Hermite-Fejér and Grünwald Interpolation at Generalized Laguerre Zeros

Maria Carmela De Bonis ${ }^{\text {a,** }}$, David Kubayi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Computer Science and Economics, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
${ }^{b}$ Department of Mathematics \& Applied Mathematics, School of Mathematical \& Statistical Sciences, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa

Abstract

We introduce special Hermite-Fejér and Grünwald operators at the zeros of the generalized Laguerre polynomials. We will prove that these interpolation processes are uniformly convergent in suitable weighted function spaces.

1. Introduction

The Hermite-Fejér and Grünwald operators based at Jacobi zeros have been extensively studied. We recall among the others $[1,2,4,8,16,18]$. By contrast, in particular the Grünwald operator based at the zeros of orthonormal polynomials w.r.t. exponential weights has received few attention in literature [3, 13, 17].

In this paper we introduce a special Grünwald operator and a related Hermite-Fejér operator based at the zeros of orthonormal polynomials w.r.t. a weight of the following kind

$$
w(x)=x^{\alpha} e^{-Q(x)}, \quad x>0, \alpha>-1
$$

where Q satisfies suitable conditions. As a main result we will prove the convergence of the above interpolation processes in suitable function spaces equipped with weighted uniform norm. We will also give some error estimate.

The paper is organized as follows. In Section 2 some notations and basic results are collected and the Hermite-Fejér and Grünwald operators are introduced. In Section 3 we first define the function spaces where the operators are studied and then state our main results. Section 4 contains the proofs of the main results.

[^0]
2. Preliminaries and basic facts

We will say that w is a generalized Laguerre weight if it can be written as follows

$$
w(x)=x^{\alpha} e^{-Q(x)}, \quad x>0, \alpha>-1
$$

where, letting $Q^{*}(x):=Q\left(x^{2}\right), Q^{*}: \mathbb{R} \rightarrow \mathbb{R}$ is even and continuous, $Q^{*^{\prime \prime}}(x)$ is continuous in $(0,+\infty), Q^{*^{\prime}}(x)>0$ in $(0,+\infty)$, and, for some $A, B>1$, we have

$$
A \leq \frac{\left(x Q^{*^{\prime}}(x)\right)^{\prime}}{Q^{*^{\prime}}(x)} \leq B, \quad x \geq 1
$$

By the latter relation it follows that the function $Q^{\prime}(x)$ has an algebraic increasing behaviour [7, Lemma 4.1 (a)].

If $\left\{p_{m}(w)\right\}_{m}$ is the sequence of the orthonormal polynomials w.r.t. w having positive leading coefficients, then the zeros $x_{m, k}, k=1, \ldots, m$, of $p_{m}(w)$ satisfy the following bounds

$$
0<C \frac{a_{m}}{m^{2}}<x_{m, 1}<\ldots<x_{m, m}<a_{m}\left(1-\frac{C}{m^{2 / 3}}\right)
$$

where here and in the sequel C is a positive constant which may assume different values in different formulas.

Concerning the so-called Mhaskar-Rahmanov-Saff number (M-R-S number) $a_{m}=a_{m}(\sqrt{w})$, we note that if b_{m} is the Freud number of the weight $|x|^{\alpha+1} e^{-\frac{Q\left(x^{2}\right)}{2}}$, then $a_{m}=b_{m}^{2}$. Moreover, in the sequel we will use the relation

$$
\begin{equation*}
2 a_{m} Q^{\prime}\left(a_{m}\right)=m \tag{1}
\end{equation*}
$$

which follows from the analogous one for the Freud weights. In fact, denoting by $\bar{a}_{m}:=\bar{a}_{m}(\bar{w})$ the M-R-S number related to the generalized Freud weight $\bar{w}(x)=|x|^{2 \alpha+1} e^{-Q^{*}(x)}$, we have

$$
\bar{a}_{m} Q^{*^{\prime}}\left(\bar{a}_{m}\right)=m
$$

see [6, p. 184]. Since $Q^{*}(x)=Q\left(x^{2}\right)$, we have $Q^{*^{\prime}}(x)=2 x Q^{\prime}\left(x^{2}\right)$ and then the above equality becomes

$$
2 \bar{a}_{m}^{2} Q^{\prime}\left(\bar{a}_{m}^{2}\right)=m
$$

On the other hand, taking into account that $a_{m} \sim \bar{a}_{m}^{2}$, we get (1).
Now we introduce our Hermite-Fejér and Grünwald interpolation processes. Consider the points

$$
x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}
$$

with $x_{k}:=x_{m, k}$ and $x_{m+1}=a_{m}$. Letting

$$
\ell_{k}(x)=\frac{P(x)}{P^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)}, \quad P(x)=p_{m}(w, x)\left(a_{m}-x\right), \quad k=1, \ldots, m+1
$$

and

$$
\begin{equation*}
v_{k}(x)=1-2 \ell_{k}^{\prime}\left(x_{k}\right)\left(x-x_{k}\right), \quad k=1, \ldots, m+1 \tag{2}
\end{equation*}
$$

for every continuous function f on $\mathbb{R}^{+}\left(f \in C^{0}\left(\mathbb{R}^{+}\right)\right)$, we define the Hermite-Fejér and Grünwald operators as follows

$$
\begin{equation*}
F_{m}(w, f, x)=\sum_{x_{1} \leq x_{k} \leq \theta a_{m}} \ell_{k}^{2}(x) v_{k}(x) f\left(x_{k}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{m}(w, f, x)=\sum_{x_{1} \leq x_{k} \leq \theta a_{m}} \ell_{k}^{2}(x) f\left(x_{k}\right) \tag{4}
\end{equation*}
$$

respectively, for a fixed parameter $0<\theta<1$.
In the sequel we will give a theoretical justification for the previous definitions.

3. Function spaces and main results

With $u(x)=x^{\gamma} e^{-Q(x)}, \gamma \geq 0$, we introduce the function space

$$
\begin{equation*}
C_{u}=\left\{f \in C^{0}\left(\mathbb{R}^{+}\right): \lim _{\substack{x \rightarrow+\infty \\ x \rightarrow 0}} f(x) u(x)=0\right\} \tag{5}
\end{equation*}
$$

endowed with the norm

$$
\begin{equation*}
\|f\|_{C_{u}}=\sup _{x \geq 0}|f(x)| u(x)=\|f u\| \tag{6}
\end{equation*}
$$

We will write $\|f\|_{A}:=\sup _{x \in A}|f(x)|, A \subset \mathbb{R}^{+}$. An important property of the weight function u is the following: for every polynomial P_{m} of degree at most $m\left(P_{m} \in \mathbb{P}_{m}\right)$ the inequalities [9-12]:

$$
\begin{equation*}
\left\|P_{m} u\right\| \leq C\left\|P_{m} u\right\|_{I_{m}}, \quad \mathcal{I}_{m}=\left[\frac{a_{m}}{m^{2}}, a_{m}\right] \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|P_{m} u\right\|_{\left\{x: x>(1+\delta) a_{m}\right\}} \leq C e^{-\mathcal{A l} m}\left\|P_{m} u\right\| \tag{8}
\end{equation*}
$$

hold true, where $\delta>0$ and C, \mathcal{A} are independent of m and P_{m}.
Concerning a_{m}, here $a_{m}=a_{m}(u)$ is the square of the Freud number of the weight $u^{*}(x)=|x|^{2 \gamma+1} e^{-Q\left(x^{2}\right)}$. Since $a_{m}(w) \sim a_{m}(\sqrt{w}) \sim a_{m}(u)$, with a slight abuse of notation, we used and we will use in the sequel, the symbol a_{m}.

Now we are able to motivate the definitions (3) and (4) of the operators F_{m} and G_{m}, respectively.
As a consequence of (8), for all $f \in C_{u}$ and $0<\theta<1$ fixed, the weight function u satisfies the following property:

$$
\begin{equation*}
\|f u\| \leq C\left[\|f u\|_{\left[0, \theta a_{m}\right]}+E_{M}(f)_{u}\right] \tag{9}
\end{equation*}
$$

where $E_{M}(f)_{u}$ is the error of best approximation of f in C_{u} by means of polynomials of degree at most $M=\left\lfloor\frac{\theta m}{1+\theta}\right\rfloor \sim m$ and C is independent of f. Therefore $\|f u\|_{\left[0, \theta a_{m}\right]}$ is the dominant part of $\|f u\|$. This fact suggests that one can approximate only the finite section χf of f, being χ the characteristic function of the interval $\left[0, \theta a_{m}\right], 0<\theta<1$.

Now we introduce another weight function. The weight $\bar{u}(x)=u(x) \log ^{\lambda}(2+x), \lambda \geq 1$. We define the function space $C_{\bar{u}}$ as C_{u}. Obviously $C_{\bar{u}} \subset C_{u}$.

With τ^{*} defined by $\tau Q\left(\tau^{* 2}\right)=1$, let $t^{*}=\tau^{* 2}$ (For example, if $u^{*}(x)=e^{-x^{\alpha}}, x \in \mathbb{R}^{+}$, then $\tau^{*}=\frac{1}{\tau^{1 /(2 \alpha)}}$ and $t^{*}=\frac{1}{\tau^{1 / \alpha}}$). With this notation, we define a suitable modulus of smoothness as follows

$$
\omega_{\varphi}(f, t)_{\bar{u}}=\Omega_{\varphi}(f, t)_{\bar{u}}+\inf _{P \in \mathbb{P}_{0}}\|(f-P) \bar{u}\|_{\left[0, A t^{2}\right]}+\inf _{P \in \mathbb{P}_{0}}\|(f-P) \bar{u}\|_{\left[A t^{*},+\infty\right)},
$$

being $\varphi(x)=\sqrt{x}$ and

$$
\Omega_{\varphi}(f, t)_{\bar{u}}=\sup _{0<h \leq t}\left\|\left(\vec{\Delta}_{h} f\right) \bar{u}\right\|_{\left[A h^{2}, A h^{*}\right]},
$$

with

$$
\vec{\Delta}_{h} f(x)=f\left(x+\frac{h}{2} \varphi(x)\right)-f(x)
$$

The following inequality

$$
\begin{equation*}
E_{m}(f)_{\bar{u}}=\inf _{P \in \mathbb{P}_{m}}\|(f-P) \bar{u}\| \leq C \omega_{\varphi}\left(f, \frac{\sqrt{a_{m}}}{m}\right)_{\bar{u}} \tag{10}
\end{equation*}
$$

holds true and

$$
\lim _{m \rightarrow \infty} \omega_{\varphi}\left(f, \frac{\sqrt{a_{m}}}{m}\right)_{\bar{u}}=0
$$

The above relations are not available in the literature but they can be easily deduced following [5, 6, 14]. We omit the proof.

Next lemma shows that $F_{m}(w): C_{\bar{u}} \rightarrow C_{u}$ is a bounded map.
Lemma 3.1. Assume that the parameters α, γ and λ of the weights w and \bar{u} satisfy the condition

$$
\begin{equation*}
\alpha>-1, \quad \gamma \geq 0, \quad 0 \leq \gamma-\alpha-\frac{1}{2}<1, \quad \lambda=1 \tag{11}
\end{equation*}
$$

then, for any $f \in C_{\bar{u}}$,

$$
\begin{equation*}
\left\|F_{m}(w, f) u\right\| \leq C\|f \bar{u}\|_{\left[0, \theta a_{m}\right]} \tag{12}
\end{equation*}
$$

where C is independent of m and f.
Now, the following theorem states the convergence of the operator $F_{m}(w, f)$ in $C_{\bar{u}}$.
Theorem 3.2. Under the assumptions of Lemma 3.1 on the parameters α, γ and λ, for any $f \in C_{\bar{u}}$ we get

$$
\left\|\left(f-F_{m}(w, f)\right) u\right\| \leq C\left[\omega_{\varphi}\left(f, \frac{\sqrt{a_{m}}}{m} \log m\right)_{\bar{u}}+e^{-\mathcal{A} m}\|f \bar{u}\|\right],
$$

where C and \mathcal{A} are independent of m and f.
As a consequence of Theorem 3.2, we are able to prove the following theorem dealing with the convergence of the Grünwald polynomial.

Theorem 3.3. Assume that the parameters α, γ and λ of the weights w and \bar{u} satisfy the conditions

$$
\alpha>-1, \quad \gamma \geq 0, \quad 0 \leq \gamma-\alpha-\frac{1}{2}<1, \quad \lambda>1
$$

Then, for any $f \in C_{\bar{u}}$ we have

$$
\lim _{m}\left\|\left(f-G_{m}(w, f)\right) u\right\|=0
$$

4. Proofs

The following inequalities, useful in the sequel, can be easily deduced following from $[5,6,14]$:

$$
\begin{align*}
& \left|p_{m}^{2}(w, x) w(x) \varphi(x) \sqrt{a_{m}-x+\frac{a_{m}}{m^{2 / 3}}}\right| \leq C, \quad x \in I_{m} \tag{13}\\
& \frac{1}{\left|p_{m}^{\prime 2}\left(w, x_{k}\right)\right| w\left(x_{k}\right)} \sim \Delta^{2} x_{k} \varphi\left(x_{k}\right) \sqrt{a_{m}-x_{k}}, \quad x_{1} \leq x_{k} \leq \theta a_{m} \tag{14}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta x_{k} \sim \frac{\sqrt{a_{m}}}{m} \sqrt{x_{k}} \sim \frac{a_{m}}{m}, \quad x_{1} \leq x_{k} \leq \theta a_{m} \tag{15}
\end{equation*}
$$

Proof. [Proof of Lemma 3.1] We first note that, for $x_{1} \leq x_{k} \leq \theta a_{m}$,

$$
\begin{equation*}
\ell_{k}(x)=\frac{P(x)}{P^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)}=l_{k}(x) \frac{a_{m}-x}{a_{m}-x_{k}} \tag{16}
\end{equation*}
$$

where

$$
l_{k}(x)=\frac{p_{m}(w, x)}{p_{m}^{\prime}\left(w, x_{k}\right)\left(x-x_{k}\right)}
$$

Using (13) and (14), for $\frac{a_{m}}{m^{2}} \leq x \leq a_{m}$ and $k=1, \ldots, j$, we get

$$
\begin{equation*}
\frac{\ell_{k}^{2}(x) u(x)}{\bar{u}\left(x_{k}\right)} \leq C\left(\frac{x}{x_{k}}\right)^{\gamma-\alpha-\frac{1}{2}} \frac{\Delta^{2} x_{k}}{\log \left(2+x_{k}\right)\left(x-x_{k}\right)^{2}} \tag{17}
\end{equation*}
$$

Moreover, since by definition (16), we have

$$
\ell_{k}^{\prime}\left(x_{k}\right)=-\frac{1}{a_{m}-x_{k}}+\frac{p_{m}^{\prime \prime}\left(w, x_{k}\right)}{p_{m}^{\prime}\left(w, x_{k}\right)}
$$

by (2) we get

$$
\begin{equation*}
v_{k}(x)=1+2\left[\frac{1}{a_{m}-x_{k}}-\frac{p_{m}^{\prime \prime}\left(w, x_{k}\right)}{p_{m}^{\prime}\left(w, x_{k}\right)}\right]\left(x-x_{k}\right)=: 1-\bar{v}_{k}(x) \tag{18}
\end{equation*}
$$

Let us consider the sequence $\left\{q_{m}(\bar{w})\right\}_{m}$ of orthonormal polynomials w.r.t. the generalized Freud weight $\bar{w}(x)=|x|^{2 \alpha+1} e^{-Q\left(x^{2}\right)}$ and let us denote by $y_{k}, k=1, \ldots, m$, the zeros of $q_{m}(\bar{w})$. We have $q_{2 m}(\bar{w}, x)=p_{m}\left(w, x^{2}\right)$ and then

$$
\frac{q_{2 m}^{\prime \prime}(\bar{w}, x)}{q_{2 m}^{\prime}(\bar{w}, x)}=\frac{1}{x}+2 x \frac{p_{m}^{\prime \prime}\left(w, x^{2}\right)}{p_{m}^{\prime}\left(w, x^{2}\right)}
$$

i.e.,

$$
\begin{equation*}
\frac{p_{m}^{\prime \prime}\left(w, x^{2}\right)}{p_{m}^{\prime}\left(w, x^{2}\right)}=\frac{1}{2 x} \frac{q_{2 m}^{\prime \prime}(\bar{w}, x)}{q_{2 m}^{\prime}(\bar{w}, x)}-\frac{1}{2 x^{2}} \tag{19}
\end{equation*}
$$

Now, using [9, Theorem 3.6, p. 42], we get

$$
\left|\frac{q_{2 m}^{\prime \prime}\left(\bar{w}, y_{k}\right)}{q_{2 m}^{\prime}\left(\bar{w}, y_{k}\right)}\right| \leq C\left[\frac{\left|y_{k}\right|}{a_{m}^{2}(\sqrt{\bar{w}})}+\left|y_{k}\right| Q^{\prime}\left(y_{k}^{2}\right)+\frac{1}{\left|y_{k}\right|}\right]
$$

and, therefore, by (19)

$$
\left|\frac{p_{m}^{\prime \prime}\left(w, x_{k}^{2}\right)}{p_{m}^{\prime}\left(w, x_{k}^{2}\right)}\right| \leq C\left[\frac{1}{a_{m}^{2}(\sqrt{\bar{w}})}+Q^{\prime}\left(y_{k}^{2}\right)+\frac{1}{y_{k}^{2}}\right]
$$

Consequently,

$$
\begin{equation*}
\left|\frac{p_{m}^{\prime \prime}\left(w, x_{k}\right)}{p_{m}^{\prime}\left(w, x_{k}\right)}\right| \leq C\left[1+Q^{\prime}\left(x_{k}\right)+\frac{1}{x_{k}}\right] \tag{20}
\end{equation*}
$$

and then

$$
\begin{equation*}
\left|v_{k}(x)\right| \leq C\left[1+\left|x-x_{k}\right|+Q^{\prime}\left(x_{k}\right)\left|x-x_{k}\right|+\frac{\left|x-x_{k}\right|}{x_{k}}\right] \tag{21}
\end{equation*}
$$

Moreover, in virtue of (15), (1) and (21), it is easy to verify that

$$
\begin{align*}
& \frac{\Delta x_{k}}{x_{k}} \leq C, \quad \frac{a_{m}}{m^{2}}<x \leq a_{m} \tag{22}\\
& \frac{Q^{\prime}\left(x_{k}\right) \Delta x_{k}}{\log \left(2+x_{k}\right)} \leq C \frac{Q^{\prime}\left(a_{m}\right) \Delta x_{k}}{\log \left(2+a_{m}\right)} \leq C \frac{m}{a_{m} \log \left(2+a_{m}\right)} \frac{a_{m}}{m} \leq \frac{C}{\log m}, \quad x_{1} \leq x_{k} \leq \theta a_{m} \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\ell_{d}^{2}(x) u(x)}{u\left(x_{d}\right)}\left|v_{d}(x)\right| \leq C \frac{\left|v_{d}(x)\right|}{\log \left(x_{d}+2\right)} \leq C \tag{24}
\end{equation*}
$$

x_{d} being a zero closest to x and $\frac{Q^{\prime}(x)}{\log (2+x)}$ an increasing function.
Now, in order to estimate (12), we first note that by (7), we have

$$
\left\|F_{m}(w, f) u\right\| \leq C\left\|F_{m}(w, f) u\right\|_{I_{m}} .
$$

Recalling (3) and taking into account (17) and (24), for $\frac{a_{m}}{m^{2}}<x \leq a_{m}$, we get

$$
\begin{equation*}
u(x)\left|F_{m}(w, f, x)\right| \leq C\|f \bar{u}\|_{\left[0, \theta a_{m}\right]}\left[\sum_{\substack{x_{1} \leq x_{k} \leq\left\{a_{m} \\ k \neq d-1, d, d+1\right.}}\left(\frac{x}{x_{k}}\right)^{\gamma-\alpha-\frac{1}{2}} \frac{\Delta^{2} x_{k}}{\left(x-x_{k}\right)^{2}} \frac{\bar{v}_{k}(x)}{\log \left(2+x_{k}\right)}+1\right] . \tag{25}
\end{equation*}
$$

We estimate the sum in (25) only in the case $x>2$, being the case $0<x \leq 2$ similar. We write

$$
\begin{aligned}
u(x)\left|F_{m}(w, f, x)\right| & \leq C\|f \bar{u}\|_{\left[0, \theta a_{m}\right]}\left[\sum_{x_{1} \leq x_{k} \leq 1}+\sum_{1<x_{k} \leq \frac{x}{2}}+\sum_{\frac{x}{2}<x_{k}<x_{d-2}}+\sum_{x_{d+2} \leq x_{k}<\theta a_{m}}+1\right] \\
& =C\|f \bar{u}\|_{\left[0, \theta a_{m}\right]}\left[\sigma_{1}(x)+\sigma_{2}(x)+\sigma_{3}(x)+\sigma_{4}(x)+1\right]
\end{aligned}
$$

For $x_{1} \leq x_{k} \leq 1$, (21) becomes

$$
\left|v_{k}(x)\right| \leq C \frac{x}{x_{k}}+C Q^{\prime}\left(x_{k}\right) x
$$

Then, taking into account that $x-x_{k}>\frac{x}{2}$ and (22), we deduce

$$
\sigma_{1}(x) \leq C x^{\gamma-\alpha-\frac{3}{2}} \sum_{x_{1} \leq x_{k} \leq 1} x_{k}^{\alpha-\gamma+\frac{1}{2}} \Delta x_{k} \leq C x^{\gamma-\alpha-\frac{3}{2}} \int_{0}^{1} t^{\alpha-\gamma+\frac{1}{2}} d t \leq C
$$

being $\gamma-\alpha-\frac{1}{2}<1$ and $\gamma-\alpha-\frac{3}{2} \leq 0$. We note that, for $1<x_{k} \leq \theta a_{m}$, (21) becomes

$$
\begin{equation*}
\left|\bar{v}_{k}(x)\right| \leq 1+C Q^{\prime}\left(x_{k}\right)\left|x-x_{k}\right| \tag{26}
\end{equation*}
$$

and, then,

$$
\sigma_{2}(x) \leq \sum_{1<x_{k} \leq \frac{x}{2}}\left(\frac{x}{x_{k}}\right)^{\gamma-\alpha-\frac{1}{2}} \frac{\Delta^{2} x_{k}}{\left(x-x_{k}\right)^{2}}\left[1+C \frac{Q^{\prime}\left(x_{k}\right)}{\log \left(2+x_{k}\right)}\left|x-x_{k}\right|\right]
$$

Thus, using $x-x_{k}>\frac{x}{2}$, (22) and (23), we get

$$
\begin{aligned}
\sigma_{2}(x) & \leq C x^{\gamma-\alpha-\frac{5}{2}} \sum_{1<x_{k} \leq \frac{x}{2}} x_{k}^{\alpha-\gamma-\frac{1}{2}} \Delta x_{k}+C \sum_{1<x_{k} \leq \frac{x}{2}}\left(\frac{x}{x_{k}}\right)^{\gamma-\alpha-\frac{1}{2}} \frac{\Delta x_{k}}{\left(x-x_{k}\right)} \\
& \leq C \frac{a_{m}}{m} x^{\gamma-\alpha-\frac{5}{2}} \int_{1}^{\frac{x}{2}} t^{\alpha-\gamma-\frac{1}{2}} d t+C \int_{1}^{\frac{x}{2}}\left(\frac{x}{t}\right)^{\gamma-\alpha-\frac{1}{2}} \frac{d t}{(x-t)} \\
& \leq C+C \int_{0}^{\frac{1}{2}} y^{\alpha-\gamma+\frac{1}{2}} \frac{d y}{(1-y)} \leq C
\end{aligned}
$$

being $\alpha-\gamma+\frac{1}{2}>-1$. Moreover, taking into account (26), (23) and $x \sim x_{k}$, we obtain

$$
\begin{aligned}
\sigma_{3}(x) & \leq \sum_{\frac{x}{2}<x_{k}<x_{d-2}} \frac{\Delta^{2} x_{k}}{\left(x-x_{k}\right)^{2}}\left[1+C \frac{Q^{\prime}\left(x_{k}\right)}{\log \left(2+x_{k}\right)}\left|x-x_{k}\right|\right] \\
& \leq C+\frac{C}{\log m} \sum_{\frac{x}{2}<x_{k}<x_{d-2}} \frac{\Delta x_{k}}{\left|x-x_{k}\right|} \leq C .
\end{aligned}
$$

Finally, proceeding as done for the estimate of $\sigma_{3}(x)$, we obtain

$$
\sigma_{4}(x) \leq C .
$$

Summing up, for $x \geq 2$,

$$
\left\|F_{m}(w, f) u\right\| \leq C\|f \bar{u}\|_{\left[0, \theta a_{m}\right]} .
$$

In order prove Theorem 3.2, we introduce the Hermite polynomial based at the zeros $x_{k}, k=1, \ldots, m+1$, interpolating a function g which is continuous with its first derivative:

$$
\begin{aligned}
H_{m}(w, g, x) & =\sum_{k=1}^{m+1} \ell_{k}^{2}(x) v_{k}(x) g\left(x_{k}\right)+\sum_{k=1}^{m+1} \ell_{k}^{2}(x)\left(x-x_{k}\right) g^{\prime}\left(x_{k}\right) \\
& =: F_{m}^{*}(w, g, x)+T_{m}^{*}(w, g, x) .
\end{aligned}
$$

Note that $F_{m}(w, g, x)=F_{m}^{*}(w, \chi g, x)$. Letting $T_{m}(w, g, x)=T_{m}^{*}(w, \chi g, x)$, the proposition that follows will be useful to our aims.

Proposition 4.1. Assuming that the parameters α and γ satisfy (11), then, for every g s.t. $\left\|g^{\prime} \varphi u\right\|<+\infty$, we have

$$
\begin{equation*}
\left\|T_{m}(w, g) u\right\| \leq C \frac{\sqrt{a_{m}}}{m} \log m\left\|g^{\prime} \varphi u\right\|_{\left[0, \theta a_{m}\right]} \tag{27}
\end{equation*}
$$

where C is independent of m and f. Moreover, for every polynomial $P_{M} \in \mathbb{P}_{M}$, with $M=\left\lfloor\frac{\theta m}{1+\theta}\right\rfloor, 0<\theta<1$, we get

$$
\begin{equation*}
\left\|H_{m}\left(w,(1-\chi) P_{M}\right) u\right\| \leq C e^{-\mathcal{A} m}\left\|P_{M} u\right\| \tag{28}
\end{equation*}
$$

where C and \mathcal{A} are independent of m and Q_{M}.
Proof. In order to prove the inequality (27) we recall (17). Then, using (15), we get

$$
\left|T_{m}(w, g, x)\right| u(x) \leq C \frac{\sqrt{a_{m}}}{m}\left\|g^{\prime} \varphi u\right\|_{\left[0, \theta a_{m}\right]} \sum_{x_{1} \leq x_{k} \leq \theta a_{m}}\left(\frac{x}{x_{k}}\right)^{\gamma-\alpha-\frac{1}{2}} \frac{\Delta x_{k}}{\left|x-x_{k}\right|}
$$

Now, by similar arguments to those used for the proof of Lemma 3.1, it is possible to prove that

$$
\sum_{k=1}^{j}\left(\frac{x}{x_{k}}\right)^{\gamma-\alpha-\frac{1}{2}} \frac{\Delta x_{k}}{\left|x-x_{k}\right|} \leq C \log m
$$

Then, (27) easily follows.
In order to prove (28) we need to estimate $\left\|F_{m}^{*}\left(w,(1-\chi) P_{M}\right) u\right\|$ and $\left\|T_{m}^{*}\left(w,(1-\chi) P_{M}\right) u\right\|$. We give the details only for the bound of the latter norm, since the estimate of the former is similar.

Using (17) and (15), we get

$$
\begin{aligned}
\left|T_{m}^{*}\left(w,(1-\chi) P_{M}, x\right)\right| u(x) & \leq C \frac{\sqrt{a_{m}}}{m}\left\|P_{M}^{\prime} \varphi u\right\|_{\left[\theta a_{m},+\infty\right)} \sum_{\theta a_{m}<x_{k} \leq x_{m}}\left(\frac{x}{x_{k}}\right)^{\gamma-\alpha-\frac{1}{2}} \frac{\Delta x_{k}}{\log \left(2+x_{k}\right)\left|x-x_{k}\right|} \\
& \leq C \frac{\sqrt{a_{m}}}{m} m^{\tau}\left\|P_{M}^{\prime} \varphi u\right\|_{\left[\theta a_{m},+\infty\right)}
\end{aligned}
$$

for some $\tau>0$. Finally, by (8) and the Bernstein inequality [11], we obtain

$$
\begin{aligned}
\frac{\sqrt{a_{m}}}{m} m^{\tau}\left\|P_{M}^{\prime} \varphi u\right\|_{\left[\theta a_{m},+\infty\right)} & \leq C \frac{\sqrt{a_{m}}}{m} m^{\tau} e^{-\mathcal{A} m}\left\|P_{M}^{\prime} \varphi u\right\| \leq C m^{\tau} e^{-\mathcal{A} m}\left\|P_{M} u\right\| \\
& \leq C e^{-\mathcal{A} m}\left\|P_{M} u\right\|
\end{aligned}
$$

and, then

$$
\left\|T_{m}^{*}\left(w,(1-\chi) P_{M}\right) u\right\| \leq C e^{-\mathcal{A} m}\left\|P_{M} u\right\|
$$

easily follows.
Now we can prove Theorem 3.2.
Proof. [Proof of Theorem 3.2] Denoting by $P_{N} \in \mathbb{P}_{N}, N=\left\lfloor\frac{M}{\log M}\right\rfloor, M=\left\lfloor\frac{\theta m}{1+\theta}\right\rfloor$, the polynomial of best approximation of $f \in C_{\bar{u}}$, we can write

$$
\begin{aligned}
f-F_{m}(w, f) & =f-P_{N}+H_{m}\left(w, P_{N}\right)-F_{m}(w, f) \\
& =f-P_{N}+F_{m}\left(w, P_{N}-f\right)+T_{m}\left(w, P_{N}\right)+H_{m}\left(w,(1-\chi) P_{N}\right)
\end{aligned}
$$

using Lemma 3.1 and Proposition 4.1, we get

$$
\left\|\left(f-F_{m}(w, f)\right) u\right\| \leq C\left[\left\|\left(f-P_{N}\right) \bar{u}\right\|+\frac{\sqrt{a_{N}}}{N}\left\|P_{N}^{\prime} \varphi \bar{u}\right\|+e^{-\mathcal{A} m}\left\|P_{N} \bar{u}\right\|\right]
$$

Recalling (10) we have

$$
\left\|\left(f-P_{N}\right) \bar{u}\right\| \leq C \omega_{\varphi}\left(f, \frac{\sqrt{a_{N}}}{N}\right)_{\bar{u}} \sim \omega_{\varphi}\left(f, \frac{\sqrt{a_{m}}}{m} \log m\right)_{\bar{u}}
$$

Moreover, since (see [15] for a similar argument)

$$
\frac{\sqrt{a_{N}}}{N}\left\|P_{N}^{\prime} \varphi \bar{u}\right\| \leq C \omega_{\varphi}\left(f, \frac{\sqrt{a_{N}}}{N}\right)_{\bar{u}} \sim \omega_{\varphi}\left(f, \frac{\sqrt{a_{m}}}{m} \log m\right)_{\bar{u}}
$$

and

$$
\left\|P_{N} \bar{u}\right\| \leq 2\|f \bar{u}\|
$$

the theorem follows.
Proof. [Proof of Theorem 3.3] By (3)-(4) and (18) we have

$$
f-G_{m}(w, f)=\left[f-F_{m}(w, f)\right]+\bar{F}_{m}(w, f)
$$

where

$$
\bar{F}_{m}(w, f)=\sum_{x_{1} \leq x_{k} \leq \theta a_{m}} \ell_{k}^{2}(x) \bar{v}_{k}(x) f\left(x_{k}\right)
$$

Using (18) and (20), we deduce that $\left|\bar{v}_{k}(x)\right|$ satisfies the same bound of $\left|v_{k}(x)\right|$ (see (21)), i.e.

$$
\begin{equation*}
\left|\bar{v}_{k}(x)\right| \leq C\left[1+\left|x-x_{k}\right|+Q^{\prime}\left(x_{k}\right)\left|x-x_{k}\right|+\frac{\left|x-x_{k}\right|}{x_{k}}\right] \tag{29}
\end{equation*}
$$

Then, following step by step the proof of (12) with $\lambda>1$, we deduce that

$$
\left\|\bar{F}_{m}(w, f) u\right\| \leq \frac{C}{\log ^{\lambda-1} m}\|f \bar{u}\|
$$

Using the above bound and taking into account Theorem 3.2, we get

$$
\left\|\left(f-G_{m}(w, f)\right) u\right\| \leq C\left[\omega_{\varphi}\left(f, \frac{\sqrt{a_{m}}}{m} \log m\right)_{\bar{u}}+e^{-\mathcal{A} m}\|f \bar{u}\|+\frac{\|f \bar{u}\|}{\log ^{\lambda-1} m}\right]
$$

The proof is then complete.

Acknowledgment

The authors wish to thank Prof. Giuseppe Mastroianni for the interesting discussions on the topic and his helpful suggestions.

References

[1] J. Balazs, Megjegyzesek a stabil interpolaciorol. Matematikai Lapok, 11 (1960), 280-293.
[2] Z. Chen, Mean convergence of Grünwald interpolation operators. International Journal of Mathematics and Mathematical Sciences, 33 (2003), 2083-2095.
[3] M.C. De Bonis, G. Mastroianni, On the Hermite-Fejer interpolation based at the zeros of generalized Freud polynomials. Mediterranean Journal of Mathematics, 15 (1) (2018), 26.
[4] Grünwald G.: On the theory of interpolation. Acta Math. Hungar, 75 (1-2) (1943), 219-293.
[5] M. C. De Bonis , G. Mastroianni , M. Viggiano, K-functionals, Moduli of Smoothness and Weighted Best Approximation on the semiaxis. in: L. Leindler, F. Schipp, J. Szabados (Eds.), Functions, Series, Operators, Alexits Memorial Conference, Janos Bolyai Mathematical Society, Budapest, Hungary, 2002, 181-211.
[6] Z. Ditzian, V. Totik, Moduli of smoothness. SCMG Springer-Verlag, New York Berlin Heidelberg London Paris Tokyo, 1987.
[7] S.W. Jha, D.S. Lubinsky, Necessary and sufficient conditions for mean convergence of orthogonal expansions for Freud weights. Constr. Approx., 11 (1995), 331-363.
[8] I. Joó, On interpolation on the roots of Jacobi polynomials. Annales Univ. Sci. Budapest. Sect. Math. Hungar., 17 (1-2) (1974), 119-124.
[9] T. Kasuga, R. Sakai, Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory, 121 (2003), 13-53.
[10] T. Kasuga, R. Sakai, Orthonormal polynomials for generalized Freud-type weights and higher-order Hermite-Fejér interpolation polynomials. J. Approx. Theory, 127 (2004), 1-38.
[11] E. Levin, D.S. Lubinsky, Othogonal polynomials for exponential weights. CMS Books in Mathematics/Ouvrages de Mathematique de la SMC, Vol. 4, Springer-Verlag, New York, 2001.
[12] E. Levin, D.S. Lubinsky, Othogonal polynomials for exponential weights $x^{-2 \rho} e^{-2 Q(x)}$ on [0, d], II. J. Approx. Theory 139 (2006), 107-143.
[13] G. Mastroianni, I. Notarangelo, L. Szili, P. Vértesi, A note on Hermite-Fejér interpolation at Laguerre zeros. Calcolo, 55 (3), 39.
[14] G. Mastroianni, J. Szabados, Polynomial approximation on infinite intervals with weights having inner zeros. Acta Math. Hungar. 96 (3) (2002), 221-258.
[15] G. Mastroianni, J. Szabados, Polynomial approximation on the real semiaxis with generalized Laguerre weights. Stud. Univ. Babes-Bolyai Math., 52 (4) (2007), 105-128.
[16] G. Min, On L^{p}-convergence of Grünwald interpolation. Approximation Theory and its Applications, 8 (3) (1992), 28-37.
[17] V.E.S. Szabó, Weighted interpolation: the L_{∞} theory I. Acta Math. Hungar., 83 (1-2) (1999), 131-159.
[18] L. Szili, Uniform weighted convergence of Grünwald interpolation process on the roots of Jacobi polynomials. Annales Univ. Sci. Budapest., Sect. Comp., 29 (2008), 246-261.

[^0]: 2010 Mathematics Subject Classification. Primary 41A05; Secondary 41A10
 Keywords. Interpolation, Hermite-Fejér, Grünwald, Orthogonal polynomials
 Received: 02 May 2019; Accepted: 26 July 2019
 Communicated by Miodrag Spalević
 Research supported by University of Basilicata (local founds) (first author); by Unit for Business Mathematics \& Informatics, North-West University (second author).
 *Corresponding author: Maria Carmela De Bonis
 Email addresses: mariacarmela.debonis@unibas.it (Maria Carmela De Bonis), david.kubayi@nwu.ac.za (David Kubayi)

