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Abstract. In this paper, a generalized two-step modulus-based matrix splitting iteration method for
solving the implicit complementarity problems has been presented. The convergent analysis with the
system matrix being H+-matrices are also discussed. Numerical experiments illustrate that our method is
advantageous to the existing methods.

1. Introduction

The complementarity problem is a hot topic, which has several kinds of forms, such as linear complemen-
tarity problem [1, 24–41], nonlinear complementarity problem [2–5, 12], implicit complementarity problem
[13–15], cone complementarity problem [16–18], etc.. The implicit complementarity problem is a special
case in complementarity theory. It is frequently applied to stochastic optimal control problems[22, 23].
Therefore, it is significant to study this problem.

The implicit complementarity problem (ICP) is to find a pair (u,w) of real vectors which satisfy

u −m(u) ≥ 0, w := Au + q ≥ 0, (u −m(u))Tw = 0, (1)

where A and q are a known matrix in Rn×n and a known vector in Rn, respectively. The mapping m(·) :
Rn
→ Rn is known invertible, and u −m(u) is supposed to be a invertible mapping.
When m(u) = 0, the implicit complementarity problem reduces to the linear complementarity problem

[24, 25], abbreviated as LCP(A, q). There are numerous existing methods to solve the LCP; see, for
example, the projected iteration methods [6], the chaotic iteration methods [7], and the modulus-based
multigrid methods [8]. In 2010, Bai first provided the modulus-based matrix splitting (MMS) iteration
method [26] to solve this kind of problems. This method has attracted much attention, and most scholars
modified the MMS iteration method by constructing different preconditioners [27–30] or generalized it by
putting another parameterized diagonal matrix to the modulus equation of LCP [31–33] and so on [34–
36]. And some researchers also give the synchronous multisplitting iteration methods [19, 20, 37–43]. For
other iteration methods such as the matrix multisplitting iteration methods, parallel chaotic multisplitting
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iteration methods, and the damped Newton methods for solving the LCP, we refer to [1, 9–11, 13, 21, 25, 44]
and the references therein.

When m(u) is a general function, it is called as the implicit complementarity problem. In general, many
studied ICP by variational or quasi-variational inequalities [45, 46]. Recently, the modulus-based matrix
splitting has been widely used to derive numerical methods for the linear complementarity problems. For
instance, Hong et al. raised the modulus-based matrix splitting iteration method [47] and Wang et al.
consummated its details [48]. In order to improve the convergence rate, Cao et al. proposed the two-step
modulus-based matrix splitting iteration method [49].

In this paper, in view of putting another parameterized diagonal matrix to the modulus equation and
splitting the system matrix into two kinds of matrix splittings, we propose a general two-step modulus-
based modulus matrix splitting iteration method, which is the generalization of the two-step modulus
matrix splitting iteration method [49], to solve the ICP and its variants with different matrix splittings. We
discuss its convergent theorems whose system matrix is an H+-matrix. Finally, numerical experiments are
exhibited to indicate the efficiency of our presented method.

The paper is organized as follows. In Sec. 2, we give some symbolic representations and essential
lemmas. The generalized two-step modulus-based matrix splitting method, which is the generalization of
the two-step modulus-based matrix splitting method and its convergence theorems are given in Sec. 3 and
Sec. 4, respectively. Numerical experiments illustrate that our proposed method is advantageous to some
existing methods.

2. Preliminaries

In this section, we review some fundamental notations and indispensable lemmas.
For any two vectors u = (u1,u2, · · · ,un)T and v = (v1, v2, · · · , vn)T, we denote u ≥ v (u > v) provided

that the corresponding elements satisfy ui ≥ vi (ui > vi). max(a, b) is the bigger one of a and b. |u| means
the absolute value of the vector u, and uT is its transpose. The notations of matrix is the same as the
aforementioned. Denote A = (ai j), then we review some special matrices as below:
• The matrix A is a Z-matrix iff ai j ≤ 0 for any i , j.
• The Z-matrix A is an M-matrix iff A−1

≥ 0.
• The matrix A is an H-matrix iff its comparison matrix 〈A〉 = 〈ai j〉 is an M-matrix, where

〈ai j〉 =

{
|ai j|, f or i = j,
−|ai j|, f or i , j, i, j = 1, 2, · · · ,n.

• The matrix A is an H+-matrix iff A is an H-matrix with the diagonal elements being positive; see [1].
Furthermore, A = E − F is a splitting of the matrix A iff E is nonsingular, and it is an H-compatible

splitting iff it holds that 〈A〉 = 〈E〉 − |F|. In the following sections, α and β are parameters. D, −L and U
are the diagonal, the strictly lower-triangular and the strictly upper-triangular matrices of the matrix A,
respectively. Finally, we list six lemmas which are going to be used in subsequent convergent theorems.

Lemma 2.1. [50] Let A be an H-matrix, then |A−1
| ≤ 〈A〉−1.

Lemma 2.2. [51] Let B ∈ Rn×n be a strictly diagonal dominant matrix. Then

‖B−1C‖ ≤ max
1≤i≤n

(|C|e)i

(〈B〉e) i

holds for arbitrary matrix C ∈ Rn×n, where e = (1, 1, · · · , 1)T.

Lemma 2.3. [52] Let A ∈ Rn×n, then ρ(A) < 1 iff lim
n→∞

An = 0.

Lemma 2.4. [53] Let A ∈ Rn×n be an M-matrix and B ∈ Rn×n be a Z-matrix. If A ≤ B, then B is an M-matrix.
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Lemma 2.5. [54] Let A be a Z-matrix, then the following statements are equivalent:
(i) A is an M-matrix;
(ii) There exists a positive vector x, such that Ax > 0;
(iii) Let A = M −N be a splitting of A and M−1

≥ 0, N ≥ 0, then ρ(M−1N) < 1.

Lemma 2.6. [47] Let A = E − F be a splitting of the matrix A ∈ Rn×n, γ be a positive constant, Ω be a positive
diagonal matrix and 1(u) = u −m(u) be an invertible mapping. For the ICP (1), the following statements hold true:
(i) if (u, w) is a solution of the ICP(1). then x =

γ
2 (u −Ω−1w −m(u)) satisfies the implicit fixed-point equation

(Ω + E)x = Fx + (Ω − A)|x| − γAm[1−1(
1
γ

(|x| + x))] − γq. (2)

(ii) if x satisfies the implicit fixed-pointed equation (2), then

u =
1
γ

(|x| + x) + m(u) and w =
1
γ

Ω(|x| − x) (3)

is a solution of the ICP(1).

3. The general two-step modulus-based matrix splitting

Based on (2) and (3), Hong and Li provided the MMS iteration method[47]. However, they did not point
out the inner-outer iteration, and some parameters of their method were indefinite. Then, in [48], they got
rid of these advantages and presented the more complete version as below.

Method 3.1. [48] (The MMS iteration method for the ICP(1))

Step 1. Given ε > 0, u0 ∈ Z, set k := 0;

Step 2. Find the solution u(k+1):
(1) Compute the initial vector

w(k) = Au(k) + q,
x(k,0) =

γ
2 (u(k)

−m(u(k)) −Ω−1w(k)).

Set j := 0.
(2) Iteratively calculate x(k, j+1)

∈ Rn by solving the equations

(Ω + E)x(k, j+ 1
2 ) = Fx(k, j) + (Ω − A)|x(k, j)

| + γAm(u(k)) − γq. (4)

(3) Compute

u(k+1) =
1
γ

(|x(k, j+1)
| + x(k, j+1)) + m(u(k)). (5)

Step 3. If RES = |(Au(k+1) + q)T(u(k+1)
− m(u(k+1)))| < ε, then terminate. Otherwise, set k := k + 1 and return to

Step 2.

Remark 3.2. We can utilize some special iterative schemes by choosing diverse matrix splittings to this method. For
instance, set

E =
1
α

(D − βL), F =
1
α

((1 − α)D + (α − β)L + αU).

Based on the aforementioned matrix splitting, we can obtain the modulus-based accelerated over-relaxation (MAOR)
iteration method. With different values of the parameters, we can get the other methods such as the modulus-based
successive over-relaxation (MSOR) iteration method (α = β), the modulus-based Gauss-Seidel (MGS) iteration
method (α = β = 1) and the modulus-based Jacobi (MJ) iteration method (α = 1, β = 0) [48].
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In [49], Cao and Wang raised the TMMS iteration method. Define a set:

Z = {z|Az + q ≥ 0, z −m(z) ≥ 0}.

They need two splittings of the matrix A, i.e., A = E1 − F1 = E2 − F2. We show this method as the following
is more standard:

Method 3.3. [49] (The TMMS iteration method for the ICP(1))

Step 1. Given ε > 0, u0 ∈ Z, set k := 0;

Step 2. Find the solution u(k+1):
(1) Compute the initial vector

w(k) = Au(k) + q,
x(k,0) =

γ
2 (u(k)

−m(u(k)) −Ω−1w(k)).

Set j := 0.
(2) Iteratively calculate x(k, j+1)

∈ Rn by solving the equations{
(Ω + E1)x(k, j+ 1

2 ) = F1x(k, j) + (Ω − A)|x(k, j)
| + γAm(u(k)) − γq,

(Ω + E2)x(k, j+1) = F2x(k, j+ 1
2 )) + (Ω − A)|x(k, j+ 1

2 ))
| + γAm(u(k)) − γq.

(6)

(3) Compute

u(k+1) =
1
γ

(|x(k, j+1)
| + x(k, j+1)) + m(u(k)). (7)

Step 3. If RES = |(Au(k+1) + q)T(u(k+1)
− m(u(k+1)))| < ε, then terminate. Otherwise, set k := k + 1 and return to

Step 2.

Remark 3.4. We can utilize some special iterative schemes by choosing diverse matrix splittings to this method. For
instance, set{

E1 = 1
α (D − βL), F1 = 1

α ((1 − α)D + (α − β)L + αU),
E2 = 1

α (D − βU), F2 = 1
α ((1 − α)D + (α − β)U + αL).

Based on the aforementioned matrix splitting, we can obtain the two-step modulus-based accelerated over-relaxation
(TMAOR) iteration method. With different values of the parameters, we can get the other methods such as the
two-step modulus-based successive over-relaxation (TMSOR) iteration method (α = β), the two-step modulus-based
Gauss-Seidel (TMGS) iteration method (α = β = 1) and the two-step modulus-based Jacobi (TMJ) iteration method
(α = 1, β = 0) [49].

In order to improve computing efficiency, on account of the general modulus-based matrix splitting
iteration method [31], we get the the general two-step modulus-based matrix splitting (GTMMS) iteration
method for solving the ICP(1) as below. There is a slight difference. We need two matrix splittings of the
matrix AΩ1, instead of the matrix A. Hence, let AΩ1 = E′

Ω1
− F′

Ω1
= E′′

Ω1
− F′′

Ω1
.

Method 3.5. (The GTMMS iteration method for the ICP(1))

Step 1. Given ε > 0, u0 ∈ Z, set k := 0;

Step 2. Find the solution u(k+1):
(1) Compute the initial vector
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w(k) = Au(k) + q,
x(k,0) = 1

2 (Ω−1
1 u(k)

−Ω−1
1 m(u(k)) −Ω−1

2 w(k)).

Set j := 0.
(2) Iteratively calculate x(k, j+1)

∈ Rn by solving the equations (Ω2 + E′
Ω1

)x(k, j+ 1
2 ) = F′

Ω1
x(k, j) + (Ω2 − AΩ1)|x(k, j)

| + Am(u(k)) − q,
(Ω2 + E′′

Ω1
)x(k, j+1) = F′′

Ω1
x(k, j+ 1

2 ) + (Ω2 − AΩ1)|x(k, j+ 1
2 )
| + Am(u(k)) − q.

(8)

(3) Compute

u(k+1) = Ω1(|x(k, j+1)
| + x(k, j+1)) + m(u(k)). (9)

Step 3. If RES = |(Au(k+1) + q)T(u(k+1)
−m(u(k+1)))| < ε, then terminate. Otherwise, set k := k + 1 and return to Step 2.

Remark 3.6. Similar to the TMMS iteration method, we can also acquire analogous methods by appropriate choices
of the parameter and the matrix splitting. Set{

E′
Ω1

= 1
α (D̂ − βL̂), F′

Ω1
= 1

α ((1 − α)D̂ + (α − β)L̂ + αÛ),
E′′

Ω1
= 1

α (D̂ − βÛ), F′′
Ω1

= 1
α ((1 − α)D̂ + (α − β)Û + αL̂),

where D̂, −L̂ and Û are the diagonal, the strictly lower-triangular and the strictly upper-triangular matrices of
the matrix AΩ1, respectively. Based on the aforementioned matrix splitting, we can obtain the general two-step
modulus-based accelerated over-relaxation (GTMAOR) iteration method. With different values of the parameters,
we can get the other methods such as the general two-step modulus-based successive over-relaxation (GTMSOR)
iteration method (α = β), the general two-step modulus-based Gauss-Seidel (GTMGS) iteration method (α = β = 1)
and the general two-step modulus-based Jacobi (GTMJ) iteration method (α = 1, β = 0).

4. Convergence theorems

In this section, we are going to discuss convergence properties of Method 3.5 when the system matrix A
of the ICP(1) is an H+-matrix.

Theorem 4.1. Let A be an H+-matrix in Rn×n, and Ω1 and Ω2 be known positive diagonal matrices. AΩ1 =
E′

Ω1
− F′

Ω1
= E′′

Ω1
− F′′

Ω1
are H-compatible splittings. m(·) is a Lipschitz continuous function, i.e., it holds that

|m(a) −m(b)| ≤ l|a − b|, ∀a, b ∈ Rn,

wherein l is the Lipschitz constant. Set ζ1 = (Ω2 + 〈E′
Ω1
〉)−1(|Ω2 − AΩ1| + |F

′

Ω1
|), ζ2 = |(Ω2 + E′

Ω1
)−1A|, ζ3 =

(Ω2 + 〈E′′
Ω1
〉)−1(|Ω2 − AΩ1| + |F

′′

Ω1
|) and ζ4 = |(Ω2 + E′′

Ω1
)−1A|. If l( 2‖ζ2ζ3+ζ4‖+1

1−‖ζ1ζ3‖
) < 1 and the parameter matrices Ω1

and Ω2 satisfy

Ω2e > max(DΩ1e − T−1(〈E′
Ω1
〉 − |F′

Ω1
|)Te,DΩ1e − T−1(〈E′′

Ω1
〉 − |F′′

Ω1
|)Te),

where D is the diagonal matrix of A and T is a positive diagonal matrix such that (〈E′
Ω1
〉− |F′

Ω1
|)T and (〈E′′

Ω1
〉− |F′′

Ω1
|)T

are s.d.d. matrix. Then for any initial vector u(0)
∈ Z, the iteration sequence {u(k)

}
∞

k=0 resulted from Method 3.5
converges to the unique solution u∗ of the ICP (1).

Proof. Assume that u∗ ∈ Z is the solution of the ICP(1), then w∗ = Au∗ + q. According to Method 3.5, it holds
that

x∗ = 1
2 (Ω−1

1 u∗ −Ω−1
2 w∗ −Ω−1

1 m(u∗)), |x∗| = 1
2 (Ω−1

1 u∗ + Ω−1
2 w∗ −Ω−1

1 m(u∗))



L. Jia, X. Wang / Filomat 33:15 (2019), 4875–4888 4880

are the solutions of the implicit fixed-point modulus equations{
(Ω2 + E′

Ω1
)x∗ = F′

Ω1
x∗ + (Ω2 − AΩ1)|x∗| + Am(u∗) − q,

(Ω2 + E′′
Ω1

)x∗ = F′′
Ω1

x∗ + (Ω2 − AΩ1)|x∗| + Am(u∗) − q. (10)

By Lemma 2.6, we have

u∗ = Ω1(|x∗| + x∗) + m(u∗). (11)

Subtracting (9) from (11) and taking the absolute values on two sides, it is easy to get

|u(k+1)
− u∗| = |Ω1(|x(k, j+1)

| + x(k, j+1)) + m(u(k)) −Ω1(|x∗| + x∗) −m(u∗)|

≤ |m(u(k)) −m(u∗)| + Ω1(||x(k, j+1)
| − |x∗|| + |x(k, j+1)

− x∗|)

≤ l|u(k)
− u∗| + 2Ω1|x(k, j+1)

− x∗|.

(12)

According to AΩ1 = E′
Ω1
− F′

Ω1
= E′′

Ω1
− F′′

Ω1
being H-compatible splittings, i.e., 〈AΩ1〉 = 〈E′

Ω1
〉 − |F′

Ω1
| =

〈E′′
Ω1
〉 − |F′′

Ω1
|, it holds that

〈AΩ1〉 ≤ 〈E
′

Ω1
〉 ≤ diag(E′

Ω1
) and 〈AΩ1〉 ≤ 〈E

′′

Ω1
〉 ≤ diag(E′′

Ω1
).

In the light of Lemma 2.4, it is obvious that E′
Ω1

and E′′
Ω1

are H+-matrices. Hence, based on Lemma 2.1, we
have

|(Ω2 + E′
Ω1

)−1
| ≤ (Ω2 + 〈E′

Ω1
〉)−1, |(Ω2 + E′′

Ω1
)−1
| ≤ (Ω2 + 〈E′′

Ω1
〉)−1.

By subtracting (10) from (8), we can acquire the following equations

 x(k, j+ 1
2 )
− x∗ =(Ω2 + E

′

Ω1
)−1[F

′

Ω1
(x(k, j)

− x∗) + (Ω2 − AΩ1)(|x(k, j)
| − |x∗|) + A(m(u(k)) −m(u∗)],

x(k, j+1)
− x∗ =(Ω2 + E

′′

Ω1
)−1[F

′′

Ω1
(x(k, j+ 1

2 )
− x∗) + (Ω2 − AΩ1)(|x(k, j+ 1

2 )
| − |x∗|) + A(m(u(k)) −m(u∗)].

(13)

By taking the absolute values on both sides, we acquire

|x(k, j+ 1
2 )
− x∗| = |(Ω2 + E

′

Ω1
)−1[F

′

Ω1
(x(k, j)

− x∗)(Ω2 − AΩ1)(|x(k, j)
| − |x∗|) + A(m(u(k)) −m(u∗)]|

≤ (|(Ω2 + E
′

Ω1
)−1(Ω2 − AΩ1)| + |(Ω2 + E

′

Ω1
)−1F

′

Ω1
|)|x(k, j)

− x∗| + |(Ω2 + E
′

Ω1
)−1A||m(u(k)) −m(u∗)|

≤ (Ω2 + 〈E
′

Ω1
〉)−1(|Ω2 − AΩ1| + |F

′

Ω1
|)|x(k, j)

− x∗| + l|(Ω2 + E
′

Ω1
)−1A||u(k)

− u∗|

= ζ1|x(k, j)
− x∗| + lζ2|u(k)

− u∗|,
(14)

where ζ1 = (Ω2 +〈E′
Ω1
〉)−1(|Ω2−AΩ1|+ |F

′

Ω1
|) and ζ2 = |(Ω2 +E′

Ω1
)−1A|. Similar to analysis of the first equation,

we acquire

|x(k, j+1)
− x∗| = |(Ω2 + E

′′

Ω1
)−1[F

′′

Ω1
(x(k, j+ 1

2 )
− x∗) + (Ω2 − AΩ1)(|x(k, j+ 1

2 )
| − |x∗|) + A(m(u(k)) −m(u∗)]|

≤ (|(Ω2 + E
′′

Ω1
)−1(Ω2 − AΩ1)| + |(Ω2 + E

′′

Ω1
)−1F

′′

Ω1
|)|x(k, j+ 1

2 )
− x∗| + |(Ω2 + E

′′

Ω1
)−1A||m(u(k)) −m(u∗)|

≤ (Ω2 + 〈E
′′

Ω1
〉)−1(|Ω2 − AΩ1| + |F

′′

Ω1
|)|x(k, j+ 1

2 )
− x∗| + l|(Ω2 + E

′′

Ω1
)−1A||u(k)

− u∗|

= ζ3|x(k, j+ 1
2 )
− x∗| + lζ4|u(k)

− u∗|,
(15)

where ζ3 = (Ω2 + 〈E′′
Ω1
〉)−1(|Ω2 − AΩ1| + |F

′′

Ω1
|) and ζ4 = |(Ω2 + E′′

Ω1
)−1A|

Combining (14) and (15), it is appreciable that
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|x(k, j+1)
− x∗| ≤ ζ3ζ1|x(k, j)

− x∗| + l(ζ3ζ2 + ζ4)|u(k)
− u∗|.

It is obvious that

|x(k,0)
− x∗| ≤ 1

2 (Ω−1
1 + lΩ−1

1 + |Ω−1
2 A|)|u(k)

− u∗|.

According to (12) and the above discussion, we obtain

|u(k+1)
− u∗| ≤ l|u(k)

− u∗| + 2Ω1[ζ3ζ1|x(k, j)
− x∗| + l(ζ3ζ2 + ζ4)|u(k)

− u∗|]

= 2Ω1ζ3ζ1|x(k, j)
− x∗| + l(2Ω1(ζ3ζ2 + ζ4) + I)|u(k)

− u∗|

≤ 2Ω1(ζ3ζ1) j+1
|x(k,0)

− x∗|

+ l(2Ω1(ζ3ζ1) j(ζ3ζ2 + ζ4) + · · · + 2Ω1(ζ3ζ2 + ζ4) + I)|u(k)
− u∗|

≤ [Ω1(ζ3ζ1) j+1(Ω−1
1 + lΩ−1

1 + |Ω−1
2 A|) + lζ5]|u(k)

− u∗|

= Γ̃|u(k)
− u∗|,

where Γ̃ = Ω1(ζ3ζ1) j+1(Ω−1
1 + lΩ−1

1 + |Ω−1
2 A|) + lζ5 and ζ5 = 2Ω1

j∑
m=0

(ζ3ζ1)m(ζ3ζ2 + ζ4) + I.

Then, we are going to research the conditions that ensure the convergence of Method 3.5, i.e.,

ρ(Γ̃) < 1. (16)

On the basis of the definition of Γ̃, it is appreciable that

ρ(Γ̃) = ρ(Ω1(ζ3ζ1) j+1(Ω−1
1 + lΩ−1

1 + |Ω−1
2 A|) + lζ5)

≤ ‖Ω1(ζ3ζ1) j+1(Ω−1
1 + lΩ−1

1 + |Ω−1
2 A|) + lζ5‖

≤ ‖Ω1‖ · ‖(ζ3ζ1) j+1
‖ · ‖Ω−1

1 + lΩ−1
1 + |Ω−1

2 A|‖ + l‖Ω1‖(‖2
j∑

m=0

(ζ3ζ1)m(ζ3ζ2 + ζ4)‖ + 1).

Analogous to analysis of Theorem 5 [31], it holds that ρ(ζ3ζ1) < 1 if the parameter matrices Ω1 and Ω2 satisfy
Ω2e > max(DΩ1e− T−1(〈E′

Ω1
− |F′

Ω1
|)Te,DΩ1e− T−1(〈E′′

Ω1
〉 − |F′′

Ω1
|)Te) for any positive diagonal matrix T such

that (〈E′
Ω1
〉−|F′

Ω1
|)T and (〈E′′

Ω1
〉−|F′′

Ω1
|)T are s.d.d. matrix. Based on Lemma 2.3, we have (ζ3ζ1) j+1 = 0, j→∞.

‖Ω1‖ and ‖Ω−1
1 + lΩ−1

1 + |Ω−1
2 A|‖ are constant. Hence, for arbitrary positive number ε, there is N ∈ N+ such

that

‖Ω1‖‖(ζ3ζ1) j+1
‖‖Ω−1

1 + lΩ−1
2 + |Ω−1

1 A|‖ ≤ ε, ∀ j ≥ N.

Thus, for ∀ j ≥ N, it holds that

ρ(Γ̃) ≤ ε + l‖Ω1‖(‖2
j∑

m=0

(ζ3ζ1)m(ζ3ζ2 + ζ4)‖ + 1)

≤ ε + l‖Ω1‖(
2‖ζ3ζ2 + ζ4‖

1 − ‖ζ3ζ1‖
+ 1)

≤ ε + l‖Ω1‖(
2‖ζ3ζ2 + ζ4‖ + 1

1 − ‖ζ3ζ1‖
).

Owing to l satisfying the condition l‖Ω1‖(
2‖ζ3ζ2+ζ4‖+1

1−‖ζ3ζ1‖
) < 1, we obtain ρ(Γ̃) < 1. Therefore, lim

k→∞
u(k) = u∗.

Remark 4.2. In the above discussions, we extend the convergent theoretics of Method 3.3 to the general case. When
Ω1 = I and Ω2 = Ω, Theorem 4.1 reduces to Theorem 3.3 in [49] with Ω ≥ max(diag(E1),diag(E2)).

The succeeding part is the convergent theorem of GTMAOR iteration method.
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Theorem 4.3. Let A be an H+-matrix in Rn×n, and Ω1 and Ω2 be known positive diagonal matrices such that AΩ1
is an H+-matrix. AΩ1 = D̂ − L̂ − Û := D̂ − B̂ satisfies

(D̂ − 2|B̄|)Ye > 0 and Ω2 ≥ max(D̂, 1
α D̂),

wherein D̂, B̂, L̂ and Û are the diagonal, the non-diagonal, the strictly lower triangular and the strictly upper
triangular parts of the matrix AΩ1, respectively. m(·) is a Lipschitz continuous function, i.e., it holds that

|m(a) −m(b)| ≤ l|a − b|, ∀a, b ∈ Rn,

wherein l is the Lipschitz constant. Set Ψ1 = ‖(Ω2 + 〈E′
Ω1
〉)−1(|Ω2 − AΩ1| + |F

′

Ω1
|)‖, Ψ2 = ‖(Ω2 + E′

Ω1
)−1A‖,

Ψ3 = ‖(Ω2 + 〈E′′
Ω1
〉)−1(|Ω2 −AΩ1|+ |F

′′

Ω1
|)‖ and Ψ4 = ‖(Ω2 + E′′

Ω1
)−1A‖. If l satisfies l < 1−Ψ1Ψ3

‖Ω1‖(2Ψ2Ψ3+Ψ4+1) . Then, for
arbitrary initial vector, the GTMAOR iteration method is convergent for

0 < β ≤ α ≤ 2 and α < 1
ρ(D̂−1 |B̄|)

.

Proof. Based on Theorem 4.1, we only need to justify the condition (16). Set

E′
Ω1

= 1
α (D̂ − βL̂), F′

Ω1
= 1

α [(1 − α)D̂ + (α − β)L̂ + αÛ]

and

E′′
Ω1

= 1
α (D̂ − βÛ), F′′

Ω1
= 1

α [(1 − α)D̂ + (α − β)Û + αL̂].

Denote AΩ1 := G = (1i j) ∈ Rn×n, and construct an irreducible matrix Ḡ as

1̄i j =

{
ε, 1i j = 0,
1i j, 1i j , 0, i, j = 1, 2, . . . ,n.

Since the diagonal elements of the matrix A are positive and the matrix Ω1 is positive diagonal, the diagonal
elements of the matrix G is not zero, which means they are the same as the diagonal elements of the matrix
Ḡ. Let Ḡ = D̂ − L̄ − Ū = D̂ − B̄ with B̄, L̄ and Ū being the non-diagonal, the strictly lower-triangular and
the strictly upper-triangular matrices of the matrix Ḡ, respectively. G is an H+-matrix, then ρ(D̂−1

|B̂|) < 1.
For sufficiently small ε > 0, based on the continuity of the spectral radius, it holds that ρ(D̂−1

|B̄|) < 1, which
means that 〈Ḡ〉 is an M-matrix, i.e., Ḡ is an H+-matrix. Furthermore, Ḡ is irreducible means that D̂−1

|B̄| is
nonnegative irreducible. According to Perron-Frobenius theorem, there is a vector y = (y1, y2, . . . , yn)T > 0
such that

D̂−1
|B̄|y = ρ(D̂−1

|B̄|)y,

i.e.,

|B̄|y = ρ(D̂−1
|B̄|)D̂y,

which means ρ(D̂−1
|B̄|) > 0. Based on the above discussion, it is appreciate that 0 < ρ(D̂−1

|B̄|) < 1. Similarly,
set

Ē′
Ω1

= 1
α (D̂ − βL̄), F̄′

Ω1
= 1

α [(1 − α)D̂ + (α − β)L̄ + αŪ]

and

Ē′′
Ω1

= 1
α (D̂ − βŪ), F̄′′

Ω1
= 1

α [(1 − α)D̂ + (α − β)Ū + αL̄].

Then, we will prove that Ω2 + Ē′
Ω1

is an H+-matrix. We only need to prove 〈Ω2 + Ē′
Ω1
〉 is an M-matrix.

Via the direct calculation and the conditions 0 < β ≤ α < 2, we have

〈Ω2 + Ē′
Ω1
〉 = Ω2 + 1

α D̂ − β
α |L̄| ≥

1
α D̂ − |B̄|.

From α < 1
ρ(D̂−1 |B̄|)

, we can obtain that 1
α D̂−|B̄| is an M-matrix, which means 〈Ω2 + Ē′

Ω1
〉 is an M-matrix. Based

on Lemma 2.1, we have
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|(Ω2 + Ē′
Ω1

)−1
| ≤ 〈Ω2 + Ē′

Ω1
〉
−1 = (Ω2 + 〈Ē′

Ω1
〉)−1.

Denote Y = diag(y1, y2, . . . , yn). Then

Y−1
L(Ē′

Ω1
, F̄′

Ω1
,Ω2)Y = (〈Ω2 + Ē′

Ω1
〉Y)−1(|F̄′

Ω1
| + |Ω2 − Ḡ|)Y.

Let Ω1 = diag(ω
′

1, ω
′

2, . . . , ω
′

n) and Ω2 = diag(ω
′′

1 , ω
′′

2 , . . . , ω
′′

n). For sufficiently small ε > 0, when 0 < β ≤ α ≤ 2
and Ω2 ≥ max(D̂, 1

α D̂), 〈Ω2 + Ē′
Ω1
〉Ye satisfies

〈Ω2 + Ē
′

Ω1
〉Ye = ω

′′

i yi +
1
α
1iiyi −

β

α

i−1∑
j=1

|1̄i j|y j

≥
2
α
1iiyi −

β

α

i−1∑
j=1

|1̄i j|y j

=
2
α
1iiyi −

β

α

∑
j,i

|1̄i j|y j +
β

α

∑
j,i

|1̄i j|y j −
β

α

i−1∑
j=1

|1̄i j|y j

=
2 − β · ρ(D̂−1

|B̄|)
α

1iiyi +
β

α

n∑
j=i+1

|1̄i j|y j

≥
2 − β · ρ(D̂−1

|B̄|)
α

1iiyi > 0.

Hence, Ω2Y + 〈Ē′
Ω1
〉Y is a s.d.d. matrix. In addition, since 0 < β ≤ α < 2, it holds that

‖Y−1
L(Ē

′

Ω1
, F̄
′

Ω1
,Ω2)Y‖∞ =‖(〈Ω2 + Ē

′

Ω1
〉Y)−1(|F̄

′

Ω1
| + |Ω2 − Ḡ|)Y‖∞

=‖(〈Ω2 +
1
α

D̂ −
β

α
L̄〉Y)−1

· [
1
α
|(1 − α)D̂ + (α − β)L̄ + αŪ|Y + |Ω2 − Ḡ|Y]‖∞

=‖[(Ω2 +
1
α

D̂ −
β

α
|L̄|)Y]−1

· ((Ω2 − D̂)Y +
|1 − α|
α

D̂Y +
α − β

α
|L̄|Y + |Ū|Y + |B̄|Y|)‖∞

≤max
1≤i≤n

[((Ω2 − D̂)Y + |1−α|
α D̂Y +

α−β
α |L̄|Y + |Ū|Y + |B̄|Y|)e]i

[(Ω2 + 1
α D̂ − β

α |L̄|)Ye]i

,

≤max
1≤i≤n

(ω
′′

i + |1−α|−α
α 1ii)yi +

α−β
α

i−1∑
j=1
|1̄i j|y j +

n∑
j=i+1
|1̄i j|y j +

∑
j,i
|1̄i j|y j

ω
′′

i yi + 1
α1iiyi −

β
α

i−1∑
j=1
|1̄i j|y j

,

which holds according to Lemma 2.2.
Since (D̂ − 2|B̄|)Ye > 0, then

(ω
′′

i yi +
1
α
1iiyi −

β

α

i−1∑
j=1

|1̄i j|y j) − [(ω
′′

i +
|1 − α| − α

α
1ii)yi

+
α − β

α

i−1∑
j=1

|1̄i j|y j +

n∑
j=i+1

|1̄i j|y j +
∑
j,i

|1̄i j|y j]

> 1iiyi − 2
∑
j,i

|1̄i j|y j > 0.
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Hence, it is simple that ‖Y−1
L(Ē′

Ω1
, F̄′

Ω1
,Ω2)Y‖∞ < 1.

Analogously, we can also get ‖Y−1
L(Ē′′

Ω1
, F̄′′

Ω1
,Ω2)Y‖∞ < 1. It holds that

ρ(ζ3ζ1) < ‖ζ3ζ1‖ = lim
ε→0

(‖Y−1
L(Ē

′′

Ω1
, F̄
′′

Ω1
,Ω2)Y‖∞‖Y−1

L(Ē
′

Ω1
, F̄
′

Ω1
,Ω2)Y‖∞) < 1,

which means (ζ3ζ1) j+1
→ 0, j→∞. Since ‖Ω1‖ and ‖Ω−1

1 + lΩ−1
1 + |Ω−1

2 A|‖ are constants.
Hence, for arbitrary positive number ε, there is N ∈N+ such that

‖Ω1‖‖(ζ3ζ1) j+1
‖‖Ω−1

1 + lΩ−1
2 + |Ω−1

1 A|‖ ≤ ε, ∀ j ≥ N.

Let ‖ζi‖ = Ψi, i = 1, 2, 3, 4. Thus, for ∀ j ≥ N, it holds that

ρ(Γ̃) ≤ ε + l‖Ω1‖(2
j∑

m=0

(Ψ1Ψ3)m(Ψ2Ψ3 + Ψ4) + 1)

≤ ε + l‖Ω1‖(
2Ψ2Ψ3 + Ψ4

1 −Ψ1Ψ3
+ 1)

≤ ε + l‖Ω1‖(
2Ψ2Ψ3 + Ψ4 + 1

1 −Ψ1Ψ3
).

Because of l satisfying the condition l < 1−Ψ1Ψ3
‖Ω1‖(2Ψ2Ψ3+Ψ4+1) , we obtain ρ(Γ̃) < 1. Therefore, lim

k→∞
u(k) = u∗, which

prove the GTMAOR iteration method is convergent.

Remark 4.4. Set Ω1 = I and Ω2 = Ω, then Theorem 4.3 is the convergent results of the TMAOR method.

Remark 4.5. We can directly obtain that the GTMSOR iteration method is convergent for

0 < α < min(2, 1
ρ(D̂−1 |B̄|)

),

and other conditions of Theorem 4.3 remain unchanged.

5. Numerical results

In this section, in order to demonstrate the efficiency of our proposed method, we will do some numerical
experiments, which include three aspects: the elapsed CPU time in seconds (CPU), the norm of absolute
residual vectors (RES), and the iteration numbers (IT), respectively. All of these numerical results were
performed in Matlab (R2017a) on an an Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz, 4.00GB RAM.

In the numerical computations, we choose the initial vector u(0) to be zero vector. ’RES’ is defined as

RES(u(k)) := |(Au(k) + q)T(u(k)
−m(u(k)))|,

where u(k) is the kth approximate solution to the ICP, and all iterations are terminated either the maximum
iteration numbers exceed 2000 or RES(u(k)) ≤ 10−5. The inner iteration steps j is set to be 3.

We choose three methods such as MSOR, TMSOR and GTMSOR in the following experiments. Fur-
thermore, on the basis of the existing literature, we set the parameters α = 1.2, t = 2.5 and γ = 2. We take
Ω = γtDA in TMMSOR methods, and Ω1 = t

α I and Ω2 = tDA in both GMMSOR and TGMMSOR methods,
respectively.

Example 5.1. [28] Let m be a prescribed positive integer and n = m2. Consider the ICP(1), in which A ∈ Rn×n is a
block tridiagonal matrix
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Table 1: Numerical results for Example 5.1

Algorithm m=10 m=20 m=30 m=40

MSOR
CPU 0.0222 3.5643 85.9189 772.4247
RES 1.2815e-06 9.8599e-06 9.9055e-06 9.9520e-06
IT 25 133 450 956

TMSOR
CPU 0.0452 4.3827 91.7140 824.1270
RES 1.6585e-06 4.6080e-06 9.6860e-06 9.7956e-06
IT 20 75 250 529

GTMSOR
CPU 0.0115 1.5031 29.6515 259.7250
RES 9.4070e-07 3.4515e-06 8.7211e-06 9.5469e-06
IT 7 23 79 168

A = tridia1(−I,S,−I) =



S −I 0 · · · 0 0
−I S −I · · · 0 0
0 −I S · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · S −I
0 0 0 · · · −I S


∈ Rn×n

and the block diagonal matrix S is defined as a tridiagonal matrix

S = tridia1(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rm×m.

The vector q ∈ Rn and the point-to-point mapping m(u) are

q = (−1, 1,−1, 1, · · · , (−1)n−1, (−1)n)T
∈ Rn and m(u) = (u3

1,u
3
2, · · · ,u

3
n)T
∈ Rn,

respectively.

In this example, we set four different sizes, i.e., n = 100, 400, 900, 1600. From Table 1, it is simple to
find that the GTMSOR method outperforms the MSOR and TMSOR methods in both IT and CPU, which
manifests the GTMSOR method has an advantage over the others. The convergent rate becomes faster
as the system matrix A size n is increasing. Numerical experiment illustrates the convergence speed is
accelerated by the general two-step modulus-based matrix splitting.

Example 5.2. [28] Let m be a prescribed positive integer and n = m2. Consider the ICP(1), in which A ∈ Rn×n is a
block tridiagonal matrix

A = tridia1(−I,S,−I) =



S −0.5I 0 · · · 0 0
−1.5I S −0.5I · · · 0 0

0 −1.5I S · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · S −0.5I
0 0 0 · · · −1.5I S


∈ Rn×n

and the block diagonal matrix S is defined as a tridiagonal matrix
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S = tridia1(−1.5, 4,−0.5) =



4 −0.5 0 · · · 0 0
−1.5 4 −0.5 · · · 0 0

0 −1.5 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −0.5
0 0 0 · · · −1.5 4


∈ Rm×m.

The vector q ∈ Rn and the point-to-point mapping m(u) are

q = (−1, 1,−1, 1, · · · , (−1)n−1, (−1)n)T
∈ Rn and m(u) = (u3

1,u
3
2, · · · ,u

3
n)T
∈ Rn,

respectively.

Table 2: Numerical results for Example 5.2

Algorithm m=10 m=20 m=30 m=40

MSOR
CPU 0.0607 1.3721 14.2336 80.7220
RES 7.6775e-06 7.6661e-06 8.9724e-06 8.6018e-06
IT 24 45 78 107

TMSOR
CPU 0.0351 1.5444 13.8348 78.7359
RES 2.4662e-07 1.9021e-06 6.0939e-06 2.5492e-06
IT 17 26 39 51

GTMSOR
CPU 0.0197 0.5457 5.4097 28.6644
RES 8.7702e-07 2.8091e-06 6.8682e-07 4.1120e-07
IT 6 9 15 19

In this example, we set four different sizes, i.e., n = 100, 400, 1600, 3600. From the Table 2, we can
observe that the CPU of the GTMMS method is half of the other presented methods. Therefore, in terms of
computing efficiency, the GTMSOR method precedes the MSOR and the TMSOR method.

Example 5.3. [47] Let m be a prescribed positive integer and n = m2. Consider the ICP(1), in which A ∈ Rn×n is

A =



S −I −I

S −I
. . .

S
. . . −I
. . . −I

S


∈ Rn×n

and the block diagonal matrix S is defined as a tridiagonal matrix

S = tridia1(−1, 8,−1) =



8 −1 0 · · · 0 0
−1 8 −1 · · · 0 0
0 −1 8 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 8 −1
0 0 0 · · · −1 8


∈ Rm×m.

The vector q ∈ Rn and the point-to-point mapping m(u) are

q = (−1, 1,−1, 1, · · · , (−1)n−1, (−1)n)T
∈ Rn and m(u) = (u3

1,u
3
2, · · · ,u

3
n)T
∈ Rn,

respectively.

In Table 3, as for the three mentioned aspects, our suggested method is faster in CPU and IT and smaller
in RES. Furthermore, we can also gain the conclusion that the GTMSOR method has an advantage over the
MSOR and TMSOR methods. These results all prove our proposed method is a better method.
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Table 3: Numerical results for Example 5.3

Algorithm m=10 m=20 m=40 m=60

MSOR
CPU 0.0177 0.4805 13.0513 122.3386
RES 9.2304e-06 8.3774e-06 5.3743e-06 4.5922e-06
IT 12 14 16 17

TMSOR
CPU 0.0108 0.4004 12.3242 117.8681
RES 7.8810e-07 7.2184e-06 1.3861e-06 3.7938e-06
IT 7 7 8 8

GTMSOR
CPU 0.0254 0.1810 4.6610 40.5694
RES 1.6485e-06 4.6253e-06 1.4303e-10 4.9490e-10
IT 2 2 3 3
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