for any given β > 1,

there exists a constant 0 < r0 < 1, such that for all r ∈ (0, r0), we have 1(rβ) ≥ h(r).

Proof. Set α =
∫

E
1
t dt < ∞, and choose r0 = exp( α

1−β ) ∈ (0, 1). For any 0 < r < r0, the interval Ir = [rβ, r] meets
the complement of E, since∫

Ir

1
t

dt =

∫ r

rβ

1
t

dt = log r − log rβ = (1 − β) log r > (1 − β) log r0 = α.
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Thus, by the monotonicity of 1 and h, there exists t ∈ Ir, we have

1(rβ) ≥ 1(t) ≥ h(t) ≥ h(r).

Now, we get the upper bound of the growth of solutions of equation (1).

Lemma 2.6. Let A j(z) be analytic functions in C − {z0} satisfying σ[p,q](A j, z0) ≤ σ < ∞, j = 0, 1, . . . , k − 1. If f (z)
is a solution of (1) that is analytic in C − {z0}, then σ[p+1,q]( f , z0) ≤ σ.

Proof. By (1), we have∣∣∣∣∣∣ f (k)

f

∣∣∣∣∣∣ ≤ |Ak−1(z)| ·

∣∣∣∣∣∣ f (k−1)

f

∣∣∣∣∣∣ + · · · + |As(z)| ·

∣∣∣∣∣∣ f (s)

f

∣∣∣∣∣∣ + · · · + |A0(z)| . (8)

Since σ[p,q](A j, z0) ≤ σ ( j = 0, . . . , k − 1), then for any given ε > 0, there exists r0 ∈ (0, 1) such that for all
|z0 − z| = r ∈ (0, r0),

|A j(z)| < expp

(
logq−1

1
r

)σ+ε

, j = 0, 1, . . . , k − 1. (9)

By [5, Theorem 8], there exists a set E ⊂ (0, 1) that has finite logarithmic measure, such that for all j = 0, 1, . . . , k
and r < E, we have∣∣∣∣∣∣ f ( j)(z)

f (z)

∣∣∣∣∣∣ = |1 + o(1)| ·
(

Vz0 (r, f )
r

) j

, r→ 0, (10)

where z is a point in the circle |z0 − z| = r that satisfies | f (z)| = max
|z0−z|=r

| f (z)|.

Combining (8), (9) and (10), for all |z − z0| = r ∈ (0, r0)\E and | f (z)| = Mz0 (r, f ), we get

Vz0 (r) ≤ kr expp

(
logq−1

1
r

)σ+ε

|1 + o(1)|. (11)

It follows from Lemma 2.1, Lemma 2.5 and (11), we get this conclusion.

We need the following Lammas 2.7-2.8 to prove Theorem 1.4.

Lemma 2.7. Let f (z) be a nonconstant meromorphic function in C − {z0}. Then the following statements hold.

(i) Tz0 (r, 1
f ) = Tz0 (r, f ) + O(1);

(ii) Tz0 (r, f ′) < O
(
Tz0 (r, f ) + log 1

r

)
, r ∈ (0, r0]\E, where E ⊂ (0, r0] with ml(E) < ∞.

Proof. (i) Set 1
1(ω) = 1

f(z0−
1
ω ) , by using similar reason as in the proof of [3, Lemma 2.2], we get T

(
R, 1
1

)
=

Tz0

(
1
R ,

1
f

)
, combining [3, Lemma 2.2] and the first main theorem in Nevanlinna theory, we get

Tz0

(
r,

1
f

)
= Tz0 (r, f ) + O(1), r =

1
R
.

(ii) Since Tz0 (r, f ′) = mz0 (r, f ′) + Nz0 (r, f ′) ≤ 2Tz0 (r, f ) + mz0

(
r, f ′

f

)
. It follows from this and [3, Lemma 2.4]

that there exists a set E ⊂ (0, r0] that has finite logarithmic measure such that for all |z0 − z| = r ∈ (0, r0]\E,

Tz0 (r, f ′) ≤ O
(
Tz0 (r, f ) + log

1
r

)
.
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Lemma 2.8. Let f1 be an analytic function in C−{z0} satisfying σ[p,q]( f1, z0) = σ1 > 0 and f2 be an analytic function
in C − {z0} satisfying σ[p,q]( f2, z0) = σ2 < ∞. If σ2 < σ1, then there exists a set E ⊂ (0, 1) having infinite logarithmic

measure such that for all |z − z0| = r ∈ E, lim
r→0

Tz0 (r, f2)
Tz0 (r, f1) = 0.

Proof. By (2), for any given ε ∈ (0, σ1−σ2
2 ), there exists r0 ∈ (0, 1) such that for all |z − z0| = r ∈ (0, r0),

Tz0 (r, f2) ≤ expp((σ2 + ε) logq
1
r

). (12)

By Remark 2.3, there exists a set E ⊂ (0, r0) of infinite logarithmic measure such that for all |z − z0| = r ∈ E,

Tz0 (r, f1) ≥ expp((σ1 − ε) logq
1
r

). (13)

It follows from (12) and (13) that for all r ∈ E
⋂

(0, r0), we get

0 ≤
Tz0 (r, f2)
Tz0 (r, f1)

≤

expp((σ2 + ε) logq
1
r )

expp((σ1 − ε) logq
1
r )
→ 0, as r→ 0.

This implies the conclusion holds.

3. Proof of Theorem 1.2

Set σ[p,q](A0, z0) = σ. Let α and β be constants with max{σ[p,q](A j, z0) : j , 0} < β < α < σ. By (3), for any
given ε ∈

(
0,min(α−β2 , σ−α2 )

)
, there exists r1 such that for all |z0 − z| = r ∈ (0, r1),

|A j(z)| < expp

(
logq−1

1
r

)β+ε
, j = 1, 2, . . . , k − 1. (14)

Applying Lemma 2.2 to A0(z), for ε given above, there exist a r2 and a set E1 ⊂ (0, 1) with infinite
logarithmic measure such that for all |z − z0| = r ∈ (0, r2] ∩ E1 and |A0(z)| = Mz0 (r,A0),

|A0(z)| > expp

(
logq−1

1
r

)σ−ε
. (15)

Set r0 = min(r1, r2), γ > 1 is constant. By [3, Lemma 2.4], there exists a set E2 ⊂ (0, r0] that has finite
logarithmic measure, and a constant λ that depends on γ such that for |z − z0| = r ∈ (0, r0]\E2,∣∣∣∣∣∣ f ( j)(z)

f (z)

∣∣∣∣∣∣ ≤ λ
(

1
r2 Tz0

(
r
γ
, f

)
log Tz0

(
r
γ
, f

)) j

, j = 0, 1, . . . , k. (16)

By (1), we get

|A0(z)| ≤

∣∣∣∣∣∣ f (k)

f

∣∣∣∣∣∣ + · · · +
∣∣∣A j(z)

∣∣∣ · ∣∣∣∣∣∣ f ( j)

f

∣∣∣∣∣∣ + · · · + |A1(z)| ·
∣∣∣∣∣ f ′

f

∣∣∣∣∣ . (17)

Set E0 = (0, r0] ∩ E1\E2, obviously E0 has infinite logarithmic measure. Combining (14), (15), (16) and
(17), for |z − z0| = r ∈ E0,

expp

(
logq−1

1
r

)σ−ε
≤ λ

(
1
r

Tz0

(
r
γ
, f

))2k

expp

(
logq−1

1
r

)β+ε
.

This implies that σ[p+1,q]( f , z0) ≥ σ. It follows from this and Lemma 2.6 that σ[p+1,q]( f , z0) = σ[p,q](A0, z0).
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4. Proof of Theorem 1.3

Set σ[p,q](A0, z0) = σ, τ[p,q],M(A0, z0) = τ. Let β1 and β2 be constants with max{τ[p,q],M(A j, z0) : σ[p,q](A j, z0) =
σ[p,q](A0, z0)} < β1 < β2 < τ, γ > 1 is constant. By (4), there exists r0 ∈ (0, 1) such that for all |z−z0| = r ∈ (0, r0),

|A j(z)| ≤ expp

(
β1

(
logq−1

1
r

)σ)
, j = 1, 2, . . . , k. (18)

By [3, Lemma 2.4], there exists a set E1 ⊂ (0, r0] having finite logarithmic measure and a constant λ > 0
that depends only on γ such that for all |z − z0| = r < E1, we have (16) holds. By Lemma 2.4, there exists a
set E2 ⊂ (0, 1) of infinite logarithmic measure such that for all |z − z0| = r ∈ E2,

Mz0 (r,A0) ≥ expp

(
β2

(
logq−1

1
r

)σ)
. (19)

Set E0 = E2\E1, obviously, ml(E0) = ∞. Applying (16), (18), (19) to (17), for all z satisfying |z − z0| = r ∈ E0
and |A0(z)| = Mz0 (r, f ), we get

expp

(
β2

(
logq−1

1
r

)σ)
≤ kλ

(1
r

Tz0

(
αr, f

))2k

expp

(
β1

(
logq−1

1
r

)σ)
.

This implies that σ[p+1,q]( f , z0) ≥ σ, and by Lemma 2.6, the conclusion holds.

5. Proof of Theorem 1.4

By (1), we get

mz0 (r,As) ≤
∑
j,s

mz0

(
r,

f ( j)

f (s)

)
+

∑
j,s

mz0 (r,A j) + log k. (20)

By Lemma 2.7, for constant r0 ∈ (0, 1), there is a set E1 ⊂ (0, r0] that has finite logarithmic measure such
that for all |z0 − z| = r ∈ (0, r0]\E1,

∑
j,s

mz0

(
r,

f ( j)

f (s)

)
≤ O

{
Tz0 (r, f ) + log

1
r

}
. (21)

By Lemma 2.8, for any given ε ∈
(
0, 1

2(k−1)

)
, there exists a set E2 ⊂ (0, r0) with infinite logarithmic measure

such that for sufficiently small |z − z0| = r ∈ E2,

mz0 (r,A j) ≤ ε ·mz0 (r,As), j , s. (22)

Combining (20), (21) and (22), for all |z0 − z| = r ∈ E2\E1,

1
2

mz0 (r,As) ≤ O{Tz0 (r, f ) + log
1
r
} + O(1).

This implies that
σ[p,q](As, z0) ≤ σ[p,q]( f , z0).

Combining Lemma 2.6, the conclusion can be deduced.
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