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Abstract. In this paper, we introduce a square hyponormal operator as a bounded linear operator T on a
complex Hilbert spaceH such that T2 is a hyponormal operator, and we investigate some basic properties
of this operator. Under the hypothesis σ(T) ∩ (−σ(T)) ⊂ {0}, we study spectral properties of a square
hyponormal operator. In particular, we show that if z and w are distinct eigen-values of T and x, y ∈ H are
corresponding eigen-vectors, respectively, then 〈 x, y〉 = 0. Also, we define nth hyponormal operators and
present some properties of this kind of operators.

1. Introduction

Let H be a complex Hilbert space, and let B(H) denote the set of all bounded linear operators on H .
For T ∈ B(H), we denote by T∗, ker(T),R(T), σ(T), σa(T), σr(T), respectively, the adjoint, the null space, the
range, the spectrum, the approximate point spectrum and the residual spectrum of T. It is well-known that
σ(T) = σa(T) ∪ σr(T).

An operator T ∈ B(H) is self-adjoint if T = T∗. An operator T ∈ B(H) is normal and 2-normal if T∗T = TT∗

and T∗T2 = T2T∗, respectively. By Fuglede-Putnam Theorem, it is easily to see that T is 2-normal if and only
if T2 is normal (see [4]). An operator T ∈ B(H) is positive (denoted by T ≥ 0) if 〈Tx, x〉 = 0, for all x ∈ H . For
self-adjoint operators T,S ∈ B(H), T ≥ S means T − S ≥ 0.

For an operator T ∈ B(H), let |T| = (T∗T)
1
2 and |T∗| = (TT∗)

1
2 . For 0 < p ≤ 1, T is said to be p-hyponormal if

|T|2p
≥ |T∗|2p. When p = 1 and p =

1
2

, T is said to be hyponormal and semi-hyponormal, respectively. Notice

that T is hyponormal if and only if ‖T∗x‖ ≤ ‖Tx‖, for all x ∈ H . By Corollary 1 of [3], in general, if T is

p-hyponormal (0 < p ≤ 1), then Tn is
p
n

–hyponormal. An operator T ∈ B(H) is said to be paranormal if

‖Tx‖2 ≤ ‖T2x‖ · ‖x‖, for all x ∈ H . An operator T ∈ B(H) is said to be algebraically hyponormal and algebraically
paranormal if p(T) is hyponormal and paranormal, for some nonconstant complex polynomial p, respectively.

In [7, 8], the authors showed that if T is algebraically hyponormal and algebraically paranormal, then T
is isoloid and Weyl’s Theorem holds, respectively.
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The aim of this paper is to study a bounded linear operator T on a complex Hilbert space such that T2

is a hyponormal operator. Firstly, notice that there exists an operator T such that T2 is hyponormal and T
is not hyponormal.

LetH = `2 and T be the unilateral shift with the weights {an ≥ 0} such that

Tx := (0, a1x1.a2x2, ...) for x = (x1, x2, ...) ∈ H .

Then T is hyponormal if and only if a j ≤ a j+1 ( j = 1, 2, ...), i.e., {a j} is a monotone increasing sequence, for

a j = 1 ( j , 2) and a2 =
1
2

. Since the sequence {an} is not increasing, the operator T is not hyponormal. But
since

T2x = (0, 0, a1a2x1, a2a3x2, ...) and T2∗x = (a1a2x3, a2a3x4, ...),

T2 is hyponormal if and only if a ja j+1 ≤ a j+2a j+3 for j = 1, 2, .... Hence, by this weights a j = 1 ( j , 2) and

a2 =
1
2

, the operator T2 is hyponormal and T is not hyponormal.
In [4–6], the authors have studied spectral properties of n-normal operator, that is, an operator T such

that Tn is normal, in the cases that σ(T)
⋂

(−σ(T)) = ∅ or σ(T) ∩ (−σ(T)) ⊂ {0}. Since an operator T such that
T2 is hyponormal is algebraically hyponormal, T is isoloid and Weyl’s Theorem holds. Hence, we study
other spectral properties of such an operator T in this paper.

2. Basic properties

In the beginning, we introduce a square hyponormal operator and investigate some basic properties of
this operator.

Definition 2.1. For an operator T ∈ B(H), T is said to be square hyponormal if T2 is hyponormal.

The following result follows from the definition of square hyponormal operators.

Theorem 2.2. Let T ∈ B(H) be square hyponormal. Then the following statements hold.
(1) If T is invertible, then so is T−1.

(2) For an even number n = 2k ∈N, Tn is
1
k

-hyponormal.

(3) If S ∈ B(H) is unitary equivalent to T, then S is square hyponormal.
(4) If T − t is square hyponormal for all t > 0, then T is hyponormal.

Proof. (1) is clear.

(2) Since T2 is hyponormal, by Corollary 1 of [3], Tn = T2k = (T2)k is
1
k

-hyponormal.
(3) is clear.
(4) Since

0 ≤ (T − t)2∗(T − t)2
− (T − t)2(T − t)2∗ = T2∗T2

− T2T2∗

−2t
(
T2∗T + T∗T2

− TT2∗
− T2T∗

)
+ 4t2(T∗T − TT∗),

we obtain that

0 ≤
1

4t2

(
(T − t)2∗(T − t)2

− (T − t)2(T − t)2∗
)
=

1
4t2

(
T2∗T2

− T2T2∗
)

−
1
2t

(
T2∗T + T∗T2

− TT2∗
− T2T∗

)
+ (T∗T − TT∗).

Letting t→∞, we have T∗T − TT∗ ≥ 0.

We now consider the restriction of a square hyponormal operator to an invariant closed subspace.
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Theorem 2.3. Let T ∈ B(H) be square hyponormal and M be an invariant closed subspace for T. Then T|M is square
hyponormal.

Proof. Since M is an invariant closed subspace for T, we observe that

T =
[
T1 T2
0 T3

]
:
[

M
M⊥

]
→

[
M

M⊥

]
.

Therefore, for D = T1T2 + T2T3, since

T2 =

[
T2

1 D
0 T2

3

]
and (T2)∗ =

[
(T2

1)∗ 0
D∗ (T2

3)∗

]
,

we have

(T2)∗T2
− T2(T2)∗ =

[
(T2

1)∗T2
1 − T2

1(T2
1)∗ −DD∗ (T2

1)∗D −D(T2
3)∗

D∗T2
1 − T2

3D∗ D∗D + (T2
3)∗T2

3 − T2
3(T2

3)∗

]
≥ 0.

Hence we deduce that (T2
1)∗T2

1 − T2
1(T2

1)∗ − DD∗ ≥ 0 and so (T2
1)∗T2

1 − T2
1(T2

1)∗ ≥ 0. Therefore, T|M is square
hyponormal.

3. Spectral property

Under some additional assumptions, we study spectral properties of a square hyponormal operator in
this section. Firstly, we show the following theorem.

Theorem 3.1. Let T ∈ B(H) be square hyponormal. If µ(σ(T)) = 0, then T2 is normal, where µ is the planar
Lebesgue measure.

Proof. Since µ(σ(T)) = 0, we have that µ(σ(T2)) = 0 by the spectral mapping theorem. By T2 is hyponormal
and Putnam’s Theorem, it holds

‖T2∗T2
− T2T2∗

‖ ≤
1
π
µ(σ(T2)) = 0.

Hence, T2 is normal.

Remark 3.2. If T is p-hyponormal and square hyponormal with µ(σ(T)) = 0, then, by Corollary 2 of [3], T

is normal. But let S =
(

0 1
0 0

)
on C2. Then S is square hyponormal with µ(σ(S)) = 0 and S is not normal.

If T is compact, then µ(σ(T)) = 0. Hence, we have the following corollary.

Corollary 3.3. If T ∈ B(H) is compact square hyponormal, then T2 is normal.

An operator T ∈ B(H) is said to have SVEP (single-valued extension property) if for every open subset G of
C and anyH-valued analytic function f on G such that (T − z) f (z) ≡ 0 on G, then f (z) ≡ 0 on G. It is well
known that:

(1) If ker(T − z)⊥ker(T − w) for any distinct nonzero eigenvalues z and w, then
T has SVEP.
(2) Let p be polynomial. If p(T) has SVEP, then T has SVEP.

See details in [2, 11, 12]. Since it is clear that a hyponormal operator has SVEP, we have the next corollary
by (2).
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Corollary 3.4. Let T ∈ B(H) be square hyponormal. Then T has SVEP.

Let K (H) be the set of all compact operators onH . Then, for T ∈ B(H), the Weyl spectrum σw(T) and the
Browder spectrum σb(T) of T are defined as follows:

σw(T) =
⋂

K∈K (H)

σ(T + K) and σb(T) =
⋂

K∈K (H); TK=KT

σ(T + K).

If T has SVEP, then σw(T) = σb(T) by Corollary 3.53 of [2]. LetH(σ(T)) denote the set of all analytic function
defined on an open set containing σ(T). Then, by Corollary 3.72 of [2], we have the following result.

Corollary 3.5. Let T ∈ B(H) be square hyponormal. Then, for f ∈ H(σ(T)),

σw( f (T)) = σb( f (T)) = f (σw(T)) = f (σb(T)).

Next for T ∈ B(H), we set the following property:

(∗) σ(T)
⋂

(−σ(T)) ⊂ {0}.

Then we begin with the following result.

Theorem 3.6. Let T ∈ B(H) be square hyponormal with (∗) and M be an invariant subspace for T. If σ(T|M) = {z},
then the following assertions hold.
(1) If z = 0, then (T|M)2 = 0.
(2) If z , 0, then T|M = z.

Proof. (1) By Theorem 2.3, T|M is square hyponormal. Since σ((T|M)2) = {0}, we have (T|M)2 = 0 by Putnam’s
theorem.
(2) Similarly, from σ((T|M)2) = {z2

}, we get (T|M)2 = z2 and hence

0 = (T|M)2
− z2 = (T|M + z)(T|M − z).

By the assumption (∗), −z < σ(T) and there exists (T|M + z)−1. Hence, it holds T|M − z = 0.

Theorem 3.7. Let T ∈ B(H) be a square hyponormal operator. If T satisfies (∗), then σ(T) = {z : z ∈ σa(T∗)}.

Proof. Since σ(T) = σa(T) ∪ σr(T), we may show σa(T) ⊂ {z : z ∈ σa(T∗)}.
(1) If 0 ∈ σa(T), then 0 ∈ σa(T2) and T2 is hyponormal. Hence, it is easy to see 0 ∈ σa(T∗).
(2) Let z ∈ σa(T) and z , 0. Then there exists a sequence {xn} of unit vectors such that (T − z)xn → 0 as
n → ∞. Thus, (T2

− z2)xn → 0 as n → ∞. Because T2 is hyponormal, we have (T2
− z2)∗xn → 0 and

(T∗ + z)(T∗ − z)xn → 0 as n→ ∞. By the assumption (∗), −z < σ(T∗) which gives (T∗ − z)xn → 0 as n→ ∞
and therefore z ∈ σa(T∗). It completes the proof.

Theorem 3.8. Let T ∈ B(H) be square hyponormal and satisfy (∗).
(1) If z and w are distinct eigen-values of T and x, y ∈ H are corresponding eigen-vectors, respectively, then 〈 x, y〉 = 0.
(2) If z,w are distinct values of σa(T) and {xn}, {yn} are the sequences of unit vectors inH such that (T − z)xn → 0
and (T − w)yn → 0 (n → ∞), then lim

n→∞
〈 xn, yn〉 = 0.

Proof. (1) follows from (2). So, we show (2). Since (T − z)xn → 0 and (T −w)yn → 0 (n → ∞), it holds that
(T2
− z2)xn → 0 and (T2

− w2)yn → 0. Because T2 is hyponormal, we get (T∗2 − w2)yn → 0. Hence,

lim
n→∞

z2
〈 xn, yn〉 = lim

n→∞
〈 z2xn, yn〉 = lim

n→∞
〈T2xn, yn〉 = lim

n→∞
〈 xn, T∗2yn〉 = lim

n→∞
w2
〈xn , yn〉.

If z2 = w2, then (z + w)(z − w) = 0. Since z , w, we have z = −w. By (∗), this implies z = w = 0. Therefore,
z2 , w2, and so lim

n→∞
〈 xn, yn〉 = 0.
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Thus, we have the following corollary.

Corollary 3.9. Let T ∈ B(H) be square hyponormal and satisfy (∗). If z and w are distinct eigen-values of T, then
ker(T − z)⊥ ker(T − w).

Let M be a subspace ofH . M is said to be a reducing subspace for T if T(M) ⊂M and T∗(M) ⊂M, that is, M is
an invariant subspace for T and T∗. Then we have a following result.

Theorem 3.10. Let T ∈ B(H) be square hyponormal and satisfy (∗). If z is a non-zero eigen-value of T, then
ker(T − z) = ker(T2

− z2) ⊂ ker(T∗2 − z2) = ker(T∗ − z) and hence ker(T − z) is a reducing subspace for T.

Proof. Firstly, we show that ker(T−z) = ker(T2
−z2). Because it is clear that ker(T−z) ⊂ ker(T2

−z2), we will
verify that ker(T2

− z2) ⊂ ker(T− z). Let x ∈ ker(T2
− z2), i.e., (T2

− z2)x = 0. Then (T+ z)(T− z)x = 0. Since
z , 0, by the assumption (∗), we have −z < σ(T). Hence, it follows (T− z)x = 0 and x ∈ ker(T− z). Therefore,
ker(T2

− z2) ⊂ ker(T− z) and ker(T− z) = ker(T2
− z2). Since T2 is hyponormal, ker(T2

− z2) ⊂ ker(T∗2 − z2).
Evidently, ker(T∗ − z) ⊂ ker(T∗2 − z2). Let x ∈ ker(T∗2 − z2). Because (T∗ + z)(T∗ − z)x = 0 and T∗ + z is
invertible by the assumption (∗), we obtain that x ∈ ker(T∗ − z). Hence, ker(T∗2 − z2) = ker(T∗ − z). Finally,
by the above results, it is clear that ker(T − z) is a reducing subspace for T.

The following remark is same with the corresponding in the paper of [5].

Remark 3.11. In general, ker(T) is not a reducing subspace for a square hyponormal operator T.
(1) Let T be as in Example 2.3 of [1], that is, letH = `2, {e j}

∞

j=1 be the standard orthonormal basis of `2 and T
be defined by

Te j =


e1 ( j = 1)
e j+1 ( j = 2k)
0 ( j = 2k + 1).

Then T is a square hyponormal operator and satisfies (∗). Since e3 ∈ ker(T) and TT∗e3 = e3 , 0, ker(T)
does not reduce T. Let P be the orthogonal projection to the first coordinate. Since T2 = P, it is clear that
ker(T) $ ker(T2) = ker(P).

(2) We give an easy example. Let S =
(

0 1
0 0

)
on C2. Since S2 = 0 and σ(S) = {0}, S is square hyponormal

and satisfies (∗). Let x =
(

1
0

)
. Then x ∈ ker(S) and SS∗x = x , 0. Hence, ker(S) does not reduce S and

ker(S) $ ker(S2) = C2.

For an isolated point λ of σ(T), the Riesz idempotent for λ is defined by

ET({λ}) =
1

2πi

∫
∂D

(z − T)−1 dz,

where D is a closed disk centered at λ which contains no other points of σ(T). For an operator T ∈ L(H),
the quasinilpotent part of T is defined by

H0(T) := {x ∈ H : lim
n→∞
‖Tnx‖

1
n = 0}.

ThenH0(T) is a linear (not necessarily closed) subspace ofH . It is known that if T has SVEP, then

H0(T − λ) = {x ∈ H : lim
n→∞
‖(T − λ)nx‖

1
n = 0} = ET({λ})H
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for all λ ∈ C. In general, ker(T − λ)m
⊂ H0(T − λ) andH0(T − λ) is not closed. However, if λ is an isolated

point of σ(T), then ET({λ})H = H0(T − λ) andH0(T − λ) is closed. Also, if T is normal and T =
∫
σ(T)

λdF(λ)

is the spectral decomposition of T, then

H0(T − λ) = ET({λ})H = ker(T − λ) = ker(T − λ)∗.

In 2012. J. T. Yuan and G. X. Ji ([12, Lemma 5.2]) proved following Lemma.

Lemma 3.12. Let T ∈ B(H), m be a positive integer and λ be an isolated point of σ(T).
(i) The following assertions are equivalent:
(a) ET({λ})H = ker(T − λ)m.
(b) ker(ET({λ})) = (T − λ)m

H .
In this case, λ is a pole of the resolvent of T and the order of λ is not greater than m.

(ii) If λ is a pole of the resolvent of T and the order of λ is m, then the following assertions are equivalent:
(a) ET({λ}) is self-adjoint.
(b) ker((T − λ)m) ⊂ ker((T − λ)∗m).
(c) ker((T − λ)m) = ker((T − λ)∗m).

By this lemma, we prove the following theorem.

Theorem 3.13. Let T ∈ B(H) be square hyponormal and satisfy (∗). Let λ be an isolated point of spectrum of T.
Then the following statements hold.
(i) If λ = 0, thenH0(T) = ker(T2) = ker(T∗2), ET({0}) is self-adjoint and the order of pole λ is not greater than 2.
(ii) If λ , 0, thenH0(T − λ) = ker(T − λ) = ker((T − λ)∗), ET({λ}) is self-adjoint and the order of pole λ is 1.

Proof. (i) Assume that λ = 0. Since σ(T2) = {z2 : z ∈ σ(T)}, it follows that 0 is an isolated point of spectrum of

T2. We prove thatH0(T) = H0(T2). Let x ∈ H0(T). Then ‖Tnx‖
1
n −→ 0 and thus ‖T2nx‖

1
2n =

(
‖T2nx‖

1
n

) 1
2
−→ 0

and ‖T2nx‖
1
n −→ 0. Hence, x ∈ H0(T2). Conversely, let x ∈ H0(T2). Then ‖T2nx‖

1
n −→ 0 and so ‖T2nx‖

1
2n =(

‖T2nx‖
1
n

) 1
2
−→ 0. From

‖T2n+1x‖
1

2n+1 ≤

(
‖T‖‖T2nx‖

) 1
2n+1

≤ ‖T‖
1

2n+1

(
‖T2nx‖

1
2n

) 2n
2n+1
−→ 0 (n→∞),

it follows that x ∈ H0(T). Therefore,H0(T) = H0(T2). Since T2 is hyponormal, we observe that ET2 ({0})H =
H0(T2) = ker(T2) = ker(T∗2) by Stampfli [10]. So,

ET({0})H = H0(T) = H0(T2) = ET2 ({0})H = ker(T2) = ker(T∗2).

Now, 0 is a pole of the resolvent of T, the order of 0 is not greater than 2 and ET({0}) is self-adjoint by Lemma
3.12.
(ii) Next we assume that λ , 0. Then λ2 is an isolated point of σ(T2) by Lemma 2.1 of [5]. We will prove
H0(T − λ) = H0(T2

− λ2). Let x ∈ H0(T − λ). Then ‖(T − λ)nx‖
1
n → 0 and

‖(T2
− λ2)nx‖

1
n ≤ ‖(T + λ)n

‖
1
n ‖(T − λ)nx‖

1
n

≤ ‖T + λ‖‖(T − λ)nx‖
1
n −→ 0,

which implies H0(T − λ) ⊂ H0(T2
− λ2). Conversely, let x ∈ H0(T2

− λ2). Since T + λ is invertible by the
assumption (∗), we have

‖(T − λ)nx‖
1
n = ‖(T + λ)−n(T + λ)n(T − λ)nx‖

1
n

≤ ‖

{
(T + λ)−1

}n
‖

1
n ‖(T2

− λ2)nx‖
1
n

≤ ‖(T + λ)−1
‖‖(T2

− λ2)nx‖
1
n −→ 0.
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Hence,H0(T − λ) ⊃ H0(T2
− λ2) andH0(T − λ) = H0(T2

− λ2). Because T2 is hyponormal, it follows that

ET2 ({λ2
})H = H0(T2

− λ2) = ker(T2
− λ2) = ker(T∗2 − λ

2
)

by Stampfli [10]. Hence

ET({λ})H = H0(T − λ) = H0(T2
− λ2) = ET2 ({λ})H = ker(T2

− λ2) = ker(T∗2 − λ
2
).

Since (T + λ)∗ is invertible, we get

ET({λ})H = ker(T − λ) = ker ((T − λ)∗) .

Thus, λ is a pole of the resolvent of T, the order of λ is not greater than 2 and ET({λ}) is self-adjoint by
Lemma 3.12.

Let D be a bounded open subset ofC and L2(D,H) be the Hilbert space of measurable function f : D −→ H
such that

‖ f ‖ =
( ∫

D
‖ f (z)‖2 dµ(z)

) 1
2

< ∞,

where µ is the planar Lebesgue measure. Let W2(D,H) be the Sobolev space with respect to ∂ and of order

2 whose derivatives ∂ f and ∂
2

f in the sense of distributions belong to L2(D,H). The norm ‖ f ‖W2 is given by

‖ f ‖W2 =
(
‖ f ‖2 + ‖∂ f ‖2 + ‖∂

2
f ‖2

) 1
2

for f ∈ L2(D,H).

In [4], Alzuraiqi and Patel proved the following.

Proposition 3.14. (Alzraiqi and Patel [4], Theorem 2.37) Let D be an arbitrary bounded disk inC. If T ∈ B(H)
is 2-normal with the assumption σ(T)

⋂
(−σ(T)) = ∅, then the operator

z − T : W2(D,H) −→ L2(D,H)

is one to one for every z ∈ C.

We would like to prove this result as follows.

Theorem 3.15. Let D be an arbitrary bounded disk in C and T ∈ B(H) be square hyponormal with (∗). Then the
operator

z − T : W2(D,H) −→ L2(D,H)

is one to one for every z ∈ C.

Proof. Let f ∈W2(D,H), S = z − T and S f = 0. We show f = 0. Then

‖ f ‖2W2 = ‖ f ‖22,D + ‖∂ f ‖22,D + ‖∂
2

f ‖22,D

=

∫
D
‖ f (z)‖2dµ(z) +

∫
D
‖∂ f (z)‖2dµ(z) +

∫
D
‖∂

2
f (z)‖2dµ(z) < ∞,

and

‖S f ‖2W2 = ‖(z − T) f ‖2W2

= ‖(z − T) f ‖22,D + ‖∂((z − T) f )‖22,D + ‖∂
2
((z − T) f )‖22,D

= ‖(z − T) f ‖22,D + ‖(z − T)∂ f ‖22,D + ‖(z − T)∂
2

f ‖22,D = 0.
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Hence,

‖(z − T) ∂
i
f ‖22,D =

∫
D
‖(z − T) ∂

i
f (z)‖2dµ(z) = 0 (i = 0, 1, 2).

Let i be i = 0, 1, 2. Since (z− T) ∂
i
f (z) = 0 for z ∈ D, if z ∈ D \ σ(T), then ∂

i
f (z) = 0 because z− T is invertible.

This implies

‖(z − T)∗∂
i
f ‖22,D\σ(T) =

∫
D\σ(T)

‖(z − T)∗∂
i
f (z)‖2dµ(z) = 0.

Since

‖(z2
− T2)∂

i
f ‖22,D =

∫
D
‖(z2
− T2)∂

i
f (z)‖2dµ(z)

≤

(
sup
z∈D
‖z + T‖

)2 ∫
D
‖(z − T)∂

i
f (z)‖2dµ(z)

=

(
sup
z∈D
‖z + T‖

)2

‖(z − T)∂
i
f ‖22,D = 0,

we have (z2
− T2) ∂

i
f (z) = 0 for z ∈ D. Because T2 is hyponormal, then∫

D
‖(z2
− T2)∗∂

i
f (z)‖2dµ(z) = ‖(z2

− T2)∗∂
i
f ‖22,D ≤ ‖(z

2
− T2)∂

i
f ‖22,D = 0.

So,

0 = (z2
− T2)∗∂

i
f (z) = (z + T)∗(z − T)∗∂

i
f (z) for z ∈ D.

If z ∈ D ∩ (σ(T) \ (−σ(T))), then z + T and (z + T)∗ are invertible. Hence, (z − T)∗∂
i
f (z) = 0 for z ∈ D ∩

(σ(T) \ (−σ(T))). Since D is bounded, ‖∂
i
f ‖22,D < ∞ and the planar Lebesgue measure of σ(T)

⋂
(−σ(T)) is 0,

we have

‖(z − T)∗∂
i
f ‖22,D =

∫
D\σ(T)

‖(z − T)∗∂
i
f (z)‖2dµ(z)

+

∫
D∩(σ(T)\(−σ(T)))

‖(z − T)∗∂
i
f (z)‖2dµ(z)

+

∫
D∩σ(T)∩(−σ(T))

‖(z − T)∗∂
i
f (z)‖2dµ(z)

≤ 0 + 0 +max
z∈D
‖(z − T)∗‖2

∫
D∩σ(T)∩(−σ(T))

‖∂
i
f (z)‖2dµ(z) = 0.

By [9, Proposition 2.1], we obtain ‖(I − P) f ‖2,D = 0. Thus, f (z) = (P f )(z) for z ∈ D. From S f = 0, we have
(S f )(z) = (z − T) f (z) = (z − T)(P f )(z) = 0 for z ∈ D.

Since T has the single-valued extension property by Corollary 3.4 and P f is analytic, it follows that
0 = (P f )(z) = f (z) for z ∈ D. Hence, f = 0 and S is one to one. �

An operator T ∈ B(H) is said to be polaroid if every isolated point of the spectrum of T is a pole of the
resolvent. In [1], Aiena showed that if T is algebraically paranormal on a Banach space, then the following
results hold.
(1) T is polaroid (Theorem 1.3).
(2) If T is quasinilpotent, then T is nilpotent (Lemma 1.2).
Hence, it is clear that if T ∈ B(H) is square hyponormal, then T is polaroid.



M. Chō et al. / Filomat 33:15 (2019), 4845–4854 4853

4. nth hyponormal operators

We now introduce and study nth hyponormal operators.

Definition 4.1. For n ∈N and an operator T ∈ B(H), T is said to be nth hyponormal if Tn is hyponormal.

As Theorem 2.3, we can verify the following result.

Theorem 4.2. Let n ∈ N, T ∈ B(H) be nth hyponormal and M be an invariant closed subspace for T. Then T|M is
nth hyponormal.

For an nth hyponormal operator T ∈ B(H), we consider the following property:

(∗∗) σ(T)
⋂ ( n−1⋃

j=1

e
2 jπ
n iσ(T)

)
⊂ {0}.

Theorem 4.3. Let n ∈ N, T ∈ B(H) be nth hyponormal with (∗∗) and M be an invariant subspace for T. If
σ(T|M) = {z}, then the following assertions hold.
(1) If z = 0, then (T|M)n = 0.
(2) If z , 0, then T|M = z.

Proof. (1) By Theorem 4.2, T|M is nth hyponormal. Since σ((T|M)n) = {0}, by Putnam’s theorem, we conclude
that (T|M)n = 0.
(2) Because σ((T|M)n) = {zn

}, then (T|M)n = zn and so

0 = (T|M)n
− zn = (T|M − e

2π
n iz)(T|M − e

4π
n iz) · · · (T|M − e

2(n−1)π
n iz)(T|M − z).

From z , 0 and (∗∗), there exists (T|M − e
2 jπ
n iz)−1, for every j = 1, ...,n − 1, and thus T|M − z = 0.

Theorem 4.4. Let n ∈ N and T ∈ B(H) be an nth hyponormal operator. If T satisfies (∗∗), then σ(T) = {z : z ∈
σa(T∗)}.

Proof. Because σ(T) = σa(T) ∪ σr(T), we verify that σa(T) ⊂ {z : z ∈ σa(T∗)}.
(1) If 0 ∈ σa(T), then 0 ∈ σa(Tn) and, because Tn is hyponormal, we can get 0 ∈ σa(T∗).
(2) For z ∈ σa(T) and z , 0, there exists a sequence {xm} of unit vectors such that (T−z)xm → 0 as m→∞. We
observe that (Tn

− zn)xm = (Tn−1 + Tn−2z+ · · ·+ zn−1)(T − z)xm → 0 as m→∞ and Tn is hyponormal, which
gives (Tn

− zn)∗xm → 0 as m→ ∞. By the hypothesis (∗∗) and z is non-zero, all operators (T∗ − e
2π
n iz), (T∗ −

e
4π
n iz), ..., (T∗ − e

2(n−1)π
n iz) are invertible. Hence, by T∗n − zn

= (T∗ − e
2π
n iz)(T∗ − e

4π
n iz) · · · (T∗ − e

2(n−1)π
n iz)(T∗ − z), we

have that (T∗ − z)xm → 0 as m→∞, that is, z ∈ σa(T∗), which completes the proof.

Theorem 4.5. Let n ∈N and T ∈ B(H) be nth hyponormal satisfying (∗∗).
(1) If z and w are distinct eigen-values of T and x, y ∈ H are corresponding eigen-vectors, respectively, then 〈 x, y〉 = 0.
(2) If z,w are distinct values of σa(T) and {xm}, {ym} are the sequences of unit vectors inH such that (T − z)xm → 0
and (T − w)ym → 0 (m → ∞), then lim

m→∞
〈 xm, ym〉 = 0.

Proof. Since (1) follows from (2), we will only prove (2). From (T− z)xm → 0 and (T−w)ym → 0 (m → ∞),
we get (Tn

− zn)xm → 0 and (Tn
− wn)ym → 0. Further, because Tn is hyponormal, (T∗n − wn)ym → 0.

Therefore,

lim
m→∞

zn
〈 xm, ym〉 = lim

m→∞
〈 znxm, ym〉 = lim

m→∞
〈Tnxm, ym〉 = lim

m→∞
〈 xm, T∗nym〉 = lim

n→∞
wn
〈xm , ym〉.

In the case that zn = wn, by 0 = zn
− wn = (z − w)(z − e

2π
n iw)(z − e

4π
n iw) · · · (z − e

2(n−1)π
n iw), z , w and (∗∗), we

deduce that z = w = 0. So, zn , wn, and lim
m→∞

〈 xm, ym〉 = 0.
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Corollary 4.6. Let n ∈N and T ∈ B(H) be nth hyponormal satisfing (∗∗). If z and w are distinct eigen-values of T,
then ker(T − z)⊥ ker(T − w).

Corollary 4.7. Let n ∈N and T ∈ B(H) be nth hyponormal satisfing (∗∗). Then T has SVEP.

In a similar manner as Theorem 3.10, we prove the next result.

Theorem 4.8. Let n ∈ N and T ∈ B(H) be nth hyponormal satisfing (∗∗). If z is a non-zero eigen-value of T, then
ker(T − z) = ker(Tn

− zn) ⊂ ker(T∗n − zn) = ker(T∗ − z) and hence ker(T − z) is a reducing subspace for T.

As Theorem 3.13 and Theorem 3.15, we can verify the following theorems.

Theorem 4.9. Let n ∈ N and T ∈ B(H) be nth hyponormal satisfing (∗∗). Let λ be an isolated point of spectrum of
T. Then the following statements hold.
(i) If λ = 0, thenH0(T) = ker(Tn) = ker(T∗n), ET({0}) is self-adjoint and the order of pole λ is not greater than n.
(ii) If λ , 0, thenH0(T − λ) = ker(T − λ) = ker((T − λ)∗), ET({λ}) is self-adjoint and the order of pole λ is 1.

Theorem 4.10. Let D be an arbitrary bounded disk in C, n ∈ N and T ∈ B(H) be nth hyponormal satisfing (∗∗).
Then the operator

z − T : W2(D,H) −→ L2(D,H)

is one to one for every z ∈ C.

Acknowledgment. Authors would like to express their thanks to Prof. K. Tanahashi for his important
suggestion of Theorem 3.15.
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[5] M. Chō, B. Načevska Nastovska, Spectral properties of n-normal operators, Filomat 32:14 (2018) 5063–5069.
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