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Abstract. The Wiener-type invariants of a simple connected graph G = (V(G),E(G)) can be expressed in
terms of the quantities W f =

∑
{u,v}⊆V(G) f (dG(u, v)) for various choices of the function f (x), where dG(u, v) is

the distance between vertices u and v in G. In this paper, we give some sufficient conditions for a bipartite
graph to be Hamiltonian or a connected general graph to be Hamilton-connected and traceable from every
vertex in terms of the Wiener-type invariants of G or the complement of G.

1. Introduction

In this paper, we only consider finite undirected graphs without loops and multiple edges. We use
Bondy and Murty [2] for terminology and notation not defined here. Let G = (V(G),E(G)) denote a graph
with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G). Denote by di = dvi = dG(vi) the degree of vi. Let
(d1, d2, . . . , dn) be the degree sequence of the graph G, where d1 ≤ d2 ≤ · · · ≤ dn. In addition, G denotes
the complement of G. Let G := G[X,Y] be a bipartite graph with bipartition (X,Y). The bipartite graph
G∗ := G∗[X,Y] is called the quasi-complement of G, which is constructed as follows: V(G∗) = V(G) and
xy ∈ E(G∗) if and only if xy < E(G) for x ∈ X, y ∈ Y. Let G and H be two disjoint graphs. The disjoint union
of G and H, denoted by G + H, is the graph with vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H). The
disjoint union of k graphs G is denoted by kG. The join of G and H, denoted by G∨H, is the graph obtained
from disjoint union of G and H by adding edges joining every vertex of G to every vertex of H.

A path (cycle) is called a Hamilton path (Hamilton cycle) if it contains every vertex of a graph. The
graph is said to be traceable (Hamiltonian) if it has a Hamilton path (cycle). The graph G is called Hamilton-
connected if every two vertices of G are connected by a Hamilton path. Surely all Hamilton-connected
graphs are Hamiltonian. A graph is called traceable from a vertex x if it has a Hamilton x-path.

For vi, v j ∈ V(G), let dG(vi, v j) denote the distance between vi and v j. The Wiener index W(G) of a
connected graph G is defined by

W(G) =
∑

{u,v}⊆V(G)

dG(u, v).
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The Wiener index was introduced in 1947 by Wiener [26], who used it for modeling the shape of organic
molecules and for calculating several of their physiso-chemical properties. We can refer to [5, 6, 25, 26] to
know more details on vertex distances and Wiener index.

The Harary index H(G) of a graph G has been introduced independently by Ivanciuc et al. [11] and
Plavšić et al. [23] in 1993 for the characterization of molecular graphs. It has been named in honor of
Professor Frank Harary on the occasion of his 70th birthday. The definition of Harary index is as follows:

H(G) =
∑

{u,v}⊆V(G)

1
dG(u, v)

.

We can refer to [3, 21, 27, 29, 31] to know more details on Harary index.
Some generalizations and modification of the Wiener index were put forward. Many of these Wiener-

type invariants can be expressed in terms of the quantities

W f = W f (G) =
∑

{u,v}⊆V(G)

f (dG(u, v)),

for various choices of the function f (x). We can see that when f (x) = x, Wx is the Wiener index; when
f (x) = 1

x , W 1
x

is the Harary index; when f (x) = x2+x
2 , W x2+x

2
is called the hyper-Wiener index [24], which is

denoted by WW; when f (x) = xλ, where λ , 0 is a real number, Wxλ is called the modified Wiener index [7],
which is denoted by Wλ. We can refer to [4, 8, 13] to know more details on Wiener-type invariants.

The problem of deciding whether a given graph is Hamiltonian or not is one of the most difficult classical
problems in graph theory. There are many sufficient conditions in terms of vertex degree, spectral radius or
signless Laplace spectral radius for a graph to be Hamiltonian, traceable, Hamilton-connected or traceable
from every vertex. In recent years, some sufficient conditions in terms of Wiener index and Harary index
are given for a graph to be Hamiltonian and traceable. We can refer to [9, 15, 16, 19, 20, 28, 30] to see more
details. In 2016, Kuang et al. [14] generalized some results to a more general version. Hua and Ning [10]
remarked that some of known theorems can be unified in a short proof.

In this paper, we mainly give some sufficient conditions in terms of Wiener-type invariants for Hamilton-
connectivity. In Section 2, firstly, we give a sufficient condition for a bipartite graph to be Hamiltonian
in terms of its Wiener-type index, which is an improvement of the Theorem 14 in [14]. Furthermore, we
present some sufficient conditions for a connected general graph to be Hamilton-connected and traceable
from every vertex in terms of its Wiener-type index. In Section 3, we give a sufficient condition for a bipartite
graph to be Hamiltonian in terms of the Wiener-type index of its quasi-complement. We also present some
sufficient conditions for a general connected graph to be Hamiltonian, traceable, Hamilton-connected and
traceable from every vertex in terms of the Wiener-type index of its complement.

2. Wiener-type index conditions on Hamiltonian bipartite graphs and Hamilton-connected graphs

In this section, we will give a sufficient condition for a bipartite graph to be Hamiltonian, which is an
improvement of the Theorem 14 in [14], and some sufficient conditions for a connected general graph to be
Hamilton-connected and traceable from every vertex in terms of the Wiener-type index.

Lemma 2.1. ([2]) Let G := G[X,Y] be a bipartite graph with degree sequence (d1, d2, . . . , d2n), where |X| = |Y| = n
and d1 ≤ d2 ≤ · · · ≤ d2n. If there is no integer k ≤

n
2

such that dk ≤ k and dn ≤ n − k, then G is Hamiltonian.

Let Kp,n−2 + 4e be a bipartite graph obtained from Kp,n−2 by adding two vertices which are adjacent to
two common vertices with degree n − 2 in Kp,n−2, where p ≥ n − 1.

Theorem 2.2. Let G := G[X,Y] be a bipartite graph with minimum degree δ ≥ 2, where |X| = |Y| = n ≥ 3. If

W f (G) ≤ [ f (1) + f (2)]n2
− [2 f (1) + f (2) − 2 f (3)]n − 4[ f (3) − f (1)],
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for a monotonically increasing function f (x) on x ∈ [1, 2n − 1], or

W f (G) ≥ [ f (1) + f (2)]n2
− [2 f (1) + f (2) − 2 f (3)]n + 4[ f (1) − f (3)],

for a monotonically decreasing function f (x) on x ∈ [1, 2n − 1], then G is Hamiltonian unless G = Kn,n−2 + 4e.

Proof. Assume that G is not Hamiltonian and has degree sequence (d1, d2, . . . , d2n), where d1 ≤ d2 ≤ · · · ≤ d2n.
By Lemma 2.1, there is an integer k such that 2 ≤ δ ≤ dk ≤ k ≤ n

2 and dn ≤ n − k. Note that G is connected. If
f (x) is a monotonically increasing function for x ∈ [1, 2n − 1], then

W f (G) =
1
2

2n∑
i=1

2n∑
j=1

f (dG(vi, v j))

≥
1
2

2n∑
i=1

[ f (1)di + f (3)(n − di) + f (2)(n − 1)]

=
1
2

2n∑
i=1

[ f (3)n + f (2)(n − 1) + ( f (1) − f (3))di]

=
1
2

f (3)n · 2n +
1
2

f (2)(n − 1) · 2n −
1
2

[ f (3) − f (1)]
2n∑
i=1

di

= f (3)n2 + f (2)n(n − 1) −
1
2

[ f (3) − f (1)](
k∑

i=1

di +

n∑
i=k+1

di +

2n∑
i=n+1

di)

≥ f (3)n2 + f (2)n(n − 1) −
1
2

[ f (3) − f (1)][k · k + (n − k) · (n − k) + n · n]

= f (3)n2 + f (2)n(n − 1) − [ f (3) − f (1)][n2
− 2n + 4 − (k − 2)(n − k − 2)]

= [ f (1) + f (2)]n2
− [2 f (1) + f (2) − 2 f (3)]n − 4[ f (3) − f (1)] + [ f (3) − f (1)](k − 2)(n − k − 2).

Similarly, if f (x) is a monotonically decreasing function for x ∈ [1, 2n − 1], then

W f (G) ≤ [ f (1) + f (2)]n2
− [2 f (1) + f (2) − 2 f (3)]n + 4[ f (1) − f (3)] − [ f (1) − f (3)](k − 2)(n − k − 2).

If f (x) is a monotonically increasing function on [1, 2n − 1], by the condition of Theorem 2.2, we have
(k − 2)(n − k − 2) ≤ 0. Note that k ≥ 2, n − k ≥ dn ≥ 2, so (k − 2)(n − k − 2) ≥ 0. Hence (k − 2)(n − k − 2) = 0.
Then we have W f (G) = [ f (1) + f (2)]n2

− [2 f (1) + f (2) − 2 f (3)]n − 4[ f (3) − f (1)]. So all the inequalities in
the above arguments should be equalities. Thus we have (a) the diameter of G is no more than three; (b)
d1 = · · · = dk = k, dk+1 = · · · = dn = n − k, dn+1 = · · · = d2n = n; and (c) k = 2 or k = n − 2.

If k = 2, then d1 = d2 = 2, d3 = · · · = dn = n − 2 and dn+1 = · · · = d2n = n. This implies G = Kn,n−2 + 4e.
If k = n − 2, then 2 ≤ n − 2 ≤ n

2 and hence n = 4. Then G is a bipartite graph with 12 edges and degree
sequence (2, 2, 2, 2, 4, 4, 4, 4). Thus G = K4,2 + 4e.

If f (x) is a monotonically decreasing function on [1, 2n − 1], we can prove the result by the similar
method. �

Remark 2.3. If f (x) is a monotonically increasing function, then the upper bound in Theorem 2.2 is an improvement
of Theorem 14 in [14] since

[ f (1) + f (2)]n2
− [2 f (1) + f (2) − 2 f (3)]n − 4[ f (3) − f (1)] ≥

[ f (1) + f (2)]n2
− [ f (1) + f (2) − f (3)]n + [ f (1) − f (3)],
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for n ≥ 3. If f (x) is a monotonically decreasing function, we can prove the lower bound in Theorem 2.2 is an
improvement of Theorem 14 in [14] by the similar method.

Note that some previous works (see Theorem 4.7 in [20] and Theorem 4.7 in [19]) are two direct corollaries

of Theorem 2.2 when f (x) = x,
1
x

, respectively. Moreover, Let f (x) =
x2 + x

2
, xλ in Theorem 2.2. We can get

the following sufficient conditions in terms of the hyper-Wiener index, modified Wiener index, respectively,
for a bipartite graph to be Hamiltonian.

Corollary 2.4. Let G := G[X,Y] be a bipartite graph with minimum degree δ ≥ 2, where |X| = |Y| = n ≥ 3. If its
hyper-Wiener index

WW(G) ≤ 4n2 + 7n − 20,

then G is Hamiltonian unless G = Kn,n−2 + 4e.

Corollary 2.5. Let G := G[X,Y] be a bipartite graph with minimum degree δ ≥ 2, where |X| = |Y| = n ≥ 3. If its
modified Wiener index

Wλ(G) ≤ (2λ + 1)n2 + 2(3λ − 2λ−1
− 1)n − 4(3λ − 1),

for λ > 0, or
Wλ(G) ≥ (2λ + 1)n2 + 2(3λ − 2λ−1

− 1)n + 4(1 − 3λ),

for λ < 0, then G is Hamiltonian unless G = Kn,n−2 + 4e.

In order to give sufficient conditions for a general connected graph to be Hamilton-connected or traceable
from every vertex in terms of the Wiener-type index, we firstly give two sufficient conditions in terms of
degree sequence for a graph to be Hamilton-connected or traceable from every vertex.

Lemma 2.6. ([1]) Let G be a graph of order n ≥ 3 with degree sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn. If
there is no integer 2 ≤ k ≤

n
2

such that dk−1 ≤ k and dn−k ≤ n − k, then G is Hamilton-connected.

Lemma 2.7. ([2]) Let G be a graph. Then G is traceable from every vertex if and only if G∨K1 is Hamilton-connected.

Theorem 2.8. Let G be a graph of order n ≥ 2 with degree sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn. If

there is no integer 2 ≤ k ≤
n + 1

2
such that dk−1 ≤ k − 1 and dn−k+1 ≤ n − k, then G is traceable from every vertex.

Proof. Indeed, given any graph G we can construct a graph G∗ by adding a new vertex u and new edges
joining u to all the vertices of G. By Lemma 2.7, G∗ is Hamilton-connected if and only if G is traceable from
every vertex. Moreover, if the degree sequence of G satisfies the condition of Theorem 2.8, then the degree
sequence of G∗ satisfies the condition of Lemma 2.6. �

Theorem 2.9. Let G be a connected simple graph of order n ≥ 12 with minimum degree δ ≥ 3. If

W f (G) ≤
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n − 9[ f (2) − f (1)],

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≥
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n + 9[ f (1) − f (2)],

for a monotonically decreasing function f (x) on x ∈ [1,n−1], then G is Hamilton-connected unless G ∈ {K3∨ (Kn−5 +
2K1),K6 ∨ 6K1}.
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Proof. Assume that G is not Hamilton-connected and has the degree sequence (d1, d2, . . . , dn), where
d1 ≤ d2 ≤ · · · ≤ dn and n ≥ 12. By Lemma 2.6, there is an integer k such that 3 ≤ δ ≤ dk−1 ≤ k ≤ n

2 and
dn−k ≤ n − k. Note that G is connected. If f (x) is a monotonically increasing function for x ∈ [1,n − 1], then

W f (G) =
1
2

n∑
i=1

n∑
j=1

f (dG(vi, v j))

≥
1
2

n∑
i=1

[ f (1)di + f (2)(n − 1 − di)]

=
1
2

n∑
i=1

[(n − 1) f (2) − ( f (2) − f (1))di]

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2

n∑
i=1

di

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(

k−1∑
i=1

di +

n−k∑
i=k

di +

n∑
i=n−k+1

di)

≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[(k − 1)k + (n − 2k + 1)(n − k) + k(n − 1)]

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[n2
− 5n + 18 − (k − 3)(2n − 3k − 6)]

=
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n − 9[ f (2) − f (1)] +
f (2) − f (1)

2
(k − 3)(2n − 3k − 6).

Similarly, if f (x) is a monotonically decreasing function for x ∈ [1,n − 1], then

W f (G) ≤
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n + 9[ f (1) − f (2)] −
f (1) − f (2)

2
(k − 3)(2n − 3k − 6).

If f (x) is a monotonically increasing function on [1,n − 1], by the condition of Theorem 2.9, we have
(k − 3)(2n − 3k − 6) ≤ 0. Then we discuss the following two cases.

Case 1. Assume that (k − 3)(2n − 3k − 6) = 0. In this case, we get W f (G) =
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n −
9[ f (2) − f (1)]. So all the inequalities in the above arguments should be equalities. Thus, we have (a) the
diameter of G is no more than two; (b) d1 = . . . = dk−1 = k, dk = . . . = dn−k = n−k and dn−k+1 = . . . = dn = n−1;
and (c) k = 3 or 2n = 3k + 6.

If k = 3, then d1 = d2 = 3, d3 = · · · = dn−3 = n − 3, dn−2 = dn−1 = dn = n − 1. It implies that
G = K3 ∨ (Kn−5 + 2K1). If 2n − 3k − 6 = 0, since n ≥ 12 and k ≤ n

2 , then n = 12, k = 6. The corresponding
permissible graphic sequence is (6, 6, 6, 6, 6, 6, 11, 11, 11, 11, 11, 11), which implies G = K6 ∨ 6K1.

Case 2. We assume k ≥ 4 and 2n − 3k − 6 < 0. In this case, we have n ≥ 2k ≥ 8. By the condition of

Theorem 2.9, n ≥ 12, then 2n − 3k − 6 ≥ 2n −
3
2

n − 6 ≥ 0, a contradiction.
If f (x) is a monotonically decreasing function on [1,n−1], we can prove the result by the similar method.
�

Note that some previous works (see Theorem 2.5 and Theorem 2.7 in [12]) are two direct corollaries of

Theorem 2.9 when f (x) = x,
1
x

, respectively. Moreover, we also have the following two corollaries.

Corollary 2.10. Let G be a connected simple graph of order n ≥ 12 with minimum degree δ ≥ 3. If its hyper-Wiener
index

WW(G) ≤
1
2

n2 +
7
2

n − 18,

then G is Hamilton-connected unless G ∈ {K3 ∨ (Kn−5 + 2K1),K6 ∨ 6K1}.
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Corollary 2.11. Let G be a connected simple graph of order n ≥ 12 with minimum degree δ ≥ 3. If its modified
Wiener index

Wλ(G) ≤
1
2

n2 + (2λ+1
−

5
2

)n − 9(2λ − 1),

for λ > 0, or

Wλ(G) ≥
1
2

n2 + (2λ+1
−

5
2

)n + 9(1 − 2λ),

for λ < 0, then G is Hamilton-connected unless G ∈ {K3 ∨ (Kn−5 + 2K1),K6 ∨ 6K1}.

Theorem 2.12. Let G be a connected simple graph of order n ≥ 11 with minimum degree δ ≥ 2. If

W f (G) ≤
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n − 7[ f (2) − f (1)],

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≥
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n + 7[ f (1) − f (2)],

for a monotonically decreasing function f (x) on x ∈ [1,n − 1], then G is traceable from every vertex unless G ∈
{K2 ∨ (Kn−4 + 2K1),K5 ∨ 6K1}.

Proof. Suppose that G is not traceable from every vertex and has the degree sequence (d1, d2, . . . , dn), where
d1 ≤ d2 ≤ · · · ≤ dn and n ≥ 11. By Theorem 2.8, there is an integer k such that 3 ≤ dk−1 + 1 ≤ k ≤ n+1

2 and
dn−k+1 ≤ n − k. Note that G is connected. If f (x) is a monotonically increasing function for x ∈ [1,n − 1], as
the proof of Theorem 2.9, then

W f (G) ≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2

n∑
i=1

di

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(

k−1∑
i=1

di +

n−k+1∑
i=k

di +

n∑
i=n−k+2

di)

≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[(k − 1)(k − 1) + (n − 2k + 2)(n − k)

+ (k − 1)(n − 1)]

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[n2
− 5n + 14 − (k − 3)(2n − 3k − 4)]

=
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n − 7[ f (2) − f (1)] +
f (2) − f (1)

2
(k − 3)(2n − 3k − 4).

Similarly, if f (x) is a monotonically decreasing function for x ∈ [1,n − 1], then

W f (G) ≤
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n + 7[ f (1) − f (2)] −
f (1) − f (2)

2
(k − 3)(2n − 3k − 4).

Since W f (G) ≤
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n − 7[ f (2) − f (1)] for a monotonically increasing function f (x) on
[1,n − 1], (k − 3)(2n − 3k − 4) ≤ 0. Then we discuss the following two cases.

Case 1. Assume that (k−3)(2n−3k−4) = 0. In this case, we get W f (G) =
f (1)
2

n2 +[2 f (2)−
5
2

f (1)]n−7[ f (2)−
f (1)]. So, all inequalities in the above arguments should be equalities. Thus, we have (a) the diameter of G
is no more than two; (b) d1 = . . . = dk−1 = k− 1, dk = . . . = dn−k+1 = n− k and dn−k+2 = . . . = dn = n− 1; and (c)
k = 3 or 2n = 3k + 4.
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If k = 3, then G is a graph with d1 = d2 = 2, d3 = · · · = dn−2 = n − 3, dn−1 = dn = n − 1. It implies that
G = K2∨ (Kn−4 +2K1). If 2n−3k−4 = 0, since n ≥ 11 and k ≤ n+1

2 , we can get n = 11, k = 6. The corresponding
permissible graphic sequence is (5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10), which implies G = K5 ∨ 6K1.

Case 2. We assume k ≥ 4 and 2n−3k−4 < 0. In this case, if n ≥ 11, then 2n−3k−4 ≥ 2n−
3
2

(n + 1)−4 ≥ 0,
a contradiction.

If f (x) is a monotonically decreasing function on [1,n−1], we can prove the result by the similar method.
�

Note that some previous works (see Theorem 3.2 and Theorem 3.4 in [12]) are two direct corollaries of

Theorem 2.12 when f (x) = x,
1
x

, respectively. Moreover, we also have the following two corollaries.

Corollary 2.13. Let G be a connected simple graph of order n ≥ 11 with minimum degree δ ≥ 2. If its hyper-Wiener
index

WW(G) ≤
1
2

n2 +
7
2

n − 14,

then G is traceable from every vertex unless G ∈ {K2 ∨ (Kn−4 + 2K1),K5 ∨ 6K1}.

Corollary 2.14. Let G be a connected simple graph of order n ≥ 11 with minimum degree δ ≥ 2. If its modified
Wiener index

Wλ(G) ≤
1
2

n2 + (2λ+1
−

5
2

)n − 7(2λ − 1),

for λ > 0, or

Wλ(G) ≥
1
2

n2 + (2λ+1
−

5
2

)n + 7(1 − 2λ),

for λ < 0, then G is traceable from every vertex unless G ∈ {K2 ∨ (Kn−4 + 2K1),K5 ∨ 6K1}.

3. Wiener-type index conditions on G or G∗ for G to be Hamiltonian and Hamilton-connected

In this section, firstly, we give two sufficient conditions on Wiener-type index of G for a graph G to
be Hamiltonian and traceable. Then we will give a sufficient condition for a bipartite graph G to be
Hamiltonian in terms of the Wiener-type index of G∗. Furthermore, we give two sufficient conditions on
Wiener-type index of G for a graph G to be Hamilton-connected and traceable from every vertex.

Firstly, we give two sufficient conditions for a connected graph to be Hamiltonian and traceable in terms
of the edge number.

Lemma 3.1. ([22]) Let G be a connected graph on n ≥ 4 vertices and m edges with minimum degree δ ≥ 1. If

m ≥
(
n − 2

2

)
+ 2,

then G is traceable unless G ∈ NP1 = {K1 ∨ (Kn−3 + 2K1),K1 ∨ (K1,3 + K1),K2,4,K2 ∨ 4K1,K2 ∨ (K2 + 3K1),K1 ∨

K2,5,K3 ∨ 5K1,K2 ∨ (K1,4 + K1),K4 ∨ 6K1}.

Lemma 3.2. ([22]) Let G be a connected graph on n ≥ 5 vertices and m edges with minimum degree δ ≥ 2. If

m ≥
(
n − 2

2

)
+ 4,

then G is Hamiltonian unless G ∈ NC1 = {K2 ∨ (Kn−4 + 2K1),K3 ∨ 4K1,K2 ∨ (K1,3 + K1),K1 ∨ K2,4,K3 ∨ (K2 +
3K1),K4 ∨ 5K1,K3 ∨ (K1,4 + K1),K2 ∨ K2,5,K5 ∨ 6K1}.
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Theorem 3.3. Let G be a connected graph of order n ≥ 4 with minimum degree δ ≥ 1 and edge number m, and G be
its complement graph. If

W f (G) ≥
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 10[ f (n − 1) − f (1)]
2

,

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≤
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n − 10[ f (1) − f (n − 1)]
2

,

for a monotonically decreasing function f (x) on x ∈ [1,n − 1], then G is traceable unless G ∈NP1.

Proof. If f (x) is a monotonically increasing function for x ∈ [1,n − 1], then

W f (G) =
1
2

n∑
i=1

n∑
j=1

f (dG(vi, v j))

≤
1
2

n∑
i=1

[ f (1)dG(vi) + f (n − 1)(n − 1 − dG(vi))]

=
1
2

n∑
i=1

[(n − 1) f (n − 1) + ( f (1) − f (n − 1))dG(vi)]

=
f (n − 1)

2
n(n − 1) +

f (1) − f (n − 1)
2

n∑
i=1

dG(vi)

=
f (n − 1)

2
n(n − 1) −

f (n − 1) − f (1)
2

n∑
i=1

(n − 1 − dG(vi))

=
f (1)
2

n(n − 1) +
f (n − 1) − f (1)

2

n∑
i=1

di

=
f (1)
2

n(n − 1) + [ f (n − 1) − f (1)]m.

Since W f (G) ≥
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 10[ f (n − 1) − f (1)]
2

, we have m ≥
(
n − 2

2

)
+ 2. By Lemma

3.1, we get G is traceable unless G ∈NP1.
If f (x) is a monotonically decreasing function on [1,n−1], we can prove the result by the similar method.

�
Note that the Wiener index, hyper-Wiener index and modified Wiener index of an unconnected graph

is meaningless, and the Harary index of an unconnected graph is the sum of the Harary index of all
components [17]. Under the condition that G and G are both connected, the previous work (see Theorem
3.2 in [20]) is the direct corollary of Theorem 3.3 when f (x) = x. So there seems to have some flaws in their

original theorem. Also, Theorem 3.2 in [19] is the direct corollary of Theorem 3.3 when f (x) =
1
x

. Moreover,
we also have the following two corollaries.

Corollary 3.4. Let G be a connected simple graph of order n ≥ 4 with minimum degree δ ≥ 1, G be its complement
graph and G is connected. If its hyper-Wiener index

WW(G) ≥
n4
− 6n3 + 15n2

− 2n − 20
4

,

then G is traceable unless G ∈NP1.
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Corollary 3.5. Let G be a connected simple graph of order n ≥ 4 with minimum degree δ ≥ 1, G be its complement
graph and G is connected. If its modified Wiener index

Wλ(G) ≥
(n2
− 5n + 10)(n − 1)λ + 4n − 10

2
,

for λ > 0, or

Wλ(G) ≤
(n2
− 5n + 10)(n − 1)λ + 4n − 10

2
,

for λ < 0, then G is traceable unless G ∈NP1.

Theorem 3.6. Let G be a connected graph of order n ≥ 4 with minimum degree δ ≥ 2 and edge number m, and G be
its complement graph. If

W f (G) ≥
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 14[ f (n − 1) − f (1)]
2

,

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≤
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n − 14[ f (1) − f (n − 1)]
2

,

for a monotonically decreasing function f (x) on x ∈ [1,n − 1], then G is Hamiltonian unless G ∈NC1.

Proof. If f (x) is a monotonically increasing function for x ∈ [1,n − 1]. From the proof of Theorem 3.3, we
have

W f (G) ≤
f (1)
2

n(n − 1) + [ f (n − 1) − f (1)]m.

Since W f (G) ≥
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 14[ f (n − 1) − f (1)]
2

, we have m ≥
(
n − 2

2

)
+ 4. By Lemma

3.2, we can get G is Hamiltonian unless G ∈NC1.
If f (x) is a monotonically decreasing function on [1,n−1], we can prove the result by the similar method.�

Under the condition that a graph G and its complement G are both connected, the previous work (see
Theorem 3.5 in [20]) is the direct corollary of Theorem 3.6 when f (x) = x. So there seems to have some flaws

in their original theorem. Also, Theorem 3.5 in [19] is the direct corollary of Theorem 3.6 when f (x) =
1
x

.
Moreover, we also have the following two corollaries.

Corollary 3.7. Let G be a connected simple graph of order n ≥ 5 with minimum degree δ ≥ 2, G be its complement
graph and G is connected. If its hyper-Wiener index

WW(G) ≥
n4
− 6n3 + 19n2

− 6n − 28
4

,

then G is Hamiltonian unless G ∈NC1.

Corollary 3.8. Let G be a connected simple graph of order n ≥ 5 with minimum degree δ ≥ 2, G be its complement
graph and G is connected. If its modified Wiener index

Wλ(G) ≥
(n2
− 5n + 14)(n − 1)λ + 4n − 14

2
,

for λ > 0, or

Wλ(G) ≤
(n2
− 5n + 14)(n − 1)λ + 4n − 14

2
,

for λ < 0, then G is Hamiltonian unless G ∈NC1.
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Next, we will give the sufficient condition for a bipartite graph to be Hamiltonian in terms of the
Wiener-type index of its quasi-complement.

Lemma 3.9. ([18]) Let G := G[X,Y] be a bipartite graph with minimum degree δ ≥ 2 and m edges, where |X| =
|Y| = n ≥ 4. If

m ≥ n2
− 2n + 4,

then G is Hamiltonian unless G = Kn,n−2 + 4e.

Theorem 3.10. Let G := G[X,Y] be a bipartite graph with minimum degree δ ≥ 2 and m edges, where |X| = |Y| =
n ≥ 3 and G∗ be the quasi-complement of G. If

W f (G∗) ≥ [ f (2n − 2) + f (2n − 1)]n2 + [2 f (1) − f (2n − 2) − 2 f (2n − 1)]n − 4[ f (1) − f (2n − 1)],

for a monotonically increasing function f (x) on x ∈ [1, 2n − 1], or

W f (G∗) ≤ [ f (2n − 2) + f (2n − 1)]n2 + [2 f (1) − f (2n − 2) − 2 f (2n − 1)]n + 4[ f (2n − 1) − f (1)],

for a monotonically decreasing function f (x) on x ∈ [1, 2n − 1], then G is Hamiltonian unless G = Kn,n−2 + 4e.

Proof. If f (x) is a monotonically increasing function for x ∈ [1, 2n − 1], then

W f (G∗) =
1
2

n∑
i=1

n∑
j=1

f (dG∗ (vi, v j))

≤
1
2

2n∑
i=1

[ f (1)dG∗ (vi) + f (2n − 1)(n − dG∗ (vi)) + f (2n − 2)(n − 1)]

=
1
2

2n∑
i=1

[( f (1) − f (2n − 1))dG∗ (vi) + f (2n − 1)n + f (2n − 2)(n − 1)]

=
1
2

f (2n − 1)n · 2n +
1
2

f (2n − 2)(n − 1)2n +
1
2

[ f (1) − f (2n − 1)]
2n∑
i=1

[n − dG(vi)]

= f (2n − 1)n2 + f (2n − 2)(n − 1)n +
1
2

[ f (1) − f (2n − 1)]n · 2n −
1
2

[ f (1) − f (2n − 1)] · 2m

= [ f (2n − 2) + f (1)]n2
− f (2n − 2)n + [ f (2n − 1) − f (1)]m.

Since W f (G∗) ≥ [ f (2n − 2) + f (2n − 1)]n2 + [2 f (1) − f (2n − 2) − 2 f (2n − 1)]n − 4[ f (1) − f (2n − 1)], we have
m ≥ n2

− 2n + 4. By Lemma 3.9, we get G is Hamiltonian unless G = Kn,n−2 + 4e.
If f (x) is a monotonically decreasing function on [1, 2n − 1], we can prove the result by the similar

method. �
Under the condition that a bipartite graph G and its quasi-complement G∗ are both connected, the

previous work (see Theorem 4.8 in [20]) is the direct corollary of Theorem 3.10 when f (x) = x. So there
seems to have some flaws in their original theorem. Also, Theorem 4.8 in [19] is the direct corollary of

Theorem 3.10 when f (x) =
1
x

. Moreover, we also have the following two corollaries.

Corollary 3.11. Let G := G[X,Y] be a bipartite graph with minimum degree δ ≥ 2 and m edges, where |X| = |Y| =
n ≥ 3, G∗ be the quasi-complement of G and G∗ is connected. If its hyper-Wiener index

WW(G∗) ≥ 4n4
− 10n3 + 14n2

− 3n − 4,

then G is Hamiltonian unless G = Kn,n−2 + 4e.
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Corollary 3.12. Let G := G[X,Y] be a bipartite graph with minimum degree δ ≥ 2 and m edges, where |X| = |Y| =
n ≥ 3, G∗ be the quasi-complement of G and G∗ is connected. If its modified Wiener index

Wλ(G∗) ≥ (2n − 2)λ(n2
− n) + (2n − 1)λ(n2

− 2n + 4) + 2n − 4,

for λ > 0, or
Wλ(G∗) ≤ (2n − 2)λ(n2

− n) + (2n − 1)λ(n2
− 2n + 4) + 2n − 4,

for λ < 0, then G is Hamiltonian unless G = Kn,n−2 + 4e.

Finally, we will give some sufficient conditions for a connected graph to be Hamilton-connected or
traceable from every vertex in term of the Wiener-type index of its complement. At first, we present two
sufficient conditions in terms of the edge number for a connected graph to be Hamilton-connected or
traceable from every vertex.

Lemma 3.13. ([32]) Let G be a connected graph on n ≥ 6 vertices and m edges with minimum degree δ ≥ 3. If

m ≥
(
n − 2

2

)
+ 6,

then G is Hamilton-connected unless G ∈ NC2 = {K3 ∨ (Kn−5 + 2K1),K6 ∨ 6K1,K4 ∨ (K2 + 3K1), 5K1 ∨ K5,K4 ∨

(K1,4 + K1),K4 ∨ (K1,3 + K2),K3 ∨ K2,5,K4 ∨ 4K1,K3 ∨ (K1 + K1,3),K3 ∨ (K1,2 + K2),K2 ∨ K2,4}.

Lemma 3.14. ([32]) Let G be a connected graph on n ≥ 5 vertices and m edges with minimum degree δ ≥ 2. If

m ≥
(
n − 2

2

)
+ 4,

then G is traceable from every vertex unless G ∈NP2 = {K2∨ (Kn−4 +2K1),K5∨6K1,K3∨ (K2 +3K1), 5K1∨K4,K3∨

(K1,4 + K1),K3 ∨ (K1,3 + K2),K2 ∨ K2,5,K3 ∨ 4K1,K2 ∨ (K1 + K1,3),K2 ∨ (K1,2 + K2),K1 ∨ K2,4}

Theorem 3.15. Let G be a connected graph of order n ≥ 6 with minimum degree δ ≥ 3 and edge number m, and G
be its complement graph. If

W f (G) ≥
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 18[ f (n − 1) − f (1)]
2

,

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≤
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 18[ f (n − 1) − f (1)]
2

,

for a monotonically decreasing function f (x) on x ∈ [1,n − 1], then G is Hamilton-connected unless G ∈NC2.

Proof. If f (x) is a monotonically increasing function for x ∈ [1,n − 1]. From the proof of Theorem 3.3, we
have

W f (G) ≤
f (1)
2

n(n − 1) + [ f (n − 1) − f (1)]m.

Since W f (G) ≥
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 18[ f (n − 1) − f (1)]
2

, we have m ≥
(
n − 2

2

)
+ 6. By Lemma

3.13, we get G is Hamilton-connected unless G ∈NC2.
If f (x) is a monotonically decreasing function on [1,n−1], we can prove the result by the similar method.

�
Under the condition that a graph G and its complement G are both connected, the previous work (see

Theorem 2.6 in [12]) is the direct corollary of Theorem 3.15 when f (x) = x. So there seems to have some
flaws in their original theorem. Also, Theorem 2.8 in [12] is the direct corollary of Theorem 3.15 when

f (x) =
1
x

. Moreover, we also have the following two corollaries.
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Corollary 3.16. Let G be a connected simple graph of order n ≥ 6 with minimum degree δ ≥ 3, G be its complement
graph and G is connected. If its hyper-Wiener index

WW(G) ≥
n4
− 6n3 + 23n2

− 10n − 36
4

,

then G is Hamilton-connected unless G ∈NC2.

Corollary 3.17. Let G be a connected simple graph of order n ≥ 6 with minimum degree δ ≥ 3, G be its complement
graph and G is connected. If its modified Wiener index

Wλ(G) ≥
(n2
− 5n + 18)(n − 1)λ + 4n − 18

2
,

for λ > 0, or

Wλ(G) ≤
(n2
− 5n + 18)(n − 1)λ + 4n − 18

2
,

for λ < 0, then G is Hamilton-connected unless G ∈NC2.

Theorem 3.18. Let G be a connected graph of order n ≥ 5 with minimum degree δ ≥ 2 and edge number m, and G
be its complement graph. If

W f (G) ≥
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 14[ f (n − 1) − f (1)]
2

,

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≤
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 14[ f (n − 1) − f (1)]
2

,

for a monotonically decreasing function f (x) on x ∈ [1,n− 1], then G is traceable from every vertex unless G ∈NP2.

Proof. If f (x) is a monotonically increasing function for x ∈ [1,n − 1]. From the proof of Theorem 3.3, we
have

W f (G) ≤
f (1)
2

n(n − 1) + [ f (n − 1) − f (1)]m.

Since W f (Ḡ) ≥
f (n − 1)n2

− [5 f (n − 1) − 4 f (1)]n + 14[ f (n − 1) − f (1)]
2

, we have m ≥
(
n − 2

2

)
+ 4. By Lemma

3.14, we can get G is traceable from every vertex unless G ∈NP2.
If f (x) is a monotonically decreasing function on [1,n−1], we can prove the result by the similar method.

�
Under the condition of a graph G and its complement G are both connected, the previous work (see

Theorem 3.3 in [12]) is the direct corollary of Theorem 3.18 when f (x) = x. So there seems to have some
flaws in their original theorem. Also, Theorem 3.5 in [12] is the direct corollary of Theorem 3.18 when

f (x) =
1
x

. Moreover, we also have the following two corollaries.

Corollary 3.19. Let G be a connected simple graph of order n ≥ 5 with minimum degree δ ≥ 2, G be its complement
graph and G is connected. If its hyper-Wiener index

WW(G) ≥
n4
− 6n3 + 19n2

− 6n − 28
4

,

then G is traceable from every vertex unless G ∈NP2.
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Corollary 3.20. Let G be a connected simple graph of order n ≥ 5 with minimum degree δ ≥ 2, G be its complement
graph and G is connected. If its modified Wiener index

Wλ(G) ≥
(n2
− 5n + 14)(n − 1)λ + 4n − 14

2
,

for λ > 0, or

Wλ(G) ≤
(n2
− 5n + 14)(n − 1)λ + 4n − 14

2
,

for λ < 0, then G is traceable from every vertex unless G ∈NP2.
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[13] S. Klavšić, I. Gutman, Relation between Wiener-type topological indices of benzenoid molecules. Chem. Phys. Lett., 373 (2003)
328–332.

[14] M.J. Kuang, G.H. Huang, H.Y. Deng, Some sufficient conditions for Hamiltonian property in terms of Wiener-type invariants.
Proceedings Mathematical Sciences, 126 (2016) 1–9.

[15] R. Li, Harary index and some Hamiltonian properties of graphs. AKCE International Journal of Graphs and Computing, 12
(2015) 64–69.

[16] R. Li, Wiener index and some Hamiltonian properties of graphs. International Journal of Mathematics and Soft Computing, 5
(2015) 11–16.

[17] X.X. Li, Y.Z. Fan, The connectivity and the Harary index of a graph. Discrete Appl. Math., 181 (2015) 167–173.
[18] R.F. Liu, W.C. Shiu, J. Xue, Sufficient spectral conditions on Hamiltonian and traceable graphs. Linear Algebra Appl., 467 (2015)

254–266.
[19] R.F. Liu, X. Du, H.C. Jia, Some observations on Harary index and traceable graphs. MATCH Commun. Math. Comput. Chem.,

77 (2017) 195–208.
[20] R.F. Liu, X. Du, H.C. Jia, Wiener index on traceable and Hamiltonian graphs. Bulletin of the Australian Mathematical Society, 94

(2016) 362–372.
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[31] B. Zhou, X. Cai, N. Trinajstić, On the Harary index. J. Math. Chem., 44 (2008) 611–618.
[32] Q.N. Zhou, L.G. Wang, Some sufficient spectral conditions on Hamilton-connected and traceable graphs. Linear and Multilinear

Algebra, 65 (2017) 224–234.


