Spectral Properties of Square Hyponormal Operators

Muneo Chō ${ }^{\text {a }}$, Dijana Mosićb ${ }^{\text {, }}$ Biljana Načevska Nastovskac ${ }^{\text {c }}$, Taiga Saito ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan
${ }^{b}$ Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia
${ }^{c}$ Faculty of Electrical Engineering and Information Technologies, "Ss Cyril and Methodius" University in Skopje, Macedonia

Abstract

In this paper, we introduce a square hyponormal operator as a bounded linear operator T on a complex Hilbert space \mathcal{H} such that T^{2} is a hyponormal operator, and we investigate some basic properties of this operator. Under the hypothesis $\sigma(T) \cap(-\sigma(T)) \subset\{0\}$, we study spectral properties of a square hyponormal operator. In particular, we show that if z and w are distinct eigen-values of T and $x, y \in \mathcal{H}$ are corresponding eigen-vectors, respectively, then $\langle x, y\rangle=0$. Also, we define nth hyponormal operators and present some properties of this kind of operators.

1. Introduction

Let \mathcal{H} be a complex Hilbert space, and let $B(\mathcal{H})$ denote the set of all bounded linear operators on \mathcal{H}. For $T \in B(\mathcal{H})$, we denote by $T^{*}, \operatorname{ker}(T), R(T), \sigma(T), \sigma_{a}(T), \sigma_{r}(T)$, respectively, the adjoint, the null space, the range, the spectrum, the approximate point spectrum and the residual spectrum of T. It is well-known that $\sigma(T)=\sigma_{a}(T) \cup \sigma_{r}(T)$.

An operator $T \in B(\mathcal{H})$ is self-adjoint if $T=T^{*}$. An operator $T \in B(\mathcal{H})$ is normal and 2-normal if $T^{*} T=T T^{*}$ and $T^{*} T^{2}=T^{2} T^{*}$, respectively. By Fuglede-Putnam Theorem, it is easily to see that T is 2-normal if and only if T^{2} is normal (see [4]). An operator $T \in B(\mathcal{H})$ is positive (denoted by $T \geq 0$) if $\langle T x, x\rangle=0$, for all $x \in \mathcal{H}$. For self-adjoint operators $T, S \in B(\mathcal{H}), T \geq S$ means $T-S \geq 0$.

For an operator $T \in B(\mathcal{H})$, let $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$ and $\left|T^{*}\right|=\left(T T^{*}\right)^{\frac{1}{2}}$. For $0<p \leq 1, T$ is said to be p-hyponormal if $|T|^{2 p} \geq\left|T^{*}\right|^{2 p}$. When $p=1$ and $p=\frac{1}{2}, T$ is said to be hyponormal and semi-hyponormal, respectively. Notice that T is hyponormal if and only if $\left\|T^{*} x\right\| \leq\|T x\|$, for all $x \in \mathcal{H}$. By Corollary 1 of [3], in general, if T is p-hyponormal $(0<p \leq 1)$, then T^{n} is $\frac{p}{n}$-hyponormal. An operator $T \in B(\mathcal{H})$ is said to be paranormal if $\|T x\|^{2} \leq\left\|T^{2} x\right\| \cdot\|x\|$, for all $x \in \mathcal{H}$. An operator $T \in B(\mathcal{H})$ is said to be algebraically hyponormal and algebraically paranormal if $p(T)$ is hyponormal and paranormal, for some nonconstant complex polynomial p, respectively.

In $[7,8]$, the authors showed that if T is algebraically hyponormal and algebraically paranormal, then T is isoloid and Weyl's Theorem holds, respectively.

[^0]The aim of this paper is to study a bounded linear operator T on a complex Hilbert space such that T^{2} is a hyponormal operator. Firstly, notice that there exists an operator T such that T^{2} is hyponormal and T is not hyponormal.

Let $\mathcal{H}=\ell^{2}$ and T be the unilateral shift with the weights $\left\{a_{n} \geq 0\right\}$ such that

$$
T x:=\left(0, a_{1} x_{1} \cdot a_{2} x_{2}, \ldots\right) \text { for } x=\left(x_{1}, x_{2}, \ldots\right) \in \mathcal{H} .
$$

Then T is hyponormal if and only if $a_{j} \leq a_{j+1}(j=1,2, \ldots)$, i.e., $\left\{a_{j}\right\}$ is a monotone increasing sequence, for $a_{j}=1(j \neq 2)$ and $a_{2}=\frac{1}{2}$. Since the sequence $\left\{a_{n}\right\}$ is not increasing, the operator T is not hyponormal. But since

$$
T^{2} x=\left(0,0, a_{1} a_{2} x_{1}, a_{2} a_{3} x_{2}, \ldots\right) \text { and } T^{2 *} x=\left(a_{1} a_{2} x_{3}, a_{2} a_{3} x_{4}, \ldots\right)
$$

T^{2} is hyponormal if and only if $a_{j} a_{j+1} \leq a_{j+2} a_{j+3}$ for $j=1,2, \ldots$. Hence, by this weights $a_{j}=1(j \neq 2)$ and $a_{2}=\frac{1}{2}$, the operator T^{2} is hyponormal and T is not hyponormal.

In [4-6], the authors have studied spectral properties of n-normal operator, that is, an operator T such that T^{n} is normal, in the cases that $\sigma(T) \cap(-\sigma(T))=\emptyset$ or $\sigma(T) \cap(-\sigma(T)) \subset\{0\}$. Since an operator T such that T^{2} is hyponormal is algebraically hyponormal, T is isoloid and Weyl's Theorem holds. Hence, we study other spectral properties of such an operator T in this paper.

2. Basic properties

In the beginning, we introduce a square hyponormal operator and investigate some basic properties of this operator.

Definition 2.1. For an operator $T \in B(\mathcal{H})$, T is said to be square hyponormal if T^{2} is hyponormal.
The following result follows from the definition of square hyponormal operators.
Theorem 2.2. Let $T \in B(\mathcal{H})$ be square hyponormal. Then the following statements hold.
(1) If T is invertible, then so is T^{-1}.
(2) For an even number $n=2 k \in \mathbb{N}, T^{n}$ is $\frac{1}{k}$-hyponormal.
(3) If $S \in B(\mathcal{H})$ is unitary equivalent to T, then S is square hyponormal.
(4) If $T-t$ is square hyponormal for all $t>0$, then T is hyponormal.

Proof. (1) is clear.
(2) Since T^{2} is hyponormal, by Corollary 1 of [3], $T^{n}=T^{2 k}=\left(T^{2}\right)^{k}$ is $\frac{1}{k}$-hyponormal.
(3) is clear.
(4) Since

$$
\begin{aligned}
0 & \leq(T-t)^{2 *}(T-t)^{2}-(T-t)^{2}(T-t)^{2 *}=T^{2 *} T^{2}-T^{2} T^{2 *} \\
& -2 t\left(T^{2 *} T+T^{*} T^{2}-T T^{2 *}-T^{2} T^{*}\right)+4 t^{2}\left(T^{*} T-T T^{*}\right),
\end{aligned}
$$

we obtain that

$$
\begin{gathered}
0 \leq \frac{1}{4 t^{2}}\left((T-t)^{2^{*}}(T-t)^{2}-(T-t)^{2}(T-t)^{2 *}\right)=\frac{1}{4 t^{2}}\left(T^{2 *} T^{2}-T^{2} T^{2 *}\right) \\
-\frac{1}{2 t}\left(T^{2 *} T+T^{*} T^{2}-T T^{2 *}-T^{2} T^{*}\right)+\left(T^{*} T-T T^{*}\right) .
\end{gathered}
$$

Letting $t \rightarrow \infty$, we have $T^{*} T-T T^{*} \geq 0$.
We now consider the restriction of a square hyponormal operator to an invariant closed subspace.

Theorem 2.3. Let $T \in B(\mathcal{H})$ be square hyponormal and M be an invariant closed subspace for T. Then $T_{\mid M}$ is square hyponormal.

Proof. Since M is an invariant closed subspace for T, we observe that

$$
T=\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right]:\left[\begin{array}{c}
M \\
M^{\perp}
\end{array}\right] \rightarrow\left[\begin{array}{c}
M \\
M^{\perp}
\end{array}\right]
$$

Therefore, for $D=T_{1} T_{2}+T_{2} T_{3}$, since

$$
T^{2}=\left[\begin{array}{cc}
T_{1}^{2} & D \\
0 & T_{3}^{2}
\end{array}\right] \quad \text { and } \quad\left(T^{2}\right)^{*}=\left[\begin{array}{cc}
\left(T_{1}^{2}\right)^{*} & 0 \\
D^{*} & \left(T_{3}^{2}\right)^{*}
\end{array}\right]
$$

we have

$$
\left(T^{2}\right)^{*} T^{2}-T^{2}\left(T^{2}\right)^{*}=\left[\begin{array}{cc}
\left(T_{1}^{2}\right)^{*} T_{1}^{2}-T_{1}^{2}\left(T_{1}^{2}\right)^{*}-D D^{*} & \left(T_{1}^{2}\right)^{*} D-D\left(T_{3}^{2}\right)^{*} \\
D^{*} T_{1}^{2}-T_{3}^{2} D^{*} & D^{*} D+\left(T_{3}^{2}\right)^{*} T_{3}^{2}-T_{3}^{2}\left(T_{3}^{2}\right)^{*}
\end{array}\right] \geq 0
$$

Hence we deduce that $\left(T_{1}^{2}\right)^{*} T_{1}^{2}-T_{1}^{2}\left(T_{1}^{2}\right)^{*}-D D^{*} \geq 0$ and so $\left(T_{1}^{2}\right)^{*} T_{1}^{2}-T_{1}^{2}\left(T_{1}^{2}\right)^{*} \geq 0$. Therefore, $T_{\mid M}$ is square hyponormal.

3. Spectral property

Under some additional assumptions, we study spectral properties of a square hyponormal operator in this section. Firstly, we show the following theorem.

Theorem 3.1. Let $T \in B(\mathcal{H})$ be square hyponormal. If $\mu(\sigma(T))=0$, then T^{2} is normal, where μ is the planar Lebesgue measure.

Proof. Since $\mu(\sigma(T))=0$, we have that $\mu\left(\sigma\left(T^{2}\right)\right)=0$ by the spectral mapping theorem. By T^{2} is hyponormal and Putnam's Theorem, it holds

$$
\left\|T^{2 *} T^{2}-T^{2} T^{2 *}\right\| \leq \frac{1}{\pi} \mu\left(\sigma\left(T^{2}\right)\right)=0
$$

Hence, T^{2} is normal.
Remark 3.2. If T is p-hyponormal and square hyponormal with $\mu(\sigma(T))=0$, then, by Corollary 2 of [3], T is normal. But let $S=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ on \mathbb{C}^{2}. Then S is square hyponormal with $\mu(\sigma(S))=0$ and S is not normal.

If T is compact, then $\mu(\sigma(T))=0$. Hence, we have the following corollary.
Corollary 3.3. If $T \in B(\mathcal{H})$ is compact square hyponormal, then T^{2} is normal.
An operator $T \in B(\mathcal{H})$ is said to have SVEP (single-valued extension property) if for every open subset G of \mathbb{C} and any \mathcal{H}-valued analytic function f on G such that $(T-z) f(z) \equiv 0$ on G, then $f(z) \equiv 0$ on G. It is well known that:
(1) If $\operatorname{ker}(T-z) \perp \operatorname{ker}(T-w)$ for any distinct nonzero eigenvalues z and w, then
T has SVEP.
(2) Let p be polynomial. If $p(T)$ has SVEP, then T has SVEP.

See details in $[2,11,12]$. Since it is clear that a hyponormal operator has SVEP, we have the next corollary by (2).

Corollary 3.4. Let $T \in B(\mathcal{H})$ be square hyponormal. Then T has SVEP.
Let $\mathcal{K}(\mathcal{H})$ be the set of all compact operators on \mathcal{H}. Then, for $T \in B(\mathcal{H})$, the Weyl spectrum $\sigma_{w}(T)$ and the Browder spectrum $\sigma_{b}(T)$ of T are defined as follows:

$$
\sigma_{w}(T)=\bigcap_{K \in \mathcal{K}(\mathcal{H})} \sigma(T+K) \text { and } \sigma_{b}(T)=\bigcap_{K \in \mathcal{K}(\mathcal{H}) ; T K=K T} \sigma(T+K) .
$$

If T has SVEP, then $\sigma_{w}(T)=\sigma_{b}(T)$ by Corollary 3.53 of [2]. Let $\mathcal{H}(\sigma(T))$ denote the set of all analytic function defined on an open set containing $\sigma(T)$. Then, by Corollary 3.72 of [2], we have the following result.

Corollary 3.5. Let $T \in B(\mathcal{H})$ be square hyponormal. Then, for $f \in \mathcal{H}(\sigma(T))$,

$$
\sigma_{w}(f(T))=\sigma_{b}(f(T))=f\left(\sigma_{w}(T)\right)=f\left(\sigma_{b}(T)\right) .
$$

Next for $T \in B(\mathcal{H})$, we set the following property:

$$
\begin{equation*}
\sigma(T) \cap(-\sigma(T)) \subset\{0\} . \tag{*}
\end{equation*}
$$

Then we begin with the following result.

Theorem 3.6. Let $T \in B(\mathcal{H})$ be square hyponormal with (*) and M be an invariant subspace for T. If $\sigma\left(T_{\mid M}\right)=\{z\}$, then the following assertions hold.
(1) If $z=0$, then $\left(T_{\mid M}\right)^{2}=0$.
(2) If $z \neq 0$, then $T_{[M}=z$.

Proof. (1) By Theorem 2.3, $T_{\mid M}$ is square hyponormal. Since $\sigma\left(\left(T_{\mid M}\right)^{2}\right)=\{0\}$, we have $\left(T_{\mid M}\right)^{2}=0$ by Putnam's theorem.
(2) Similarly, from $\sigma\left(\left(T_{\mid M}\right)^{2}\right)=\left\{z^{2}\right\}$, we get $\left(T_{\mid M}\right)^{2}=z^{2}$ and hence

$$
0=\left(T_{\mid M}\right)^{2}-z^{2}=\left(T_{\mid M}+z\right)\left(T_{\mid M}-z\right) .
$$

By the assumption $(*),-z \notin \sigma(T)$ and there exists $\left(T_{\mid M}+z\right)^{-1}$. Hence, it holds $T_{\mid M}-z=0$.
Theorem 3.7. Let $T \in B(\mathcal{H})$ be a square hyponormal operator. If T satisfies $(*)$, then $\sigma(T)=\left\{\bar{z}: z \in \sigma_{a}\left(T^{*}\right)\right\}$.
Proof. Since $\sigma(T)=\sigma_{a}(T) \cup \sigma_{r}(T)$, we may show $\sigma_{a}(T) \subset\left\{\bar{z}: z \in \sigma_{a}\left(T^{*}\right)\right\}$.
(1) If $0 \in \sigma_{a}(T)$, then $0 \in \sigma_{a}\left(T^{2}\right)$ and T^{2} is hyponormal. Hence, it is easy to see $0 \in \sigma_{a}\left(T^{*}\right)$.
(2) Let $z \in \sigma_{a}(T)$ and $z \neq 0$. Then there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $(T-z) x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus, $\left(T^{2}-z^{2}\right) x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Because T^{2} is hyponormal, we have $\left(T^{2}-z^{2}\right)^{*} x_{n} \rightarrow 0$ and $\left(T^{*}+\bar{z}\right)\left(T^{*}-\bar{z}\right) x_{n} \rightarrow 0$ as $n \rightarrow \infty$. By the assumption $(*),-\bar{z} \notin \sigma\left(T^{*}\right)$ which gives $\left(T^{*}-\bar{z}\right) x_{n} \rightarrow 0$ as $n \rightarrow \infty$ and therefore $\bar{z} \in \sigma_{a}\left(T^{*}\right)$. It completes the proof.

Theorem 3.8. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy (*).
(1) If z and w are distinct eigen-values of T and $x, y \in \mathcal{H}$ are corresponding eigen-vectors, respectively, then $\langle x, y\rangle=0$.
(2) If z, w are distinct values of $\sigma_{a}(T)$ and $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are the sequences of unit vectors in \mathcal{H} such that $(T-z) x_{n} \rightarrow 0$ and $(T-w) y_{n} \rightarrow 0(n \rightarrow \infty)$, then $\lim _{n \rightarrow \infty}\left\langle x_{n}, y_{n}\right\rangle=0$.
Proof. (1) follows from (2). So, we show (2). Since $(T-z) x_{n} \rightarrow 0$ and ($\left.T-w\right) y_{n} \rightarrow 0(n \rightarrow \infty)$, it holds that $\left(T^{2}-z^{2}\right) x_{n} \rightarrow 0$ and $\left(T^{2}-w^{2}\right) y_{n} \rightarrow 0$. Because T^{2} is hyponormal, we get $\left(T^{* 2}-\bar{w}^{2}\right) y_{n} \rightarrow 0$. Hence,

$$
\lim _{n \rightarrow \infty} z^{2}\left\langle x_{n}, y_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle z^{2} x_{n}, y_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle T^{2} x_{n}, y_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, T^{* 2} y_{n}\right\rangle=\lim _{n \rightarrow \infty} w^{2}\left\langle x_{n}, y_{n}\right\rangle .
$$

If $z^{2}=w^{2}$, then $(z+w)(z-w)=0$. Since $z \neq w$, we have $z=-w$. By $(*)$, this implies $z=w=0$. Therefore, $z^{2} \neq w^{2}$, and so $\lim _{n \rightarrow \infty}\left\langle x_{n}, y_{n}\right\rangle=0$.

Thus, we have the following corollary.
Corollary 3.9. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy (*). If z and w are distinct eigen-values of T, then $\operatorname{ker}(T-z) \perp \operatorname{ker}(T-w)$.

Let M be a subspace of \mathcal{H}. M is said to be a reducing subspace for T if $T(M) \subset M$ and $T^{*}(M) \subset M$, that is, M is an invariant subspace for T and T^{*}. Then we have a following result.

Theorem 3.10. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy $(*)$. If z is a non-zero eigen-value of T, then $\operatorname{ker}(T-z)=\operatorname{ker}\left(T^{2}-z^{2}\right) \subset \operatorname{ker}\left(T^{* 2}-\bar{z}^{2}\right)=\operatorname{ker}\left(T^{*}-\bar{z}\right)$ and hence $\operatorname{ker}(T-z)$ is a reducing subspace for T.

Proof. Firstly, we show that $\operatorname{ker}(T-z)=\operatorname{ker}\left(T^{2}-z^{2}\right)$. Because it is clear that $\operatorname{ker}(T-z) \subset \operatorname{ker}\left(T^{2}-z^{2}\right)$, we will verify that $\operatorname{ker}\left(T^{2}-z^{2}\right) \subset \operatorname{ker}(T-z)$. Let $x \in \operatorname{ker}\left(T^{2}-z^{2}\right)$, i.e., $\left(T^{2}-z^{2}\right) x=0$. Then $(T+z)(T-z) x=0$. Since $z \neq 0$, by the assumption $(*)$, we have $-z \notin \sigma(T)$. Hence, it follows $(T-z) x=0$ and $x \in \operatorname{ker}(T-z)$. Therefore, $\operatorname{ker}\left(T^{2}-z^{2}\right) \subset \operatorname{ker}(T-z)$ and $\operatorname{ker}(T-z)=\operatorname{ker}\left(T^{2}-z^{2}\right)$. Since T^{2} is hyponormal, $\operatorname{ker}\left(T^{2}-z^{2}\right) \subset \operatorname{ker}\left(T^{* 2}-\bar{z}^{2}\right)$. Evidently, $\operatorname{ker}\left(T^{*}-\bar{z}\right) \subset \operatorname{ker}\left(T^{* 2}-\bar{z}^{2}\right)$. Let $x \in \operatorname{ker}\left(T^{* 2}-\bar{z}^{2}\right)$. Because $\left(T^{*}+\bar{z}\right)\left(T^{*}-\bar{z}\right) x=0$ and $T^{*}+\bar{z}$ is invertible by the assumption (*), we obtain that $x \in \operatorname{ker}\left(T^{*}-\bar{z}\right)$. Hence, $\operatorname{ker}\left(T^{* 2}-\bar{z}^{2}\right)=\operatorname{ker}\left(T^{*}-\bar{z}\right)$. Finally, by the above results, it is clear that $\operatorname{ker}(T-z)$ is a reducing subspace for T.

The following remark is same with the corresponding in the paper of [5].
Remark 3.11. In general, $\operatorname{ker}(T)$ is not a reducing subspace for a square hyponormal operator T.
(1) Let T be as in Example 2.3 of [1], that is, let $\mathcal{H}=\ell^{2},\left\{\mathrm{e}_{j}\right\}_{j=1}^{\infty}$ be the standard orthonormal basis of ℓ^{2} and T be defined by

$$
T \mathbf{e}_{j}= \begin{cases}\mathbf{e}_{1} & (j=1) \\ \mathbf{e}_{j+1} & (j=2 k) \\ 0 & (j=2 k+1)\end{cases}
$$

Then T is a square hyponormal operator and satisfies $(*)$. Since $\mathrm{e}_{3} \in \operatorname{ker}(T)$ and $T T^{*} \mathrm{e}_{3}=\mathrm{e}_{3} \neq 0, \operatorname{ker}(T)$ does not reduce T. Let P be the orthogonal projection to the first coordinate. Since $T^{2}=P$, it is clear that $\operatorname{ker}(T) \varsubsetneqq \operatorname{ker}\left(T^{2}\right)=\operatorname{ker}(P)$.
(2) We give an easy example. Let $S=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ on \mathbb{C}^{2}. Since $S^{2}=0$ and $\sigma(S)=\{0\}, S$ is square hyponormal and satisfies $(*)$. Let $x=\binom{1}{0}$. Then $x \in \operatorname{ker}(S)$ and $S S^{*} x=x \neq 0$. Hence, $\operatorname{ker}(S)$ does not reduce S and $\operatorname{ker}(S) \varsubsetneqq \operatorname{ker}\left(S^{2}\right)=\mathbb{C}^{2}$.

For an isolated point λ of $\sigma(T)$, the Riesz idempotent for λ is defined by

$$
E_{T}(\{\lambda\})=\frac{1}{2 \pi i} \int_{\partial D}(z-T)^{-1} d z,
$$

where D is a closed disk centered at λ which contains no other points of $\sigma(T)$. For an operator $T \in \mathcal{L}(\mathcal{H})$, the quasinilpotent part of T is defined by

$$
\mathcal{H}_{0}(T):=\left\{x \in \mathcal{H}: \lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}=0\right\} .
$$

Then $\mathcal{H}_{0}(T)$ is a linear (not necessarily closed) subspace of \mathcal{H}. It is known that if T has SVEP, then

$$
\mathcal{H}_{0}(T-\lambda)=\left\{x \in \mathcal{H}: \lim _{n \rightarrow \infty}\left\|(T-\lambda)^{n} x\right\|^{\frac{1}{n}}=0\right\}=E_{T}(\{\lambda\}) \mathcal{H}
$$

for all $\lambda \in \mathbb{C}$. In general, $\operatorname{ker}(T-\lambda)^{m} \subset \mathcal{H}_{0}(T-\lambda)$ and $\mathcal{H}_{0}(T-\lambda)$ is not closed. However, if λ is an isolated point of $\sigma(T)$, then $E_{T}(\{\lambda\}) \mathcal{H}=\mathcal{H}_{0}(T-\lambda)$ and $\mathcal{H}_{0}(T-\lambda)$ is closed. Also, if T is normal and $T=\int_{\sigma(T)} \lambda d F(\lambda)$ is the spectral decomposition of T, then

$$
\mathcal{H}_{0}(T-\lambda)=E_{T}(\{\lambda\}) \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}
$$

In 2012. J. T. Yuan and G. X. Ji ([12, Lemma 5.2]) proved following Lemma.
Lemma 3.12. Let $T \in B(\mathcal{H})$, m be a positive integer and λ be an isolated point of $\sigma(T)$.
(i) The following assertions are equivalent:
(a) $E_{T}(\{\lambda\}) \mathcal{H}=\operatorname{ker}(T-\lambda)^{m}$.
(b) $\operatorname{ker}\left(E_{T}(\{\lambda\})\right)=(T-\lambda)^{m} \mathcal{H}$.

In this case, λ is a pole of the resolvent of T and the order of λ is not greater than m.
(ii) If λ is a pole of the resolvent of T and the order of λ is m, then the following assertions are equivalent:
(a) $E_{T}(\{\lambda\})$ is self-adjoint.
(b) $\operatorname{ker}\left((T-\lambda)^{m}\right) \subset \operatorname{ker}\left((T-\lambda)^{* m}\right)$.
(c) $\operatorname{ker}\left((T-\lambda)^{m}\right)=\operatorname{ker}\left((T-\lambda)^{* m}\right)$.

By this lemma, we prove the following theorem.
Theorem 3.13. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy (*). Let λ be an isolated point of spectrum of T.
Then the following statements hold.
(i) If $\lambda=0$, then $\mathcal{H}_{0}(T)=\operatorname{ker}\left(T^{2}\right)=\operatorname{ker}\left(T^{* 2}\right), E_{T}(\{0\})$ is self-adjoint and the order of pole λ is not greater than 2 .
(ii) If $\lambda \neq 0$, then $\mathcal{H}_{0}(T-\lambda)=\operatorname{ker}(T-\lambda)=\operatorname{ker}\left((T-\lambda)^{*}\right), E_{T}(\{\lambda\})$ is self-adjoint and the order of pole λ is 1 .

Proof. (i) Assume that $\lambda=0$. Since $\sigma\left(T^{2}\right)=\left\{z^{2}: z \in \sigma(T)\right\}$, it follows that 0 is an isolated point of spectrum of T^{2}. We prove that $\mathcal{H}_{0}(T)=\mathcal{H}_{0}\left(T^{2}\right)$. Let $x \in \mathcal{H}_{0}(T)$. Then $\left\|T^{n} x\right\|^{\frac{1}{n}} \longrightarrow 0$ and thus $\left\|T^{2 n} x\right\|^{\frac{1}{2 n}}=\left(\left\|T^{2 n} x\right\|^{\frac{1}{n}}\right)^{\frac{1}{2}} \longrightarrow 0$ and $\left\|T^{2 n} x\right\|^{\frac{1}{n}} \longrightarrow 0$. Hence, $x \in \mathcal{H}_{0}\left(T^{2}\right)$. Conversely, let $x \in \mathcal{H}_{0}\left(T^{2}\right)$. Then $\left\|T^{2 n} x\right\|^{\frac{1}{n}} \longrightarrow 0$ and so $\left\|T^{2 n} x\right\|^{\frac{1}{2 n}}=$ $\left(\left\|T^{2 n} x\right\|^{\frac{1}{n}}\right)^{\frac{1}{2}} \longrightarrow 0$. From

$$
\begin{aligned}
\left\|T^{2 n+1} x\right\| \|^{\frac{1}{2 n+1}} & \leq\left(\|T\|\left\|T^{2 n} x\right\|\right)^{\frac{1}{2 n+1}} \\
& \leq\|T\|^{\frac{1}{2 n+1}}\left(\left\|T^{2 n} x\right\|^{\frac{1}{2 n}}\right)^{\frac{2 n}{2 n+1}} \longrightarrow 0(n \rightarrow \infty)
\end{aligned}
$$

it follows that $x \in \mathcal{H}_{0}(T)$. Therefore, $\mathcal{H}_{0}(T)=\mathcal{H}_{0}\left(T^{2}\right)$. Since T^{2} is hyponormal, we observe that $E_{T^{2}}(\{0\}) \mathcal{H}=$ $\mathcal{H}_{0}\left(T^{2}\right)=\operatorname{ker}\left(T^{2}\right)=\operatorname{ker}\left(T^{* 2}\right)$ by Stampfli [10]. So,

$$
E_{T}(\{0\}) \mathcal{H}=\mathcal{H}_{0}(T)=\mathcal{H}_{0}\left(T^{2}\right)=E_{T^{2}}(\{0\}) \mathcal{H}=\operatorname{ker}\left(T^{2}\right)=\operatorname{ker}\left(T^{* 2}\right)
$$

Now, 0 is a pole of the resolvent of T, the order of 0 is not greater than 2 and $E_{T}(\{0\})$ is self-adjoint by Lemma 3.12.
(ii) Next we assume that $\lambda \neq 0$. Then λ^{2} is an isolated point of $\sigma\left(T^{2}\right)$ by Lemma 2.1 of [5]. We will prove $\mathcal{H}_{0}(T-\lambda)=\mathcal{H}_{0}\left(T^{2}-\lambda^{2}\right)$. Let $x \in \mathcal{H}_{0}(T-\lambda)$. Then $\left\|(T-\lambda)^{n} x\right\|^{\frac{1}{n}} \rightarrow 0$ and

$$
\begin{aligned}
\left\|\left(T^{2}-\lambda^{2}\right)^{n} x\right\|^{\frac{1}{n}} & \leq\left\|(T+\lambda)^{n}\right\|^{\frac{1}{n}}\left\|(T-\lambda)^{n} x\right\|^{\frac{1}{n}} \\
& \leq\|T+\lambda\|\left\|(T-\lambda)^{n} x\right\|^{\frac{1}{n}} \longrightarrow 0,
\end{aligned}
$$

which implies $\mathcal{H}_{0}(T-\lambda) \subset \mathcal{H}_{0}\left(T^{2}-\lambda^{2}\right)$. Conversely, let $x \in \mathcal{H}_{0}\left(T^{2}-\lambda^{2}\right)$. Since $T+\lambda$ is invertible by the assumption (*), we have

$$
\begin{aligned}
\left\|(T-\lambda)^{n} x\right\|^{\frac{1}{n}} & =\left\|(T+\lambda)^{-n}(T+\lambda)^{n}(T-\lambda)^{n} x\right\|^{\frac{1}{n}} \\
& \leq\left\|\left\{(T+\lambda)^{-1}\right\}^{n}\right\|^{\frac{1}{n}}\left\|\left(T^{2}-\lambda^{2}\right)^{n} x\right\|^{\frac{1}{n}} \\
& \leq\left\|(T+\lambda)^{-1}\right\|\left\|\left(T^{2}-\lambda^{2}\right)^{n} x\right\|^{\frac{1}{n}} \longrightarrow 0 .
\end{aligned}
$$

Hence, $\mathcal{H}_{0}(T-\lambda) \supset \mathcal{H}_{0}\left(T^{2}-\lambda^{2}\right)$ and $\mathcal{H}_{0}(T-\lambda)=\mathcal{H}_{0}\left(T^{2}-\lambda^{2}\right)$. Because T^{2} is hyponormal, it follows that

$$
E_{T^{2}}\left(\left\{\lambda^{2}\right\}\right) \mathcal{H}=\mathcal{H}_{0}\left(T^{2}-\lambda^{2}\right)=\operatorname{ker}\left(T^{2}-\lambda^{2}\right)=\operatorname{ker}\left(T^{* 2}-\bar{\lambda}^{2}\right)
$$

by Stampfli [10]. Hence

$$
E_{T}(\{\lambda\}) \mathcal{H}=\mathcal{H}_{0}(T-\lambda)=\mathcal{H}_{0}\left(T^{2}-\lambda^{2}\right)=E_{T^{2}}(\{\lambda\}) \mathcal{H}=\operatorname{ker}\left(T^{2}-\lambda^{2}\right)=\operatorname{ker}\left(T^{* 2}-\bar{\lambda}^{2}\right) .
$$

Since $(T+\lambda)^{*}$ is invertible, we get

$$
E_{T}(\{\lambda\}) \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}\left((T-\lambda)^{*}\right) .
$$

Thus, λ is a pole of the resolvent of T, the order of λ is not greater than 2 and $E_{T}(\{\lambda\})$ is self-adjoint by Lemma 3.12.

Let D be a bounded open subset of \mathbb{C} and $L^{2}(D, \mathcal{H})$ be the Hilbert space of measurable function $f: D \longrightarrow \mathcal{H}$ such that

$$
\|f\|=\left(\int_{D}\|f(z)\|^{2} d \mu(z)\right)^{\frac{1}{2}}<\infty
$$

where μ is the planar Lebesgue measure. Let $W^{2}(D, \mathcal{H})$ be the Sobolev space with respect to $\bar{\partial}$ and of order 2 whose derivatives $\bar{\partial} f$ and $\bar{\partial}^{2} f$ in the sense of distributions belong to $L^{2}(D, \mathcal{H})$. The norm $\|f\|_{W^{2}}$ is given by

$$
\|f\|_{W^{2}}=\left(\|f\|^{2}+\|\bar{\partial} f\|^{2}+\left\|\bar{\partial}^{2} f\right\|^{2}\right)^{\frac{1}{2}} \quad \text { for } f \in L^{2}(D, \mathcal{H})
$$

In [4], Alzuraiqi and Patel proved the following.
Proposition 3.14. (Alzraiqi and Patel [4], Theorem 2.37) Let D be an arbitrary bounded disk in \mathbb{C}. If $T \in B(\mathcal{H})$ is 2-normal with the assumption $\sigma(T) \cap(-\sigma(T))=\emptyset$, then the operator

$$
z-T: W^{2}(D, \mathcal{H}) \longrightarrow L^{2}(D, \mathcal{H})
$$

is one to one for every $z \in \mathbb{C}$.

We would like to prove this result as follows.
Theorem 3.15. Let D be an arbitrary bounded disk in \mathbb{C} and $T \in B(\mathcal{H})$ be square hyponormal with (*). Then the operator

$$
z-T: W^{2}(D, \mathcal{H}) \longrightarrow L^{2}(D, \mathcal{H})
$$

is one to one for every $z \in \mathbb{C}$.
Proof. Let $f \in W^{2}(D, \mathcal{H}), S=z-T$ and $S f=0$. We show $f=0$. Then

$$
\begin{aligned}
\|f\|_{W^{2}}^{2} & =\|f\|_{2, D}^{2}+\|\bar{\partial} f\|_{2, D}^{2}+\left\|\bar{\partial}^{2} f\right\|_{2, D}^{2} \\
& =\int_{D}\|f(z)\|^{2} d \mu(z)+\int_{D}\|\bar{\partial} f(z)\|^{2} d \mu(z)+\int_{D}\left\|\bar{\partial}^{2} f(z)\right\|^{2} d \mu(z)<\infty,
\end{aligned}
$$

and

$$
\begin{aligned}
\|S f\|_{W^{2}}^{2} & =\|(z-T) f\|_{W^{2}}^{2} \\
& =\|(z-T) f\|_{2, D}^{2}+\|\bar{\partial}((z-T) f)\|_{2, D}^{2}+\left\|\bar{\partial}^{2}((z-T) f)\right\|_{2, D}^{2} \\
& =\|(z-T) f\|_{2, D}^{2}+\|(z-T) \bar{\partial} f\|_{2, D}^{2}+\left\|(z-T) \bar{\partial}^{2} f\right\|_{2, D}^{2}=0 .
\end{aligned}
$$

Hence,

$$
\left\|(z-T) \bar{\partial}^{i} f\right\|_{2, D}^{2}=\int_{D}\left\|(z-T) \bar{\partial}^{i} f(z)\right\|^{2} d \mu(z)=0 \quad(i=0,1,2)
$$

Let i be $i=0,1,2$. Since $(z-T) \bar{\partial}^{i} f(z)=0$ for $z \in D$, if $z \in D \backslash \sigma(T)$, then $\bar{\partial}^{i} f(z)=0$ because $z-T$ is invertible. This implies

$$
\left\|(z-T)^{*} \bar{\partial}^{i} f\right\|_{2, D \backslash \sigma(T)}^{2}=\int_{D \backslash \sigma(T)}\left\|(z-T)^{*} \bar{\partial}^{i} f(z)\right\|^{2} d \mu(z)=0 .
$$

Since

$$
\begin{aligned}
\left\|\left(z^{2}-T^{2}\right) \bar{\partial}^{i} f\right\|_{2, D}^{2} & =\int_{D}\left\|\left(z^{2}-T^{2}\right) \bar{\partial}^{i} f(z)\right\|^{2} d \mu(z) \\
& \leq\left(\sup _{z \in D}\|z+T\|\right)^{2} \int_{D}\left\|(z-T) \bar{\partial}^{i} f(z)\right\|^{2} d \mu(z) \\
& =\left(\sup _{z \in D}\|z+T\|\right)^{2}\left\|(z-T) \bar{\partial}^{i} f\right\|_{2, D}^{2}=0
\end{aligned}
$$

we have $\left(z^{2}-T^{2}\right) \bar{\partial}^{i} f(z)=0$ for $z \in D$. Because T^{2} is hyponormal, then

$$
\int_{D}\left\|\left(z^{2}-T^{2}\right)^{*} \bar{\partial}^{i} f(z)\right\|^{2} d \mu(z)=\left\|\left(z^{2}-T^{2}\right)^{*} \bar{\partial}^{i} f\right\|_{2, D}^{2} \leq\left\|\left(z^{2}-T^{2}\right) \bar{\partial}^{i} f\right\|_{2, D}^{2}=0 .
$$

So,

$$
0=\left(z^{2}-T^{2}\right)^{*}{ }^{i} f(z)=(z+T)^{*}(z-T)^{*} \bar{x}^{i} f(z) \text { for } z \in D
$$

If $z \in D \cap(\sigma(T) \backslash(-\sigma(T)))$, then $z+T$ and $(z+T)^{*}$ are invertible. Hence, $(z-T)^{*} \bar{\partial}^{i} f(z)=0$ for $z \in D \cap$ $(\sigma(T) \backslash(-\sigma(T)))$. Since D is bounded, $\left\|\bar{\partial}^{i} f\right\|_{2, D}^{2}<\infty$ and the planar Lebesgue measure of $\sigma(T) \cap(-\sigma(T))$ is 0 , we have

$$
\begin{aligned}
\left\|(z-T)^{*} \bar{d}^{i} f\right\|_{2, D}^{2} & =\int_{D \backslash \sigma(T)}\left\|(z-T)^{*} \bar{d}^{i} f(z)\right\|^{2} d \mu(z) \\
& +\int_{D \cap(\sigma(T) \backslash(-\sigma(T)))}\left\|(z-T)^{*} \bar{\partial}^{i} f(z)\right\|^{2} d \mu(z) \\
& +\int_{D \cap \sigma(T) \cap(-\sigma(T))}\left\|(z-T)^{*} \bar{\partial}^{i} f(z)\right\|^{2} d \mu(z) \\
& \leq 0+0+\max _{z \in D}\left\|(z-T)^{*}\right\|^{2} \int_{D \cap \sigma(T) \cap(-\sigma(T))}\left\|\bar{\partial}^{i} f(z)\right\|^{2} d \mu(z)=0
\end{aligned}
$$

By [9, Proposition 2.1], we obtain $\|(I-P) f\|_{2, D}=0$. Thus, $f(z)=(P f)(z)$ for $z \in D$. From $S f=0$, we have $(S f)(z)=(z-T) f(z)=(z-T)(P f)(z)=0$ for $z \in D$.

Since T has the single-valued extension property by Corollary 3.4 and $P f$ is analytic, it follows that $0=(P f)(z)=f(z)$ for $z \in D$. Hence, $f=0$ and S is one to one.
An operator $T \in B(\mathcal{H})$ is said to be polaroid if every isolated point of the spectrum of T is a pole of the resolvent. In [1], Aiena showed that if T is algebraically paranormal on a Banach space, then the following results hold.
(1) T is polaroid (Theorem 1.3).
(2) If T is quasinilpotent, then T is nilpotent (Lemma 1.2).

Hence, it is clear that if $T \in B(\mathcal{H})$ is square hyponormal, then T is polaroid.

4. nth hyponormal operators

We now introduce and study nth hyponormal operators.
Definition 4.1. For $n \in \mathbb{N}$ and an operator $T \in B(\mathcal{H}), T$ is said to be nth hyponormal if T^{n} is hyponormal.
As Theorem 2.3, we can verify the following result.
Theorem 4.2. Let $n \in \mathbb{N}, T \in B(\mathcal{H})$ be nth hyponormal and M be an invariant closed subspace for T. Then $T_{\mid M}$ is nth hyponormal.

For an nth hyponormal operator $T \in B(\mathcal{H})$, we consider the following property:
(**)

$$
\sigma(T) \bigcap\left(\bigcup_{j=1}^{n-1} e^{\frac{2 j \pi}{n} i} \sigma(T)\right) \subset\{0\} .
$$

Theorem 4.3. Let $n \in \mathbb{N}, T \in B(\mathcal{H})$ be nth hyponormal with (**) and M be an invariant subspace for T. If $\sigma\left(T_{\mid M}\right)=\{z\}$, then the following assertions hold.
(1) If $z=0$, then $\left(T_{\mid M}\right)^{n}=0$.
(2) If $z \neq 0$, then $T_{\mid M}=z$.

Proof. (1) By Theorem 4.2, $T_{\mid M}$ is nth hyponormal. Since $\sigma\left(\left(T_{\mid M}\right)^{n}\right)=\{0\}$, by Putnam's theorem, we conclude that $\left(T_{\mid M}\right)^{n}=0$.
(2) Because $\sigma\left(\left(T_{\mid M}\right)^{n}\right)=\left\{z^{n}\right\}$, then $\left(T_{\mid M}\right)^{n}=z^{n}$ and so

$$
0=\left(T_{\mid M}\right)^{n}-z^{n}=\left(T_{\mid M}-e^{\frac{2 \pi}{n} i} z\right)\left(T_{\mid M}-e^{\frac{4 \pi}{n} i} z\right) \cdots\left(T_{\mid M}-e^{\frac{2(n-1) \pi}{n} i} z\right)\left(T_{\mid M}-z\right)
$$

From $z \neq 0$ and $(* *)$, there exists $\left(T_{\mid M}-e^{\frac{2 j \pi}{n}} i z\right)^{-1}$, for every $j=1, \ldots, n-1$, and thus $T_{\mid M}-z=0$.
Theorem 4.4. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be an nth hyponormal operator. If T satisfies $(* *)$, then $\sigma(T)=\{\bar{z}: z \in$ $\left.\sigma_{a}\left(T^{*}\right)\right\}$.

Proof. Because $\sigma(T)=\sigma_{a}(T) \cup \sigma_{r}(T)$, we verify that $\sigma_{a}(T) \subset\left\{\bar{z}: z \in \sigma_{a}\left(T^{*}\right)\right\}$.
(1) If $0 \in \sigma_{a}(T)$, then $0 \in \sigma_{a}\left(T^{n}\right)$ and, because T^{n} is hyponormal, we can get $0 \in \sigma_{a}\left(T^{*}\right)$.
(2) For $z \in \sigma_{a}(T)$ and $z \neq 0$, there exists a sequence $\left\{x_{m}\right\}$ of unit vectors such that $(T-z) x_{m} \rightarrow 0$ as $m \rightarrow \infty$. We observe that $\left(T^{n}-z^{n}\right) x_{m}=\left(T^{n-1}+T^{n-2} z+\cdots+z^{n-1}\right)(T-z) x_{m} \rightarrow 0$ as $m \rightarrow \infty$ and T^{n} is hyponormal, which gives $\left(T^{n}-z^{n}\right)^{*} x_{m} \rightarrow 0$ as $m \rightarrow \infty$. By the hypothesis $(* *)$ and z is non-zero, all operators $\left(T^{*}-e^{\frac{2 \pi}{n} i} \bar{z}\right),\left(T^{*}-\right.$ $\left.e^{\frac{4 \pi}{n}} \bar{z}\right), \ldots,\left(T^{*}-e^{\frac{2(n-1) \pi}{n} i} \bar{z}\right)$ are invertible. Hence, by $T^{* n}-\bar{z}^{n}=\left(T^{*}-e^{\frac{2 \pi}{n} i} \bar{z}\right)\left(T^{*}-e^{\frac{4 \pi}{n} i} \bar{z}\right) \cdots\left(T^{*}-e^{\frac{2(n-1) \pi}{n} i} \bar{z}\right)\left(T^{*}-\bar{z}\right)$, we have that $\left(T^{*}-\bar{z}\right) x_{m} \rightarrow 0$ as $m \rightarrow \infty$, that is, $\bar{z} \in \sigma_{a}\left(T^{*}\right)$, which completes the proof.

Theorem 4.5. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfying (**).
(1) If z and w are distinct eigen-values of T and $x, y \in \mathcal{H}$ are corresponding eigen-vectors, respectively, then $\langle x, y\rangle=0$.
(2) If z, w are distinct values of $\sigma_{a}(T)$ and $\left\{x_{m}\right\},\left\{y_{m}\right\}$ are the sequences of unit vectors in \mathcal{H} such that $(T-z) x_{m} \rightarrow 0$ and $(T-w) y_{m} \rightarrow 0(m \rightarrow \infty)$, then $\lim _{m \rightarrow \infty}\left\langle x_{m}, y_{m}\right\rangle=0$.
Proof. Since (1) follows from (2), we will only prove (2). From (T-z) $x_{m} \rightarrow 0$ and ($\left.T-w\right) y_{m} \rightarrow 0(m \rightarrow \infty)$, we get $\left(T^{n}-z^{n}\right) x_{m} \rightarrow 0$ and $\left(T^{n}-w^{n}\right) y_{m} \rightarrow 0$. Further, because T^{n} is hyponormal, $\left(T^{* n}-\bar{w}^{n}\right) y_{m} \rightarrow 0$. Therefore,

$$
\lim _{m \rightarrow \infty} z^{n}\left\langle x_{m}, y_{m}\right\rangle=\lim _{m \rightarrow \infty}\left\langle z^{n} x_{m}, y_{m}\right\rangle=\lim _{m \rightarrow \infty}\left\langle T^{n} x_{m}, y_{m}\right\rangle=\lim _{m \rightarrow \infty}\left\langle x_{m}, T^{* n} y_{m}\right\rangle=\lim _{n \rightarrow \infty} w^{n}\left\langle x_{m}, y_{m}\right\rangle
$$

In the case that $z^{n}=w^{n}$, by $0=z^{n}-w^{n}=(z-w)\left(z-e^{\frac{2 \pi}{n} i} w\right)\left(z-e^{\frac{4 \pi}{n} i} w\right) \cdots\left(z-e^{\frac{2(n-1) \pi}{n} i} w\right), z \neq w$ and (**), we deduce that $z=w=0$. So, $z^{n} \neq w^{n}$, and $\lim _{m \rightarrow \infty}\left\langle x_{m}, y_{m}\right\rangle=0$.

Corollary 4.6. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing ($* *$). If z and w are distinct eigen-values of T, then $\operatorname{ker}(T-z) \perp \operatorname{ker}(T-w)$.

Corollary 4.7. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing (**). Then T has SVEP.
In a similar manner as Theorem 3.10, we prove the next result.
Theorem 4.8. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing (**). If z is a non-zero eigen-value of T, then $\operatorname{ker}(T-z)=\operatorname{ker}\left(T^{n}-z^{n}\right) \subset \operatorname{ker}\left(T^{* n}-\bar{z}^{n}\right)=\operatorname{ker}\left(T^{*}-\bar{z}\right)$ and hence $\operatorname{ker}(T-z)$ is a reducing subspace for T.

As Theorem 3.13 and Theorem 3.15, we can verify the following theorems.
Theorem 4.9. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing (**). Let λ be an isolated point of spectrum of T. Then the following statements hold.
(i) If $\lambda=0$, then $\mathcal{H}_{0}(T)=\operatorname{ker}\left(T^{n}\right)=\operatorname{ker}\left(T^{* n}\right), E_{T}(\{0\})$ is self-adjoint and the order of pole λ is not greater than n.
(ii) If $\lambda \neq 0$, then $\mathcal{H}_{0}(T-\lambda)=\operatorname{ker}(T-\lambda)=\operatorname{ker}\left((T-\lambda)^{*}\right), E_{T}(\{\lambda\})$ is self-adjoint and the order of pole λ is 1 .

Theorem 4.10. Let D be an arbitrary bounded disk in $\mathbb{C}, n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing (**). Then the operator

$$
z-T: W^{2}(D, \mathcal{H}) \longrightarrow L^{2}(D, \mathcal{H})
$$

is one to one for every $z \in \mathbb{C}$.
Acknowledgment. Authors would like to express their thanks to Prof. K. Tanahashi for his important suggestion of Theorem 3.15.

References

[1] P. Aiena, Algebraically paranormal operators on Banach spaces, Banach J. Math. Anal. 7 (2013) 136-145.
[2] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publishers, Dordrecht, 2014.
[3] A. Aluthge, D. Wang, Powers of p-hyponormal operators, J. Inequal. Appl. 3 (1999) 307-315.
[4] S.A. Aluzuraiqi, A.B. Patel, On of n-normal operators, General Math. Notes 1 (2010) 61-73.
[5] M. Chō, B. Načevska Nastovska, Spectral properties of n-normal operators, Filomat 32:14 (2018) 5063-5069.
[6] M. Chō, J.E. Lee, K. Tanahashi, A. Uchiyama, Remarks on n-normal operators, Filomat 32:15 (2018) 5441-5451.
[7] R. Curto, Y.M. Han, Weyl's theorem for algebraically hyponormal operators, Integr. Equat. Oper. Theory 47 (2003) 307-314.
[8] Y.M. Han, W.Y. Lee, Weyl's theorem for algebraically paranormal operators, Proc. Amer. Math. Soc. 128 (2000) $2291-2296$.
[9] M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984) 385-395.
[10] J.G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962) 1453-1458.
[11] A. Uchiyama, K. Tanahashi, Bishop's property (β) for paranormal operators, Oper. Matrices 3 (2009) 517-524.
[12] J. Yuan, G. Guoxing, On (n, k)-quasiparanormal operators, Studia Math. 209(3) (2012) 289-301.

[^0]: 2010 Mathematics Subject Classification. Primary 47B15; Secondary 47A15.
 Keywords. Hilbert space, linear operator, hyponormal operator, spectrum, SVEP.
 Received: 02 May 2019; Accepted: 25 June 2019
 Communicated by Dragan S. Djordjević
 Research is partially supported by Grant-in-Aid Scientific Research No.15K04910. The second author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 174007.

 Email addresses: chiyom01@kanagawa-u.ac.jp (Muneo Chō), dijana@pmf.ni.ac.rs (Dijana Mosić), bibanmath@gmail.com (Biljana Načevska Nastovska), taiga1996227@outlook.jp (Taiga Saito)

