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Available at: http://www.pmf.ni.ac.rs/filomat

Best Linear Approximation and Coefficients Characterization of Entire
Functions in Doubly Connected Domains

Rifaqat Alia, Devendra Kumarb, Mohamed Altanjic

aDepartment of Mathematics, College of Science and Arts, Muhayil, King Khalid University, 61413 Abha, Saudi Arabia.
bDepartment of Mathematics, Faculty of Sciences Al-Baha University, P.O.Box-1988, Alaqiq, Al-Baha-65431, Saudi Arabia, K.S.A.

cDepartment of Mathematics, College of Science, King Khalid University, P.O.Box:9004, Postal Code:61413. Abha, Saudi Arabia, K.S.A

Abstract. In the present paper, we established the relations between growth parameters order and type in
terms of coefficients occurring in generalized Faber series expansions of entire function and corresponding
best linear approximation errors in supnorm in doubly connected domains.

1. Introduction

Let K be a continuum (not a point) on the complex plane C that does not separate the plane and let
Ω be an arbitrary domain containing K such that its boundary consists of at least three points. Let UR
denote a disk of radius R with boundary TR, and U denotes the unit disk with boundary T. If Ω is a
canonical neighborhood GR of K then the boundary ∂GR coincides with the preimage of the circle TR under
the conformal mapping of the C \ K onto C \U in the extended complex plane. For K = U and K = [−1, 1]
the Faber approximation coincides, respectively, with Taylor and Chebyshev approximations. For a wide
class of continua K, when K is a compact convex set, it is possible by approximating functions by the partial
sums of the Faber series.

It has been noticed that in a number of cases the partial sums of the Faber series are much easier
to compute than the corresponding approximation polynomials (see [1]). But polynomial expansions
convergent on K become too sensitive with respect to the placing of singular points: the Faber series of a
function f diverges at any point z ∈ C \GR whenever some level line ΓR contains at least one singularity of
f . Also, the order of these convergence in the uniform metric on K depends on the position of analyticity
domains of f in the remaining part of C. So, if Ω is a simply connected domain containing K, then an
optimal basis for approximation of functions analytic in Ω and continuous on Ω in the metric of C(K) will
be a fortiori not polynomial. These bases were constructed by V.D. Erokhin [3] as a natural generalization
of the Faber series as follows:

Let Ω \ K is doubly connected domain E and H denote the conformal mapping of E onto the ring
{w : 1 < |w| < R},R = mod(Ω \ K) ≤ +∞. The conformal mapping of a doubly connected domain into a ring
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can always be equivalent to a double conformal mapping of simply connected areas, at the same time one
can start with any of the two simply connected domains, defined by a given doubly connected domain.

Given any two arbitrary numbered boundary continua E1 and E2 of a doubly connected domain E, the
conformal mapping H : E → {w : 1 < |w| < R} can be represented as the composition H = F2oF1, where
F1 is the conformal mapping of the simply connected domain with boundary E1 and F2 is the conformal
mapping of the simply connected domain with boundary F1(E2). In the case E1 = ∂Ω and E2 = ∂K, define
F = F1 and Φ = F2 so that F2(∞) = ∞. Then

H(z) = Φ[F(z)], z ∈ E.

Denote ξ = H−1, φ = F−1, and ϕ = Φ−1, it gives

ξ(w) = φ[ϕ(w)], 1 < |w| < R.

Let H(Ω) be the space of functions analytic in Ω, equipped with the topology of uniform convergence on
arbitrary compact subsets of Ω. Setting Cρ = {z : |H(z)| = ρ, 1 < ρ < R} and Ωρ = intCρ. Following the V.D.
Erokhin [3], the formulas

χ(w) =
1

2πi

∫
Tρ

f (ξ(τ))
τ − w

dτ,w ∈ Uρ, (1.1)

and

f (z) =
1

2πi

∫
Cρ

χ[H(ζ)]
F(ζ) − F(z)

F′(ζ)dζ, z ∈ Ωρ (1.2)

are mutually inverse and establish a linear topological isomorphism in the space H(UR) and H(Ω). Let
en(z)(n = 1, 2, . . . , ) be the function defined by (1.2) with χ(w) = wn. We find the isomorphic image χ ∈ H(UR)
of an arbitrary function f ∈ H(Ω) by (1.1), and then expand it into a Taylor series. Taking the inverse
transformation by (1.2), we get the following expansion

f (z) =

∞∑
k=0

akek(z), z ∈ Ω, (1.3)

with coefficients for k ∈N only

ak =
1

2πi

∫
Tρ

χ(w)
wk+1

dw =
1

2πi

∫
Tρ

f [ξ(w)]
wk+1

dw. (1.4)

Note. In the Faber case, where ∂Ω agree with the level line ΓR of the continuum K and the mapping
H extends to a conformal mapping of the entire domain C \Ω, with F(z) = z the formula (1.2) defines the
classical Faber operator.

Consider the weaker topology of functions corresponding to uniform convergence on K i.e., to the form

‖ f (z)‖ ≡ ‖ f ‖ = max
z∈K
| f (z)|

and using the formulas (1.1)-(1.4) V.D. Erokhin [3] obtained the following relations:

1. lim supk→∞(‖ak‖)
1
k ≤ 1.

2. lim supk→∞(‖ek‖)
1
k ≤ 1.

3. |ak| ≤ A(ρ) supz∈Ωρ
| f (z)|. 1

ρk (k = 0, 1, 2, . . . ), f ∈ H(Ωρ), 1 < ρ ≤ R,ΩR = Ω.

4. supz∈Ωρ
|ek(z)| ≤ A(ρ)ρk where A(ρ) is a constant depending only on ρ,K and Ω.
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The main purpose of the studied bases is to derive from (1)-(4) the following Bernstein theorem on
the possibility of completely characterizing functions of the class H(Ω) by the best approximations on the
continuum K by linear forms of the form (1.3).

Let Γα = H−1(D(0,Rα) = {z ∈ C : |z| < Rα}),R > 1∀α ∈]0, 1[. Erokhin shows that the sequence (ek)k≥0 is a
common basis for the spaces H(Ω),H(Γα), (0 < α < 1) but generally ek , 0 when k < 0. The new coefficients
are define by analogy with the Faber for all f ∈ H(Γα), 0 < ρ < α < 1:

ak =
1

2πi

∫
|ζ|=ρ

χ(ζ)
ζk+1

dζ

with for all |ζ| < Rρ,

χ(ζ) =

∞∑
k=0

akζ
k =

1
2πi

∫
|τ|=Rρ

f (ξ(τ))
τ − ζ

dτ.

We have the following property [8]:
f ∈ H(Γα) has Γα as domain of holomorphy, if and only if, χ has the disc D(0,Rα) as domain of holomorphy.

We denote the partial sum of the nth order of series (1.3) by

pn(z) =

n∑
k=0

akek(z). (1.5)

For f ∈ H(Ω), set

En( f ) = min
(ao,a1,...,an)

‖ f (z) − pn(z)‖.

Now we have the following theorem.
Theorem A. For the function f (z) ∈ H(Ω) it is necessary and sufficient that

lim sup
n→∞

(En( f ))
1
n ≤

1
R
. (1.6)

Proof. Let f ∈ H(Ω), then we have

En( f ) ≤ ‖ f (z) −
n∑

k=0

akek(z)‖ ≤
∞∑

k=n+1

|ak|‖ek‖

in view of (2) and (3), we get (1.6) immediately.
Conversely, let {p̃n(z) =

∑n
k=0 a(n)

k ek(z)}∞n=0 be a sequence of forms satisfying (1.5), so ‖ f − p̃n‖ = εn( f ). Then

‖ ˜pn+1 − p̃n‖ ≤ 2εn( f ),

or

|a(n+1)
n+1 | ≤ 2εn( f )‖an+1‖, |a

(n+1)
k − a(n)

k | ≤ 2εn( f )‖ak‖, (k = 0, 1, . . . ,n).

Using (1.6) with (1) and (2), we get

lim
n→∞

a(n)
k = ak(k = 0, 1, . . . )

it gives

f (z) =

∞∑
k=0

akek(z), z ∈ Ω
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where

lim sup
k→∞

(|ak|)
1
k ≤

1
R
. (1.7)

Hence from (1.6),(1.7) and (4) we conclude that the series expansion (1.3) converges uniformly and absolutely
in Ωρ(1 < ρ < R) for f ∈ H(Ω). Hence the proof is completed.
Now we derive the following relations between En( f ) and ak which will be useful in the sequel.

En( f ) ≤ ‖ f − pn‖ = ‖

∞∑
k=n+1

akek‖ ≤ K∗
∞∑

k=n+1

|ak| (1.8)

where K∗ = mes(Ω).

|ak| =
1

2πi
|

∫
|w|=ρ

f [ξ(w)] − ˜pk−1( f , ξ(w))
wk+1

dw|

≤
1

2πi

∫ 2π

0
| f [ξ(ρeit)] − ˜pk−1( f , ξ(ρeit)|ρ−kdt

≤ max
0≤t≤2π

| f [ξ(ρeit)] − ˜pk−1( f , ξ(ρeit)|ρ−k

= Ek−1( f )ρ−k.

We can write

z = ξ(w) = νw + νo +
ν1

w
+ · · · +

νk

wk
, 1 < |w| < R,

max
|w|=ρ
| f [ξ(w)]| = max

|w|=ρ
|
f (w(ν + νo

w + · · · + νk
wk+1 ))

wk+1
|

= max
|z|=R
| f (z)|, z = w.ν,R = |w|.ν.

Therefore, we have

|ak| ≤ Ek−1( f )R−k f or z ∈ Ω. (1.9)

Corollary 1.1. For the function f (z) ∈ H(Ω) to be entire it is necessary and sufficient that

lim
k→∞
|ak|

1
k = 0.

Let M(R) = max|z|=R | f (z)| be the maximum modulus of f (z). The growth of an entire function f (z) is
measured in terms of its order η and type σ defined as follows:

lim sup
R→∞

log log M(R)
log R

= η (1.10)

lim sup
R→∞

log M(R)
Rη

= σ (1.11)

for 0 < η < ∞.

Kumar [6] studied growth properties of entire functions over Jordan domains by using Faber polyno-
mials. He characterized order and type in terms of Lp-approximation errors, 2 ≤ p ≤ ∞ and improved
the various results of Seremeta [9] and Ganti and Srivastava [4]. Giroux [5] and Kumar and Vandna [7]
characterized order and type of entire/analytic functions in terms of approximation errors by using Faber
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polynomials in Jordan domains. To the best of our knowledge, coefficients characterization of order and
type of an entire function in terms of best linear approximation errors in doubly connected domain have
not been obtained so far.
In the present paper, we have made an attempt to bridge this gap. First we obtain coefficients characteriza-
tion for order and type of an entire function over doubly connected domain. Finally, we obtain necessary
and sufficient conditions of order and type of an entire function in terms of best linear approximation errors.

2. Main Results

Theorem 2.1. The function f is the restriction to doubly connected domain Ω of an entire function of
finite order η if and only if

µ = lim sup
k→∞

k log k
− log |ak|

(2.1)

is finite, and the order η of f is equal to µ.

Proof. Let f (z) =
∑
∞

k=0 akek(z) be an entire function. Using (3) we have

|ak| ≤ A(R)M(R)R−k. (2.2)

First we prove that η ≥ µ. Let µ, ε > 0 be such that ε < µ < ∞. Then using (2.1) we get

−(µ − ε) log |ak| ≤ k log k

or

log |ak| ≥ −
1

(µ − ε)
k log k

for a sequence of values of k→∞. Now in view of (2.2) we have

log M(R) ≥ log |ak| + log(Rk) − log A(R)

≥ −
1

(µ − ε)
(k log k) + k log R − log A(R)

= k[(log R −
1

(µ − ε)
log k) −O(1)].

The right hand side attains its maximum value at R = (ek)
1

(µ−ε) . So by substituting this value of R in above
inequality, we get

log M(R) ≥
k

(µ − ε)
− 0(1) =

R(µ−ε)

e(µ − ε)
.

or

η = lim sup
R→∞

log log M(R)
log R

≥ µ − ε.

Since ε is arbitrary, it gives

η ≥ µ. (2.3)

In order to prove reverse inequality in (2.3) we assume that

lim sup
k→∞

k log k
− log |ak|

= β < ∞.
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Then for every ε > 0, there exists m(ε) such that for all k ≥ m, we have

|ak| ≤ C′k−
k

(β+ε) .

Since f (z) =
∑
∞

k=0 akek(z), we have

| f (z)| ≤ C′k−
k

(β+ε) |ek(z)|.

Using (4), we get

| f (z)| ≤ C′k−
k

(β+ε) A(ρ)ρk, z ∈ Ωρ.

Hence

M(R) ≤ C′A(R)[
ko∑

k=0

k−
k

(β+ε) Rk +

∞∑
ko+1

k−
k

(β+ε) Rk].

Following the proof of Bose and Sharma [2, Thm.IV] we obtain

M(R) ≤ 0{e(2R)β+2ε
}.

Proceeding to limits and using the arbitrariness of ε, we get

lim sup
R→∞

log log M(R)
log R

≤ β. (2.4)

Combining (2.3) and (2.4) we get the required result (2.1).

Example 2.1.Consider the function f (z) =
∑
∞

k=0(kR)−kek(z). By using Theorem 2.1 with simple calcula-
tion we get µ = 1, it gives the order of the function f (z) is η = 1. Also, this function satisfies the Corollary 1.1.

Theorem 2.2. The function f is restriction to doubly connected domain Ω of an entire function of finite
order η and type σ if, and only if

α∗ = eση (2.5)

where

α∗ = lim sup
k→∞

{k(|ak|)
η
k }, 0 < α∗ < ∞.

Proof. Let f be an entire function of finite order η and type σ. Then

| f (z)| ≤ e(σ+ε)Rη , z ∈ Ω

and using (3), we have

|ak| ≤ A(R)e(σ+ε)RηR−k

for all R sufficiently large. The minimum value of right hand side of above inequality is attained at

R = [
k

η(σ + ε)
]

1
η .

It gives

|ak| ≤ A′[
eη(σ + ε)

k
]

k
η
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or

k(|ak|)
η
k ≤ eη(σ + ε) + O(1).

Proceeding to limits, since ε is arbitrary, we get

lim sup
k→∞

k(|ak|)
η
k ≤ eησ. (2.6)

Conversely, let

lim sup
k→∞

k(|ak|)
η
k = α∗ < ∞.

Then for given ε > 0 there exists N(ε) such that for all k ≥ N, we have

|ak| ≤ k−
k
η [eη(α∗ + ε)]

k
η .

Since f (z) =
∑
∞

k=0 akek(z), therefore

| f (z)| ≤
∞∑

k=0

k−
k
η [eη(α∗ + ε)]

k
η |ek(z)|.

Now applying (4) in above inequality, we obtain

| f (z)| ≤
∞∑

k=0

k−
k
η [eη(α∗ + ε)]

k
η A(R)Rk, z ∈ Ω.

we estimate the right hand side of the above inequality proceeding on the limits of proof of Bose and
Sharma [2, Thm. V] and we get

| f (z)| ≤ o{e(α∗+ε)Rη
}.

Hence

M(R) ≤ o{e(α∗+ε)Rη
}

or

log M(R)
Rη

≤ α∗ + ε.

Proceeding the limits, we get

lim sup
R→∞

log M(R)
Rη

≤ α∗. (2.7)

Combining (2.6) and (2.7), we get the required result.

Example 2.2. Using Theorem 2.2 for the function f (z) =
∑
∞

k=0(kR)−kαek(z) we get α∗ = 1
R , η = 1

α and the
type σ = α

eR .

Theorem 2.3. The function f is the restriction to doubly connected domain Ω of an entire function of
finite order η if, and only if

lim sup
k→∞

k log k
− log Ek( f )

= η.
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Proof. Let f is an entire function having finite order η. Then by Theorem 2.1, we have

|ak| ≤ C′k−
k

(η+ε) .

Using (1.8), we have

En( f ) ≤ K∗C′
∞∑

k=n+1

k−
k

(η+ε) ≤ K∗C′n−
n

(η+ε)

for all sufficiently large n. Therefore, we get

− log En( f ) ≥
n log n
(η + ε)

−O(1).

Since ε is arbitrary, proceeding the limits, we get

lim sup
n→∞

n log n
− log En( f )

≤ η. (2.8)

Conversely, let

lim sup
k→∞

k log k
− log Ek( f )

≤ α′.

Suppose α′ < ∞. Then for every ε > 0 there exists N(ε) such that for all k > N, we have

Ek( f ) ≤ k−
k

(α′+ε) .

Using (1.9) we have

|ak| ≤ (k − 1)−
(k−1)

(α′+ε) R−k.

Hence

| f (z)| ≤ A
∞∑

k=0

k−
k

(α′+ε) A(R), , z ∈ Ω.

Now following the method used in Theorem 2.1 to estimate the right hand side, we obtain

M(R) ≤ o{e(2A(R))(α′+2ε)
}.

Proceeding the limits, we get

η = lim sup
R→∞

log log M(R)
log R

≤ α′. (2.9)

Combining (2.8) and (2.9) we get the required result.

Example 2.3. Using inequality (1.9) in Theorem 2.3 for the function f (z) =
∑
∞

k=0(kR)−kek(z) we get the
same order η = 1.

Theorem 2.4. The function f is the restriction to doubly connected domain Ω of an entire function of
finite order η and type σ if, and only if

lim sup
k→∞

{k(Ek( f ))
η
k } = eησ. (2.10)
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Proof. From Theorem 2.2, we have

|ak| ≤ A′[
eη(σ + ε)

k
]

k
η .

From (8) we get

En( f ) ≤ K∗
∞∑

k=n+1

A′[
eη(σ + ε)

k
]

k
η ≤ K∗A′[

eη(σ + ε)
k

]
n
η

or

lim sup
n→∞

n(En( f ))
η
n ≤ eησ.

The converse part can be proved similarly following on the lines of Theorem 2.2 by using (1.9). This
completes the proof of Theorem 2.4.

Example 2.4. By analogy of (1.9), we define |ak| ≤ Ek−1( f )R−kα for z ∈ Ω. Now using Theorem 2.4 for the
function f (z) =

∑
∞

k=0(kR)−kαek(z) we get type σ = α
eR2 .
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