Filomat 33:15 (2019), 4845–4854 https://doi.org/10.2298/FIL1915845C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Spectral Properties of Square Hyponormal Operators

Muneo Chō^a, Dijana Mosić^b, Biljana Načevska Nastovska^c, Taiga Saito^a

^aDepartment of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan ^bFaculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia ^cFaculty of Electrical Engineering and Information Technologies, "Ss Cyril and Methodius" University in Skopje, Macedonia

Abstract. In this paper, we introduce a square hyponormal operator as a bounded linear operator *T* on a complex Hilbert space \mathcal{H} such that T^2 is a hyponormal operator, and we investigate some basic properties of this operator. Under the hypothesis $\sigma(T) \cap (-\sigma(T)) \subset \{0\}$, we study spectral properties of a square hyponormal operator. In particular, we show that if *z* and *w* are distinct eigen-values of *T* and *x*, $y \in \mathcal{H}$ are corresponding eigen-vectors, respectively, then $\langle x, y \rangle = 0$. Also, we define *n*th hyponormal operators and present some properties of this kind of operators.

1. Introduction

Let \mathcal{H} be a complex Hilbert space, and let $B(\mathcal{H})$ denote the set of all bounded linear operators on \mathcal{H} . For $T \in B(\mathcal{H})$, we denote by T^* , ker(T), R(T), $\sigma(T)$, $\sigma_a(T)$, $\sigma_r(T)$, respectively, the adjoint, the null space, the range, the spectrum, the approximate point spectrum and the residual spectrum of T. It is well-known that $\sigma(T) = \sigma_a(T) \cup \sigma_r(T)$.

An operator $T \in B(\mathcal{H})$ is *self-adjoint* if $T = T^*$. An operator $T \in B(\mathcal{H})$ is *normal* and 2-*normal* if $T^*T = TT^*$ and $T^*T^2 = T^2T^*$, respectively. By Fuglede-Putnam Theorem, it is easily to see that T is 2-normal if and only if T^2 is normal (see [4]). An operator $T \in B(\mathcal{H})$ is *positive* (denoted by $T \ge 0$) if $\langle Tx, x \rangle = 0$, for all $x \in \mathcal{H}$. For self-adjoint operators $T, S \in B(\mathcal{H}), T \ge S$ means $T - S \ge 0$.

For an operator $T \in B(\mathcal{H})$, let $|T| = (T^*T)^{\frac{1}{2}}$ and $|T^*| = (TT^*)^{\frac{1}{2}}$. For 0 ,*T*is said to be*p* $-hyponormal if <math>|T|^{2p} \ge |T^*|^{2p}$. When p = 1 and $p = \frac{1}{2}$, *T* is said to be hyponormal and semi-hyponormal, respectively. Notice that *T* is hyponormal if and only if $||T^*x|| \le ||Tx||$, for all $x \in \mathcal{H}$. By Corollary 1 of [3], in general, if *T* is *p*-hyponormal $(0 , then <math>T^n$ is $\frac{p}{n}$ -hyponormal. An operator $T \in B(\mathcal{H})$ is said to be *paranormal* if $||Tx||^2 \le ||T^2x|| \cdot ||x||$, for all $x \in \mathcal{H}$. An operator $T \in B(\mathcal{H})$ is said to be *algebraically hyponormal* and *algebraically paranormal* if p(T) is hyponormal and paranormal, for some nonconstant complex polynomial *p*, respectively.

In [7, 8], the authors showed that if *T* is algebraically hyponormal and algebraically paranormal, then *T* is isoloid and Weyl's Theorem holds, respectively.

Received: 02 May 2019; Accepted: 25 June 2019

²⁰¹⁰ Mathematics Subject Classification. Primary 47B15; Secondary 47A15.

Keywords. Hilbert space, linear operator, hyponormal operator, spectrum, SVEP.

Communicated by Dragan S. Djordjević

Research is partially supported by Grant-in-Aid Scientific Research No.15K04910. The second author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 174007.

Email addresses: chiyom@1@kanagawa-u.ac.jp (Muneo Chō), dijana@pmf.ni.ac.rs (Dijana Mosić), bibanmath@gmail.com (Biljana Načevska Nastovska), taiga1996227@outlook.jp (Taiga Saito)

The aim of this paper is to study a bounded linear operator T on a complex Hilbert space such that T^2 is a hyponormal operator. Firstly, notice that there exists an operator T such that T^2 is hyponormal and T is not hyponormal.

Let $\mathcal{H} = \ell^2$ and *T* be the unilateral shift with the weights $\{a_n \ge 0\}$ such that

$$Tx := (0, a_1x_1.a_2x_2, ...)$$
 for $x = (x_1, x_2, ...) \in \mathcal{H}$.

Then *T* is hyponormal if and only if $a_j \le a_{j+1}$ (j = 1, 2, ...), i.e., $\{a_j\}$ is a monotone increasing sequence, for $a_j = 1$ $(j \ne 2)$ and $a_2 = \frac{1}{2}$. Since the sequence $\{a_n\}$ is not increasing, the operator *T* is not hyponormal. But since

$$T^2x = (0, 0, a_1a_2x_1, a_2a_3x_2, ...)$$
 and $T^{2*}x = (a_1a_2x_3, a_2a_3x_4, ...)$

 T^2 is hyponormal if and only if $a_j a_{j+1} \le a_{j+2} a_{j+3}$ for j = 1, 2, ... Hence, by this weights $a_j = 1$ ($j \ne 2$) and $a_2 = \frac{1}{2}$, the operator T^2 is hyponormal and T is not hyponormal.

In [4–6], the authors have studied spectral properties of *n*-normal operator, that is, an operator *T* such that T^n is normal, in the cases that $\sigma(T) \cap (-\sigma(T)) = \emptyset$ or $\sigma(T) \cap (-\sigma(T)) \subset \{0\}$. Since an operator *T* such that T^2 is hyponormal is algebraically hyponormal, *T* is isoloid and Weyl's Theorem holds. Hence, we study other spectral properties of such an operator *T* in this paper.

2. Basic properties

In the beginning, we introduce a square hyponormal operator and investigate some basic properties of this operator.

Definition 2.1. For an operator $T \in B(\mathcal{H})$, T is said to be square hyponormal if T^2 is hyponormal.

The following result follows from the definition of square hyponormal operators.

Theorem 2.2. Let $T \in B(\mathcal{H})$ be square hyponormal. Then the following statements hold. (1) If T is invertible, then so is T^{-1} .

(2) For an even number $n = 2k \in \mathbb{N}$, T^n is $\frac{1}{k}$ -hyponormal.

(3) If $S \in B(\mathcal{H})$ is unitary equivalent to T, then S is square hyponormal.

(4) If T - t is square hyponormal for all t > 0, then T is hyponormal.

Proof. (1) is clear.

(2) Since T^2 is hyponormal, by Corollary 1 of [3], $T^n = T^{2k} = (T^2)^k$ is $\frac{1}{k}$ -hyponormal.

(3) is clear.

(4) Since

$$0 \le (T-t)^{2*}(T-t)^2 - (T-t)^2(T-t)^{2*} = T^{2*}T^2 - T^2T^{2*}$$
$$-2t(T^{2*}T + T^*T^2 - TT^{2*} - T^2T^*) + 4t^2(T^*T - TT^*),$$

we obtain that

$$0 \le \frac{1}{4t^2} \Big((T-t)^{2*} (T-t)^2 - (T-t)^2 (T-t)^{2*} \Big) = \frac{1}{4t^2} \Big(T^{2*} T^2 - T^2 T^{2*} \Big) \\ - \frac{1}{2t} \Big(T^{2*} T + T^* T^2 - T T^{2*} - T^2 T^* \Big) + (T^* T - T T^*).$$

Letting $t \to \infty$, we have $T^*T - TT^* \ge 0$. \Box

We now consider the restriction of a square hyponormal operator to an invariant closed subspace.

Theorem 2.3. Let $T \in B(\mathcal{H})$ be square hyponormal and M be an invariant closed subspace for T. Then $T_{|M}$ is square hyponormal.

Proof. Since *M* is an invariant closed subspace for *T*, we observe that

$$T = \begin{bmatrix} T_1 & T_2 \\ 0 & T_3 \end{bmatrix} : \begin{bmatrix} M \\ M^{\perp} \end{bmatrix} \to \begin{bmatrix} M \\ M^{\perp} \end{bmatrix}$$

Therefore, for $D = T_1T_2 + T_2T_3$, since

$$T^{2} = \begin{bmatrix} T_{1}^{2} & D\\ 0 & T_{3}^{2} \end{bmatrix} \text{ and } (T^{2})^{*} = \begin{bmatrix} (T_{1}^{2})^{*} & 0\\ D^{*} & (T_{3}^{2})^{*} \end{bmatrix},$$

we have

$$(T^{2})^{*}T^{2} - T^{2}(T^{2})^{*} = \begin{bmatrix} (T_{1}^{2})^{*}T_{1}^{2} - T_{1}^{2}(T_{1}^{2})^{*} - DD^{*} & (T_{1}^{2})^{*}D - D(T_{3}^{2})^{*} \\ D^{*}T_{1}^{2} - T_{3}^{2}D^{*} & D^{*}D + (T_{3}^{2})^{*}T_{3}^{2} - T_{3}^{2}(T_{3}^{2})^{*} \end{bmatrix} \ge 0$$

Hence we deduce that $(T_1^2)^*T_1^2 - T_1^2(T_1^2)^* - DD^* \ge 0$ and so $(T_1^2)^*T_1^2 - T_1^2(T_1^2)^* \ge 0$. Therefore, $T_{|M}$ is square hyponormal. \Box

3. Spectral property

Under some additional assumptions, we study spectral properties of a square hyponormal operator in this section. Firstly, we show the following theorem.

Theorem 3.1. Let $T \in B(\mathcal{H})$ be square hyponormal. If $\mu(\sigma(T)) = 0$, then T^2 is normal, where μ is the planar Lebesgue measure.

Proof. Since $\mu(\sigma(T)) = 0$, we have that $\mu(\sigma(T^2)) = 0$ by the spectral mapping theorem. By T^2 is hyponormal and Putnam's Theorem, it holds

$$||T^{2*}T^2 - T^2T^{2*}|| \le \frac{1}{\pi}\mu(\sigma(T^2)) = 0.$$

Hence, T^2 is normal. \Box

Remark 3.2. If *T* is *p*-hyponormal and square hyponormal with $\mu(\sigma(T)) = 0$, then, by Corollary 2 of [3], *T* is normal. But let $S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ on \mathbb{C}^2 . Then *S* is square hyponormal with $\mu(\sigma(S)) = 0$ and *S* is not normal.

If *T* is compact, then $\mu(\sigma(T)) = 0$. Hence, we have the following corollary.

Corollary 3.3. If $T \in B(\mathcal{H})$ is compact square hyponormal, then T^2 is normal.

An operator $T \in B(\mathcal{H})$ is said to have SVEP (single-valued extension property) if for every open subset *G* of \mathbb{C} and any \mathcal{H} -valued analytic function *f* on *G* such that $(T - z)f(z) \equiv 0$ on *G*, then $f(z) \equiv 0$ on *G*. It is well known that:

(1) If ker(*T* − *z*)⊥ ker(*T* − *w*) for any distinct nonzero eigenvalues *z* and *w*, then *T* has SVEP.
(2) Let *p* be polynomial. If *p*(*T*) has SVEP, then *T* has SVEP.

See details in [2, 11, 12]. Since it is clear that a hyponormal operator has SVEP, we have the next corollary by (2).

Corollary 3.4. *Let* $T \in B(\mathcal{H})$ *be square hyponormal. Then* T *has* SVEP.

Let $\mathcal{K}(\mathcal{H})$ be the set of all compact operators on \mathcal{H} . Then, for $T \in B(\mathcal{H})$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of *T* are defined as follows:

$$\sigma_w(T) = \bigcap_{K \in \mathcal{K}(\mathcal{H})} \sigma(T+K) \text{ and } \sigma_b(T) = \bigcap_{K \in \mathcal{K}(\mathcal{H}); TK=KT} \sigma(T+K).$$

If *T* has SVEP, then $\sigma_w(T) = \sigma_b(T)$ by Corollary 3.53 of [2]. Let $\mathcal{H}(\sigma(T))$ denote the set of all analytic function defined on an open set containing $\sigma(T)$. Then, by Corollary 3.72 of [2], we have the following result.

Corollary 3.5. Let $T \in B(\mathcal{H})$ be square hyponormal. Then, for $f \in \mathcal{H}(\sigma(T))$,

$$\sigma_w(f(T)) = \sigma_b(f(T)) = f(\sigma_w(T)) = f(\sigma_b(T)).$$

Next for $T \in B(\mathcal{H})$, we set the following property:

(*)
$$\sigma(T) \cap (-\sigma(T)) \subset \{0\}$$

Then we begin with the following result.

Theorem 3.6. Let $T \in B(\mathcal{H})$ be square hyponormal with (*) and M be an invariant subspace for T. If $\sigma(T_{|M}) = \{z\}$, then the following assertions hold. (1) If z = 0, then $(T_{|M})^2 = 0$.

(2) If $z \neq 0$, then $T_{M} = z$.

Proof. (1) By Theorem 2.3, $T_{|M}$ is square hyponormal. Since $\sigma((T_{|M})^2) = \{0\}$, we have $(T_{|M})^2 = 0$ by Putnam's theorem.

(2) Similarly, from $\sigma((T_{|M})^2) = \{z^2\}$, we get $(T_{|M})^2 = z^2$ and hence

$$0 = (T_{|M})^2 - z^2 = (T_{|M} + z)(T_{|M} - z).$$

By the assumption (*), $-z \notin \sigma(T)$ and there exists $(T_{|M} + z)^{-1}$. Hence, it holds $T_{|M} - z = 0$.

Theorem 3.7. Let $T \in B(\mathcal{H})$ be a square hyponormal operator. If T satisfies (*), then $\sigma(T) = \{\overline{z} : z \in \sigma_a(T^*)\}$.

Proof. Since $\sigma(T) = \sigma_a(T) \cup \sigma_r(T)$, we may show $\sigma_a(T) \subset \{\overline{z} : z \in \sigma_a(T^*)\}$. (1) If $0 \in \sigma_a(T)$, then $0 \in \sigma_a(T^2)$ and T^2 is hyponormal. Hence, it is easy to see $0 \in \sigma_a(T^*)$. (2) Let $z \in \sigma_a(T)$ and $z \neq 0$. Then there exists a sequence $\{x_n\}$ of unit vectors such that $(T - z)x_n \rightarrow 0$ as $n \to \infty$. Thus, $(T^2 - z^2)x_n \to 0$ as $n \to \infty$. Because T^2 is hyponormal, we have $(T^2 - z^2)^*x_n \to 0$ and $(T^* + \overline{z})(T^* - \overline{z})x_n \to 0 \text{ as } n \to \infty$. By the assumption (*), $-\overline{z} \notin \sigma(T^*)$ which gives $(T^* - \overline{z})x_n \to 0 \text{ as } n \to \infty$ and therefore $\overline{z} \in \sigma_a(T^*)$. It completes the proof. \Box

Theorem 3.8. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy (*).

(1) If z and w are distinct eigen-values of T and $x, y \in \mathcal{H}$ are corresponding eigen-vectors, respectively, then $\langle x, y \rangle = 0$. (2) If z, w are distinct values of $\sigma_a(T)$ and $\{x_n\}, \{y_n\}$ are the sequences of unit vectors in \mathcal{H} such that $(T-z)x_n \to 0$ and $(T - w)y_n \to 0$ $(n \to \infty)$, then $\lim \langle x_n, y_n \rangle = 0$.

Proof. (1) follows from (2). So, we show (2). Since $(T - z)x_n \to 0$ and $(T - w)y_n \to 0$ $(n \to \infty)$, it holds that $(T^2 - z^2)x_n \to 0$ and $(T^2 - w^2)y_n \to 0$. Because T^2 is hyponormal, we get $(T^{*2} - \overline{w}^2)y_n \to 0$. Hence,

$$\lim_{n \to \infty} z^2 \langle x_n, y_n \rangle = \lim_{n \to \infty} \langle z^2 x_n, y_n \rangle = \lim_{n \to \infty} \langle T^2 x_n, y_n \rangle = \lim_{n \to \infty} \langle x_n, T^{*2} y_n \rangle = \lim_{n \to \infty} w^2 \langle x_n, y_n \rangle$$

If $z^2 = w^2$, then (z + w)(z - w) = 0. Since $z \neq w$, we have z = -w. By (*), this implies z = w = 0. Therefore, $z^2 \neq w^2$, and so $\lim_{n \to \infty} \langle x_n, y_n \rangle = 0$. \Box

4848

Thus, we have the following corollary.

Corollary 3.9. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy (*). If z and w are distinct eigen-values of T, then $\ker(T-z) \perp \ker(T-w)$.

Let *M* be a subspace of \mathcal{H} . *M* is said to be a *reducing subspace* for *T* if $T(M) \subset M$ and $T^*(M) \subset M$, that is, *M* is an invariant subspace for *T* and T^* . Then we have a following result.

Theorem 3.10. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy (*). If z is a non-zero eigen-value of T, then $\ker(T-z) = \ker(T^2 - z^2) \subset \ker(T^{*2} - \overline{z}^2) = \ker(T^* - \overline{z})$ and hence $\ker(T-z)$ is a reducing subspace for T.

Proof. Firstly, we show that $\ker(T-z) = \ker(T^2-z^2)$. Because it is clear that $\ker(T-z) \subset \ker(T^2-z^2)$, we will verify that $\ker(T^2-z^2) \subset \ker(T-z)$. Let $x \in \ker(T^2-z^2)$, i.e., $(T^2-z^2)x = 0$. Then (T+z)(T-z)x = 0. Since $z \neq 0$, by the assumption (*), we have $-z \notin \sigma(T)$. Hence, it follows (T-z)x = 0 and $x \in \ker(T-z)$. Therefore, $\ker(T^2-z^2) \subset \ker(T-z)$ and $\ker(T-z) = \ker(T^2-z^2)$. Since T^2 is hyponormal, $\ker(T^2-z^2) \subset \ker(T^{*2}-\overline{z}^2)$. Evidently, $\ker(T^*-\overline{z}) \subset \ker(T^{*2}-\overline{z}^2)$. Let $x \in \ker(T^{*2}-\overline{z}^2)$. Because $(T^*+\overline{z})(T^*-\overline{z})x = 0$ and $T^* + \overline{z}$ is invertible by the assumption (*), we obtain that $x \in \ker(T^*-\overline{z})$. Hence, $\ker(T^{*2}-\overline{z}^2) = \ker(T^*-\overline{z})$. Finally, by the above results, it is clear that $\ker(T-z)$ is a reducing subspace for T. \Box

The following remark is same with the corresponding in the paper of [5].

Remark 3.11. In general, ker(*T*) is not a reducing subspace for a square hyponormal operator *T*. (1) Let *T* be as in Example 2.3 of [1], that is, let $\mathcal{H} = \ell^2$, $\{e_j\}_{j=1}^{\infty}$ be the standard orthonormal basis of ℓ^2 and *T* be defined by

$$T\mathbf{e}_{j} = \begin{cases} \mathbf{e}_{1} & (j=1) \\ \mathbf{e}_{j+1} & (j=2k) \\ \mathbf{0} & (j=2k+1) \end{cases}$$

Then *T* is a square hyponormal operator and satisfies (*). Since $e_3 \in ker(T)$ and $TT^*e_3 = e_3 \neq 0$, ker(T) does not reduce *T*. Let *P* be the orthogonal projection to the first coordinate. Since $T^2 = P$, it is clear that $ker(T) \subsetneq ker(T^2) = ker(P)$.

(2) We give an easy example. Let $S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ on \mathbb{C}^2 . Since $S^2 = 0$ and $\sigma(S) = \{0\}$, *S* is square hyponormal and satisfies (*). Let $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then $x \in \ker(S)$ and $SS^*x = x \neq 0$. Hence, $\ker(S)$ does not reduce *S* and $\ker(S) \subsetneq \ker(S^2) = \mathbb{C}^2$.

For an isolated point λ of $\sigma(T)$, the Riesz idempotent for λ is defined by

$$E_T(\{\lambda\}) = \frac{1}{2\pi i} \int_{\partial D} (z - T)^{-1} dz$$

where *D* is a closed disk centered at λ which contains no other points of $\sigma(T)$. For an operator $T \in \mathcal{L}(\mathcal{H})$, the *quasinilpotent part* of *T* is defined by

$$\mathcal{H}_0(T) := \{ x \in \mathcal{H} : \lim_{n \to \infty} ||T^n x||^{\frac{1}{n}} = 0 \}.$$

Then $\mathcal{H}_0(T)$ is a linear (not necessarily closed) subspace of \mathcal{H} . It is known that if *T* has SVEP, then

$$\mathcal{H}_0(T-\lambda) = \{x \in \mathcal{H} : \lim_{n \to \infty} ||(T-\lambda)^n x||^{\frac{1}{n}} = 0\} = E_T(\{\lambda\})\mathcal{H}$$

for all $\lambda \in \mathbb{C}$. In general, ker $(T - \lambda)^m \subset \mathcal{H}_0(T - \lambda)$ and $\mathcal{H}_0(T - \lambda)$ is not closed. However, if λ is an isolated point of $\sigma(T)$, then $E_T(\{\lambda\})\mathcal{H} = \mathcal{H}_0(T - \lambda)$ and $\mathcal{H}_0(T - \lambda)$ is closed. Also, if *T* is normal and $T = \int_{\sigma(T)} \lambda dF(\lambda)$ is the spectral decomposition of *T*, then

 $\mathcal{H}_0(T-\lambda) = E_T(\{\lambda\})\mathcal{H} = \ker(T-\lambda) = \ker(T-\lambda)^*.$

In 2012. J. T. Yuan and G. X. Ji ([12, Lemma 5.2]) proved following Lemma.

Lemma 3.12. Let T ∈ B(H), m be a positive integer and λ be an isolated point of σ(T).
(i) The following assertions are equivalent:
(a) E_T({λ})H = ker(T − λ)^m.
(b) ker(E_T({λ})) = (T − λ)^mH. In this case, λ is a pole of the resolvent of T and the order of λ is not greater than m.
(ii) If λ is a pole of the resolvent of T and the order of λ is m, then the following assertions are equivalent:
(a) E_T({λ}) is self-adjoint.
(b) ker((T − λ)^m) ⊂ ker((T − λ)^{*m}).
(c) ker((T − λ)^m) = ker((T − λ)^{*m}).

By this lemma, we prove the following theorem.

Theorem 3.13. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy (*). Let λ be an isolated point of spectrum of T. Then the following statements hold.

(i) If $\lambda = 0$, then $\mathcal{H}_0(T) = \ker(T^2) = \ker(T^{*2})$, $E_T(\{0\})$ is self-adjoint and the order of pole λ is not greater than 2. (ii) If $\lambda \neq 0$, then $\mathcal{H}_0(T - \lambda) = \ker(T - \lambda) = \ker((T - \lambda)^*)$, $E_T(\{\lambda\})$ is self-adjoint and the order of pole λ is 1.

Proof. (i) Assume that $\lambda = 0$. Since $\sigma(T^2) = \{z^2 : z \in \sigma(T)\}$, it follows that 0 is an isolated point of spectrum of T^2 . We prove that $\mathcal{H}_0(T) = \mathcal{H}_0(T^2)$. Let $x \in \mathcal{H}_0(T)$. Then $||T^n x||^{\frac{1}{n}} \longrightarrow 0$ and thus $||T^{2n} x||^{\frac{1}{2n}} = \left(||T^{2n} x||^{\frac{1}{n}}\right)^{\frac{1}{2}} \longrightarrow 0$ and $||T^{2n} x||^{\frac{1}{n}} \longrightarrow 0$. Hence, $x \in \mathcal{H}_0(T^2)$. Conversely, let $x \in \mathcal{H}_0(T^2)$. Then $||T^{2n} x||^{\frac{1}{n}} \longrightarrow 0$ and so $||T^{2n} x||^{\frac{1}{2n}} = 0$

 $\left(\|T^{2n}x\|^{\frac{1}{n}}\right)^{\frac{1}{2}} \longrightarrow 0.$ From

$$\begin{split} \|T^{2n+1}x\|^{\frac{1}{2n+1}} &\leq \left(\|T\|\|T^{2n}x\|\right)^{\frac{1}{2n+1}} \\ &\leq \|T\|^{\frac{1}{2n+1}} \left(\|T^{2n}x\|^{\frac{1}{2n}}\right)^{\frac{2n}{2n+1}} \longrightarrow 0 \ (n \to \infty) \end{split}$$

it follows that $x \in \mathcal{H}_0(T)$. Therefore, $\mathcal{H}_0(T) = \mathcal{H}_0(T^2)$. Since T^2 is hyponormal, we observe that $E_{T^2}(\{0\})\mathcal{H} = \mathcal{H}_0(T^2) = \ker(T^2) = \ker(T^{*2})$ by Stampfli [10]. So,

$$E_T(\{0\})\mathcal{H} = \mathcal{H}_0(T) = \mathcal{H}_0(T^2) = E_{T^2}(\{0\})\mathcal{H} = \ker(T^2) = \ker(T^{*2})$$

Now, 0 is a pole of the resolvent of *T*, the order of 0 is not greater than 2 and $E_T(\{0\})$ is self-adjoint by Lemma 3.12.

(ii) Next we assume that $\lambda \neq 0$. Then λ^2 is an isolated point of $\sigma(T^2)$ by Lemma 2.1 of [5]. We will prove $\mathcal{H}_0(T-\lambda) = \mathcal{H}_0(T^2-\lambda^2)$. Let $x \in \mathcal{H}_0(T-\lambda)$. Then $\|(T-\lambda)^n x\|^{\frac{1}{n}} \to 0$ and

$$\begin{split} \| (T^{2} - \lambda^{2})^{n} x \|^{\frac{1}{n}} &\leq \| (T + \lambda)^{n} \|^{\frac{1}{n}} \| (T - \lambda)^{n} x \|^{\frac{1}{n}} \\ &\leq \| T + \lambda \| \| (T - \lambda)^{n} x \|^{\frac{1}{n}} \longrightarrow 0, \end{split}$$

which implies $\mathcal{H}_0(T - \lambda) \subset \mathcal{H}_0(T^2 - \lambda^2)$. Conversely, let $x \in \mathcal{H}_0(T^2 - \lambda^2)$. Since $T + \lambda$ is invertible by the assumption (*), we have

$$\begin{split} \|(T-\lambda)^{n}x\|^{\frac{1}{n}} &= \|(T+\lambda)^{-n}(T+\lambda)^{n}(T-\lambda)^{n}x\|^{\frac{1}{n}} \\ &\leq \|\left\{(T+\lambda)^{-1}\right\}^{n}\|^{\frac{1}{n}}\|(T^{2}-\lambda^{2})^{n}x\|^{\frac{1}{n}} \\ &\leq \|(T+\lambda)^{-1}\|\|(T^{2}-\lambda^{2})^{n}x\|^{\frac{1}{n}} \longrightarrow 0. \end{split}$$

4850

Hence, $\mathcal{H}_0(T - \lambda) \supset \mathcal{H}_0(T^2 - \lambda^2)$ and $\mathcal{H}_0(T - \lambda) = \mathcal{H}_0(T^2 - \lambda^2)$. Because T^2 is hyponormal, it follows that

$$E_{T^2}(\{\lambda^2\})\mathcal{H} = \mathcal{H}_0(T^2 - \lambda^2) = \ker(T^2 - \lambda^2) = \ker(T^{*2} - \overline{\lambda}^2)$$

by Stampfli [10]. Hence

$$E_T(\{\lambda\})\mathcal{H} = \mathcal{H}_0(T-\lambda) = \mathcal{H}_0(T^2-\lambda^2) = E_{T^2}(\{\lambda\})\mathcal{H} = \ker(T^2-\lambda^2) = \ker(T^{*2}-\overline{\lambda}^2).$$

Since $(T + \lambda)^*$ is invertible, we get

$$E_T(\{\lambda\})\mathcal{H} = \ker(T-\lambda) = \ker\left((T-\lambda)^*\right).$$

Thus, λ is a pole of the resolvent of *T*, the order of λ is not greater than 2 and $E_T(\{\lambda\})$ is self-adjoint by Lemma 3.12.

Let *D* be a bounded open subset of \mathbb{C} and $L^2(D, \mathcal{H})$ be the Hilbert space of measurable function $f : D \longrightarrow \mathcal{H}$ such that

$$||f|| = \left(\int_D ||f(z)||^2 d\mu(z)\right)^{\frac{1}{2}} < \infty,$$

where μ is the planar Lebesgue measure. Let $W^2(D, \mathcal{H})$ be the Sobolev space with respect to $\overline{\partial}$ and of order 2 whose derivatives $\overline{\partial} f$ and $\overline{\partial}^2 f$ in the sense of distributions belong to $L^2(D, \mathcal{H})$. The norm $||f||_{W^2}$ is given by

$$||f||_{W^2} = \left(||f||^2 + ||\overline{\partial}f||^2 + ||\overline{\partial}^2f||^2\right)^{\frac{1}{2}} \text{ for } f \in L^2(D, \mathcal{H}).$$

In [4], Alzuraiqi and Patel proved the following.

Proposition 3.14. (Alzraiqi and Patel [4], Theorem 2.37) Let *D* be an arbitrary bounded disk in \mathbb{C} . If $T \in B(\mathcal{H})$ is 2-normal with the assumption $\sigma(T) \cap (-\sigma(T)) = \emptyset$, then the operator

$$z - T : W^2(D, \mathcal{H}) \longrightarrow L^2(D, \mathcal{H})$$

is one to one for every $z \in \mathbb{C}$.

We would like to prove this result as follows.

Theorem 3.15. Let D be an arbitrary bounded disk in \mathbb{C} and $T \in B(\mathcal{H})$ be square hyponormal with (*). Then the operator

 $z - T : W^2(D, \mathcal{H}) \longrightarrow L^2(D, \mathcal{H})$

is one to one for every $z \in \mathbb{C}$.

Proof. Let $f \in W^2(D, \mathcal{H})$, S = z - T and Sf = 0. We show f = 0. Then

$$\begin{split} \|f\|_{W^2}^2 &= \|f\|_{2,D}^2 + \|\overline{\partial}f\|_{2,D}^2 + \|\overline{\partial}^2 f\|_{2,D}^2 \\ &= \int_D \|f(z)\|^2 d\mu(z) + \int_D \|\overline{\partial}f(z)\|^2 d\mu(z) + \int_D \|\overline{\partial}^2 f(z)\|^2 d\mu(z) < \infty, \end{split}$$

and

$$\begin{split} \|Sf\|_{W^2}^2 &= \|(z-T)f\|_{W^2}^2 \\ &= \|(z-T)f\|_{2,D}^2 + \|\overline{\partial}((z-T)f)\|_{2,D}^2 + \|\overline{\partial}^2((z-T)f)\|_{2,D}^2 \\ &= \|(z-T)f\|_{2,D}^2 + \|(z-T)\overline{\partial}f\|_{2,D}^2 + \|(z-T)\overline{\partial}^2f\|_{2,D}^2 = 0. \end{split}$$

Hence,

$$\|(z-T)\overline{\partial}^{i}f\|_{2,D}^{2} = \int_{D} \|(z-T)\overline{\partial}^{i}f(z)\|^{2}d\mu(z) = 0 \quad (i = 0, 1, 2)$$

Let *i* be i = 0, 1, 2. Since $(z - T)\overline{\partial}^i f(z) = 0$ for $z \in D$, if $z \in D \setminus \sigma(T)$, then $\overline{\partial}^i f(z) = 0$ because z - T is invertible. This implies

$$\|(z-T)^*\overline{\partial}^i f\|_{2,D\setminus\sigma(T)}^2 = \int_{D\setminus\sigma(T)} \|(z-T)^*\overline{\partial}^i f(z)\|^2 d\mu(z) = 0.$$

Since

$$\begin{split} \|(z^2 - T^2)\overline{\partial}^i f\|_{2,D}^2 &= \int_D \|(z^2 - T^2)\overline{\partial}^i f(z)\|^2 d\mu(z) \\ &\leq \left(\sup_{z \in D} \|z + T\|\right)^2 \int_D \|(z - T)\overline{\partial}^i f(z)\|^2 d\mu(z) \\ &= \left(\sup_{z \in D} \|z + T\|\right)^2 \|(z - T)\overline{\partial}^i f\|_{2,D}^2 = 0, \end{split}$$

we have $(z^2 - T^2)\overline{\partial}^i f(z) = 0$ for $z \in D$. Because T^2 is hyponormal, then

$$\int_{D} \|(z^{2} - T^{2})^{*}\overline{\partial}^{i} f(z)\|^{2} d\mu(z) = \|(z^{2} - T^{2})^{*}\overline{\partial}^{i} f\|_{2,D}^{2} \le \|(z^{2} - T^{2})\overline{\partial}^{i} f\|_{2,D}^{2} = 0$$

So,

$$0 = (z^2 - T^2)^* \overline{\partial}^i f(z) = (z + T)^* (z - T)^* \overline{\partial}^i f(z) \text{ for } z \in D.$$

If $z \in D \cap (\sigma(T) \setminus (-\sigma(T)))$, then z + T and $(z + T)^*$ are invertible. Hence, $(z - T)^* \overline{\partial}^i f(z) = 0$ for $z \in D \cap (\sigma(T) \setminus (-\sigma(T)))$. Since *D* is bounded, $\|\overline{\partial}^i f\|_{2,D}^2 < \infty$ and the planar Lebesgue measure of $\sigma(T) \cap (-\sigma(T))$ is 0, we have

$$\begin{split} \|(z-T)^*\overline{\partial}^i f\|_{2,D}^2 &= \int_{D\setminus\sigma(T)} \|(z-T)^*\overline{\partial}^i f(z)\|^2 d\mu(z) \\ &+ \int_{D\cap(\sigma(T)\setminus(-\sigma(T)))} \|(z-T)^*\overline{\partial}^i f(z)\|^2 d\mu(z) \\ &+ \int_{D\cap\sigma(T)\cap(-\sigma(T))} \|(z-T)^*\overline{\partial}^i f(z)\|^2 d\mu(z) \\ &\leq 0 + 0 + \max_{z\in D} \|(z-T)^*\|^2 \int_{D\cap\sigma(T)\cap(-\sigma(T))} \|\overline{\partial}^i f(z)\|^2 d\mu(z) = 0. \end{split}$$

By [9, Proposition 2.1], we obtain $||(I - P)f||_{2,D} = 0$. Thus, f(z) = (Pf)(z) for $z \in D$. From Sf = 0, we have (Sf)(z) = (z - T)f(z) = (z - T)(Pf)(z) = 0 for $z \in D$.

Since *T* has the single-valued extension property by Corollary 3.4 and *Pf* is analytic, it follows that 0 = (Pf)(z) = f(z) for $z \in D$. Hence, f = 0 and *S* is one to one. \Box

An operator $T \in B(\mathcal{H})$ is said to be *polaroid* if every isolated point of the spectrum of T is a pole of the resolvent. In [1], Aiena showed that if T is algebraically paranormal on a Banach space, then the following results hold.

(1) *T* is polaroid (Theorem 1.3).

(2) If *T* is quasinilpotent, then *T* is nilpotent (Lemma 1.2).

Hence, it is clear that if $T \in B(\mathcal{H})$ is square hyponormal, then *T* is polaroid.

4. *n*th hyponormal operators

We now introduce and study *n*th hyponormal operators.

Definition 4.1. For $n \in \mathbb{N}$ and an operator $T \in B(\mathcal{H})$, T is said to be nth hyponormal if T^n is hyponormal.

As Theorem 2.3, we can verify the following result.

Theorem 4.2. Let $n \in \mathbb{N}$, $T \in B(\mathcal{H})$ be nth hyponormal and M be an invariant closed subspace for T. Then $T_{|M}$ is nth hyponormal.

For an *n*th hyponormal operator $T \in B(\mathcal{H})$, we consider the following property:

(**)
$$\sigma(T) \bigcap \left(\bigcup_{j=1}^{n-1} e^{\frac{2j\pi}{n}i} \sigma(T) \right) \subset \{0\}.$$

Theorem 4.3. Let $n \in \mathbb{N}$, $T \in B(\mathcal{H})$ be nth hyponormal with (**) and M be an invariant subspace for T. If $\sigma(T_{|M}) = \{z\}$, then the following assertions hold. (1) If z = 0, then $(T_{|M})^n = 0$.

(2) If $z \neq 0$, then $T_{|M} = z$.

Proof. (1) By Theorem 4.2, $T_{|M}$ is *n*th hyponormal. Since $\sigma((T_{|M})^n) = \{0\}$, by Putnam's theorem, we conclude that $(T_{|M})^n = 0$.

(2) Because $\sigma((T_{|M})^n) = \{z^n\}$, then $(T_{|M})^n = z^n$ and so

$$0 = (T_{|M})^n - z^n = (T_{|M} - e^{\frac{2\pi}{n}i}z)(T_{|M} - e^{\frac{4\pi}{n}i}z) \cdots (T_{|M} - e^{\frac{2(n-1)\pi}{n}i}z)(T_{|M} - z).$$

From $z \neq 0$ and (**), there exists $(T_{|M} - e^{\frac{2j\pi}{n}i}z)^{-1}$, for every j = 1, ..., n - 1, and thus $T_{|M} - z = 0$. \Box

Theorem 4.4. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be an *n*th hyponormal operator. If T satisfies (**), then $\sigma(T) = \{\overline{z} : z \in \sigma_a(T^*)\}$.

Proof. Because $\sigma(T) = \sigma_a(T) \cup \sigma_r(T)$, we verify that $\sigma_a(T) \subset \{\overline{z} : z \in \sigma_a(T^*)\}$. (1) If $0 \in \sigma_a(T)$, then $0 \in \sigma_a(T^n)$ and, because T^n is hyponormal, we can get $0 \in \sigma_a(T^*)$. (2) For $z \in \sigma_a(T)$ and $z \neq 0$, there exists a sequence $\{x_m\}$ of unit vectors such that $(T-z)x_m \to 0$ as $m \to \infty$. We observe that $(T^n - z^n)x_m = (T^{n-1} + T^{n-2}z + \dots + z^{n-1})(T-z)x_m \to 0$ as $m \to \infty$ and T^n is hyponormal, which gives $(T^n - z^n)^*x_m \to 0$ as $m \to \infty$. By the hypothesis (**) and z is non-zero, all operators $(T^* - e^{\frac{2\pi}{n}i}\overline{z}), (T^* - e^{\frac{4\pi}{n}i}\overline{z}), \dots, (T^* - e^{\frac{2(n-1)\pi}{n}i}\overline{z})$ are invertible. Hence, by $T^{*n} - \overline{z}^n = (T^* - e^{\frac{2\pi}{n}i}\overline{z})(T^* - e^{\frac{4\pi}{n}i}\overline{z}) \dots (T^* - e^{\frac{2(n-1)\pi}{n}i}\overline{z})(T^* - \overline{z})$, we have that $(T^* - \overline{z})x_m \to 0$ as $m \to \infty$, that is, $\overline{z} \in \sigma_a(T^*)$, which completes the proof. \Box

Theorem 4.5. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfying (**).

(1) If z and w are distinct eigen-values of T and $x, y \in \mathcal{H}$ are corresponding eigen-vectors, respectively, then $\langle x, y \rangle = 0$. (2) If z, w are distinct values of $\sigma_a(T)$ and $\{x_m\}, \{y_m\}$ are the sequences of unit vectors in \mathcal{H} such that $(T - z)x_m \to 0$ and $(T - w)y_m \to 0$ $(m \to \infty)$, then $\lim_{m \to \infty} \langle x_m, y_m \rangle = 0$.

Proof. Since (1) follows from (2), we will only prove (2). From $(T-z)x_m \to 0$ and $(T-w)y_m \to 0$ $(m \to \infty)$, we get $(T^n - z^n)x_m \to 0$ and $(T^n - w^n)y_m \to 0$. Further, because T^n is hyponormal, $(T^{*n} - \overline{w}^n)y_m \to 0$. Therefore,

$$\lim_{m\to\infty} z^n \langle x_m, y_m \rangle = \lim_{m\to\infty} \langle z^n x_m, y_m \rangle = \lim_{m\to\infty} \langle T^n x_m, y_m \rangle = \lim_{m\to\infty} \langle x_m, T^{*n} y_m \rangle = \lim_{n\to\infty} w^n \langle x_m, y_m \rangle.$$

In the case that $z^n = w^n$, by $0 = z^n - w^n = (z - w)(z - e^{\frac{2\pi}{n}i}w)(z - e^{\frac{4\pi}{n}i}w) \cdots (z - e^{\frac{2(n-1)\pi}{n}i}w), z \neq w$ and (**), we deduce that z = w = 0. So, $z^n \neq w^n$, and $\lim_{m \to \infty} \langle x_m, y_m \rangle = 0$. \Box

4853

Corollary 4.6. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing (**). If z and w are distinct eigen-values of T, then $\ker(T - z) \perp \ker(T - w)$.

Corollary 4.7. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing (**). Then T has SVEP.

In a similar manner as Theorem 3.10, we prove the next result.

Theorem 4.8. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing (**). If z is a non-zero eigen-value of T, then $\ker(T-z) = \ker(T^n - z^n) \subset \ker(T^{*n} - \overline{z}^n) = \ker(T^* - \overline{z})$ and hence $\ker(T-z)$ is a reducing subspace for T.

As Theorem 3.13 and Theorem 3.15, we can verify the following theorems.

Theorem 4.9. Let $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing (**). Let λ be an isolated point of spectrum of *T*. Then the following statements hold.

(i) If $\lambda = 0$, then $\mathcal{H}_0(T) = \ker(T^n) = \ker(T^{*n})$, $E_T(\{0\})$ is self-adjoint and the order of pole λ is not greater than n. (ii) If $\lambda \neq 0$, then $\mathcal{H}_0(T - \lambda) = \ker(T - \lambda) = \ker((T - \lambda)^*)$, $E_T(\{\lambda\})$ is self-adjoint and the order of pole λ is 1.

Theorem 4.10. Let *D* be an arbitrary bounded disk in \mathbb{C} , $n \in \mathbb{N}$ and $T \in B(\mathcal{H})$ be nth hyponormal satisfing (**). Then the operator

$$z - T : W^2(D, \mathcal{H}) \longrightarrow L^2(D, \mathcal{H})$$

is one to one for every $z \in \mathbb{C}$ *.*

Acknowledgment. Authors would like to express their thanks to Prof. K. Tanahashi for his important suggestion of Theorem 3.15.

References

- [1] P. Aiena, Algebraically paranormal operators on Banach spaces, Banach J. Math. Anal. 7 (2013) 136–145.
- [2] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publishers, Dordrecht, 2014.
- [3] A. Aluthge, D. Wang, Powers of p-hyponormal operators, J. Inequal. Appl. 3 (1999) 307–315.
- [4] S.A. Aluzuraiqi, A.B. Patel, On of n-normal operators, General Math. Notes 1 (2010) 61-73.
- [5] M. Chō, B. Načevska Nastovska, Spectral properties of *n*-normal operators, Filomat 32:14 (2018) 5063–5069.
- [6] M. Chō, J.E. Lee, K. Tanahashi, A. Uchiyama, Remarks on n-normal operators, Filomat 32:15 (2018) 5441–5451.
- [7] R. Curto, Y.M. Han, Weyl's theorem for algebraically hyponormal operators, Integr. Equat. Oper. Theory 47 (2003) 307-314.
- [8] Y.M. Han, W.Y. Lee, Weyl's theorem for algebraically paranormal operators, Proc. Amer. Math. Soc. 128 (2000) 2291–2296.
- [9] M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984) 385–395.
- [10] J.G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962) 1453–1458.
- [11] A. Uchiyama, K. Tanahashi, Bishop's property (β) for paranormal operators, Oper. Matrices 3 (2009) 517–524.
- [12] J. Yuan, G. Guoxing, On (n, k)-quasiparanormal operators, Studia Math. 209(3) (2012) 289–301.