Filomat 33:15 (2019), 4717–4720 https://doi.org/10.2298/FIL1915717L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Modulus Hyperinvariant Ideals for a Finitely Quasinilpotent Operators

Junfeng Liu^a

^aDepartment of Mathematics, Guangdong University of Education, Guangzhou 510303, P. R. of China.

Abstract. Let *X* be a Banach space with an unconditional basis, and let $C \neq \{0\}$ be a collection of continuous linear operators with modulus on *X* that is finitely modulus-quasinilpotent at a non-zero positive vector. Then *C* and its right modulus sub-commutant C'_{m} have a common non-trivial invariant closed ideal.

1. Introduction and Preliminary

Let *X* be a Banach lattice. If \mathcal{F} is a collection of continuous linear operators with modulus on *X*, we define $|\mathcal{F}| = \{|T|; T \in \mathcal{F}\}$, where |T| denotes the modulus of the operator *T*. A collection *C* of continuous linear operators with modulus on *X* is said to be finitely modulus-quasinilpotent at a vector $x_0 \in X$ if $\lim |||\mathcal{F}|^n x_0||^{1/n} = 0$ for every finite subset \mathcal{F} of *C*.

If *A* and *B* are continuous linear operators on *X* with *B* positive, then *A* is said to be dominated by *B* whenever $|Ax| \le B(|x|)$ holds for all $x \in X$.

Let *C* be a collection of continuous positive operators on *X*, then C'_+ denotes the set of all continuous positive operators *S* on *X* such that TS = ST for all $T \in C$. We say that C'_+ is the positive commutant of *C*.

Let *C* be a collection of continuous linear operators with modulus on *X*, then $C'_{\mathbf{m}}$ denotes the set of all continuous linear operators *S* with modulus on *X* such that $|T||S| \leq |S||T|$ for all $T \in C$. We say that $C'_{\mathbf{m}}$ is the right modulus sub-commutant of *C*.

It is easy to see that if *C* is a collection of positive operators on a Banach lattice, then $C'_+ \subset C'_{\mathbf{m}'}$ and "finitely quasinilpotent" and "finitely modulus-quasinilpotent" are equivalent.

A vector subspace I of X is said to be an (order) ideal whenever $|x| \le |y|$ and $y \in I$ imply that $x \in I$. The ideal generated by a non-empty subset F of X is defined by $I_F = \{x \in X; \text{ there are } x_1, \dots, x_n \in F \text{ and } \lambda_1, \dots, \lambda_n > 0 \text{ such that } |x| \le \sum_{k=1}^n \lambda_k |x_k|\}$. In particular, the ideal generated by a singleton $\{x\}$ is given by $I_x = \{y \in X; \text{ there is } \lambda > 0 \text{ such that } |y| \le \lambda |x|\}$.

It is well known that if *X* is a Banach space *X* with an unconditional basis, then *X* may be regarded as a Banach lattice whenever one is looking for invariant subspaces and invariant ideals. For each given positive integer *n*, define the functional f_n by $f_n(x) = \alpha_n$ for every $x = \sum_{k=1}^{\infty} \alpha_k e_k$. Then f_n is a continuous linear functional on *X*.

- Received: 10 April 2019; Accepted: 09 July 2019
- Communicated by Dragana Cvetković Ilić
- This project was partially supported by the Macao Science and Technology Development Fund (No.186/2017/A3).
- Email address: jfliu997@sina.com (Junfeng Liu)

²⁰¹⁰ Mathematics Subject Classification. Primary 47A15; Secondary 47B60

Keywords. Quasinilpotent operator, positive operator, Banach space, invariant subspace, invariant ideal.

In 1954, N. Aronszajn and K. T. Smith [1] showed that every compact operator on a Banach space has a non-trivial invariant closed subspace.

But it was not until 1986 that people solved the invariant closed ideal problem for a special class of compact operators. To be more specific, B. de Pagter [7] proved that every positive quasinilpotent compact operator on a Banach lattice has a non-trivial invariant closed ideal. It is well known that Pagter's result is an affirmative answer of a long standing open question (cf. [1], [2], [5] and [7]).

In 2007, M. Liu [3] showed that if $C \neq \{0\}$ is a collection of continuous positive operators on a Banach space with a Schauder basis that is finitely quasinilpotent at a non-zero positive vector, then *C* and its positive commutant C'_+ have a common non-trivial invariant closed subspace.

In this paper, we shall extend the result in [3] from the invariant closed subspace for collections of positive operators to the invariant closed ideal for collections of operators with modulus (may be non-positive operators). This paper can be seen as a sequel to [3].

It is well known that the non-trivial invariant closed ideal for any operator is necessarily its non-trivial invariant closed subspace and that each positive has the modulus, but their converses are not necessarily true. Moreover, in section 3, we will give a collection of nonpositive continuous linear operators that satisfies the condition of our main result.

2. The Main Result

Now we are in a position to give the main result.

Theorem 1. Let *X* be a Banach space with an unconditional basis $\{e_n\}$, and let $C \neq \{0\}$ be a collection of continuous linear operators with modulus on *X* that is finitely modulus-quasinilpotent at a non-zero positive vector x_0 . Then *C* and its right modulus sub-commutant C'_{m} have a common non-trivial invariant closed ideal.

Proof. As in [3], it follows from $x_0 > 0$ that there are an appropriate scalar $\lambda > 0$ and a positive integer n_0 such that $\lambda x_0 \ge e_{n_0} > 0$. It is clear that *C* is finitely modulus-quasinilpotent at λx_0 . Let *G* be the multiplicative semigroup generated by |C| (i. e. $\mathcal{G} = \bigcup_{n=1}^{\infty} |C|^n$), and let \mathcal{A} be the algebra of all continuous linear operators on *X* such that each $A \in \mathcal{A}$ is dominated by some operator of the form $\sum_{j=1}^{n} |S_j|G_j$ with $S_j \in C'_{\mathbf{m}}$ and $G_j \in \mathcal{G}$.

We consider two cases separately.

Case 1. If there is an operator $A_0 \in \mathcal{A}$ such that $A_0 e_{n_0} \neq 0$, then the ideal $\mathcal{I}_{\mathcal{A}e_{n_0}}$ generated by $\mathcal{A}e_{n_0}$ is a non-zero ideal in X, where $\mathcal{A}e_{n_0} := \{Ae_{n_0}; A \in \mathcal{A}\}$.

First we show that $I_{\mathcal{R}e_{n_0}} \neq X$. As in [3], let *P* denote the natural projection from X onto the vector subspace generated by e_{n_0} . By a modification of the corresponding part of [3], we can prove that

$$P|S|Ge_{n_0} = 0 \tag{1}$$

for all $S \in C'_{\mathbf{m}}$ and all $G \in \mathcal{G}$. (Indeed, it suffices to replace S, T_l, \mathcal{F} and C by $|S|, |T_l|, |\mathcal{F}|$ and |C| respectively.) For every $x \in I_{\mathcal{A}e_{n_0}}$, the definition of $I_{\mathcal{A}e_{n_0}}$ implies that there are operators $A_1, A_2, \dots, A_m \in \mathcal{A}$ such that $|x| \leq \sum_{i=1}^{m} |A_i e_{n_0}|$, and so $x^+ \leq \sum_{i=1}^{m} |A_i e_{n_0}|$ and $x^- \leq \sum_{i=1}^{m} |A_i e_{n_0}|$. For each $i = 1, 2, \dots, m$, by the definition of \mathcal{A} there are operators $S_{ij} \in C'_{\mathbf{m}}, G_{ij} \in \mathcal{G}$ $(j = 1, 2, \dots, n(i))$ such that $|A_i e_{n_0}| \leq \sum_{i=1}^{n(i)} |S_{ij}| G_{ij} e_{n_0}$. Thus we have

$$x^{+} \leq \sum_{i=1}^{m} |A_{i}e_{n_{0}}| \leq \sum_{i=1}^{m} \sum_{j=1}^{n(i)} |S_{ij}| G_{ij}e_{n_{0}}.$$
(2)

Thus by (1) we obtain $P(x^+) \leq \sum_{i=1}^m \sum_{j=1}^{n(i)} P|S_{ij}|G_{ij}e_{n_0} = 0$, and so $P(x^+) = 0$. Hence it is easy to obtain that $f_{n_0}(x^+) = f_{n_0}(Px^+) = 0$. Similarly, $f_{n_0}(x^-) = 0$. Thus we have $f_{n_0}(x) = 0$ for every $x = x^+ - x^- \in I_{\mathcal{R}e_{n_0}}$. (For the complex space *X*, we can obtain $f_{n_0}((\operatorname{Rex})^+) = f_{n_0}((\operatorname{Imx})^-) = f_{n_0}((\operatorname{Imx})^-) = 0$, thus we have $f_{n_0}(x) = 0$ for every $x = (\operatorname{Rex})^+ - (\operatorname{Rex})^- + i[(\operatorname{Imx})^+ - (\operatorname{Imx})^-] \in I_{\mathcal{R}e_{n_0}}$.) Consequently $f_{n_0}(x) = 0$ for every $x \in \overline{I_{\mathcal{R}e_{n_0}}}$. Thus by $f_{n_0}(e_{n_0}) = 1$, we obtain $\overline{I_{\mathcal{R}e_{n_0}}} \neq X$.

We now prove that $I_{\mathcal{R}_{e_{n_0}}}$ is invariant under *C* and $C'_{\mathbf{m}}$. To this end, take $x \in I_{\mathcal{R}_{e_{n_0}}}$, $T \in C$ and $S \in C'_{\mathbf{m}}$. Then by (2) we obtain

$$|Tx^{+}| \le |T|(x^{+}) \le \sum_{i=1}^{m} \sum_{j=1}^{n(i)} |T||S_{ij}|G_{ij}e_{n_0} \le \sum_{i=1}^{m} \left(\sum_{j=1}^{n(i)} |S_{ij}||T|G_{ij}\right) e_{n_0}.$$
(3)

It is easy to see that $|T|G_{ij} \in \mathcal{G}$, and so $\sum_{j=1}^{n(i)} |S_{ij}||T|G_{ij} \in \mathcal{A}$. Thus by (3) we obtain $Tx^+ \in I_{\mathcal{A}e_{n_0}}$. Similarly, $Tx^- \in I_{\mathcal{A}e_{n_0}}$, and so $Tx \in I_{\mathcal{A}e_{n_0}}$. Again, by (2) we obtain

$$|Sx^{+}| \le |S|(x^{+}) \le \sum_{i=1}^{m} \left(\sum_{j=1}^{n(i)} |S||S_{ij}|G_{ij} \right) e_{n_0}.$$
(4)

Since $|S||S_{ij}| \in C'_{\mathbf{m}}$, we have $\sum_{j=1}^{n(i)} |S||S_{ij}|G_{ij} \in \mathcal{A}$. Thus by (4) we obtain $Sx^+ \in I_{\mathcal{A}e_{n_0}}$. Similarly, $Sx^- \in I_{\mathcal{A}e_{n_0}}$, and so $Sx \in I_{\mathcal{A}e_{n_0}}$.

From the above we see that $\overline{\mathcal{I}_{\mathcal{R}_{e_{n_0}}}}$ is a common non-trivial invariant closed ideal for *C* and $C'_{\mathbf{m}}$.

Case 2. If $Ae_{n_0} = 0$ for all $A \in \mathcal{A}$, then $\text{Ker}\mathcal{A} = \{x; A | x| = 0 \text{ for all } A \in \mathcal{A}\}$ is a non-zero closed ideal in *X*. Since the identity operator $I \in C'_{\mathbf{m}}$, it follows that $\{0\} \neq C \subset \mathcal{G} \subset \mathcal{A}$, and so $\text{Ker}\mathcal{A} \neq X$.

It only remains to show that Ker \mathcal{A} is invariant under C and $C'_{\mathbf{m}}$. To this end, take $x \in \text{Ker}\mathcal{A}$, $T \in C$ and $S \in C'_{\mathbf{m}}$. For any $A \in \mathcal{A}$, it follows from the definition of \mathcal{A} that there are operators $S_1, S_2, \dots, S_n \in C'_{\mathbf{m}}$, and $G_1, G_2, \dots, G_n \in \mathcal{G}$ such that $|Ay| \leq \sum_{j=1}^n |S_j|G_j(|y|)$ for all $y \in X$. Thus we have

$$|A(|Tx|)| \le \sum_{j=1}^{n} |S_j|G_j(|Tx|) \le \sum_{j=1}^{n} |S_j|G_j|T|(|x|).$$
(5)

Observing $G_j|T| \in \mathcal{G}$, we see that $\sum_{j=1}^n |S_j|G_j|T| \in \mathcal{A}$. Since $x \in \text{Ker}\mathcal{A}$, it follows that $\sum_{j=1}^n |S_j|G_j|T|(|x|) = 0$. Thus by (5) we have |A(|Tx|)| = 0, and so A|Tx| = 0 for all $A \in \mathcal{A}$. Consequently $Tx \in \text{Ker}\mathcal{A}$. Similarly, we have

$$|A(|Sx|)| \le \sum_{j=1}^{n} |S_j|G_j(|Sx|) \le \sum_{j=1}^{n} |S_j|G_j|S|(|x|).$$

Since $G_j \in \mathcal{G}, G_j$ is an operator of the form $|T_{j_1}||T_{j_2}|\cdots|T_{j_k}|$, where $T_{j_1}, T_{j_2}, \cdots, T_{j_k} \in C$. Thus we obtained

$$|A(|Sx|)| \leq \sum_{j=1}^{n} |S_j||T_{j_1}||T_{j_2}|\cdots|T_{j_k}||S|(|x|)$$

$$\leq \sum_{j=1}^{n} |S_j||S||T_{j_1}||T_{j_2}|\cdots|T_{j_k}|(|x|) = \sum_{j=1}^{n} |S_j||S|G_j(|x|).$$
(6)

Since $|S_j||S| \in C'_m$, it follows that $\sum_{j=1}^n |S_j||S|G_j \in \mathcal{A}$. Thus by $x \in \text{Ker}\mathcal{A}$ we obtain $\sum_{j=1}^n |S_j||S|G_j(|x|) = 0$. Thus by (6) we have |A(|Sx|)| = 0, and so A|Sx| = 0 for all $A \in \mathcal{A}$. Consequently $Sx \in \text{Ker}\mathcal{A}$.

From the above we conclude that Ker \mathcal{A} is a common non-trivial invariant closed ideal for C and $C_{m'}$ and this completes the proof.

3. An example

We conclude this paper with the following example for a non-commutative finitely modulus-quasinilpotent collection C of continuous non-positive operators that satisfies the conditions of Theorem 1.

Let T_a , S_a and B_a be op	perators on the sequence	e space l^p $(1 \le p)$	$<\infty$) with matrix resp	vectively

$ \left(\begin{array}{c} a_0\\ a_1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}\right) $	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{2}a_2 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ \frac{1}{3}a_{3} \\ 0 \\ 0 \end{array} $	$0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{4}a_{4} \\ 0$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{5}a_{5} \end{array} $	0 0 0 0 0	···· ···· ···· ····
(:	÷	÷	÷	÷	÷	·.)
$ \left(\begin{array}{c} 0\\ a_1\\ 0 \end{array}\right) $	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{2} q_{2} \end{array} $	0 0 0	0 0 0	0 0 0	0 0 0	····)
0	$\frac{1}{2}a_2 \\ 0$	$\frac{1}{3}a_3$	0	0	0	
000	0 0 0	$\frac{3}{3}u_{3}$ 0 0		$0 \\ \frac{1}{5}a_5$	0 0 0	
	÷	:	÷	:	:	·)

and

())))	$ \begin{array}{c} 0 \\ a_1 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 0 \\ a_2 \\ 0 \\ $	0 0 0 a ₃ 0 0	$egin{array}{c} 0 \\ 0 \\ 0 \\ a_4 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ a_5 \end{array} $	····) ····) ··· :	,
	-	-	0	-	-	-		
		÷	:	÷	÷	÷	·)	

where $a = (a_0, a_1, a_2, \dots)$, $a_k = 1$ or $a_k = -1$. Set $C = \{T_a, S_a; a = (a_0, a_1, a_2, \dots), a_k = 1$ or $a_k = -1\}$. Then the collection *C* of operators satisfies our demands. Indeed, as in [3], we can show that $T_a S_a e_1 \neq S_a T_a e_1$ and $\lim_{n\to\infty} ||\mathcal{F}|^n e_2|^{1/n} = 0$ for every subset \mathcal{F} of *C*, where e_n denotes the vector in l^p whose *n*-th component is one and every other zero.

Moreover, it is clear that $\{B_a; a = (a_0, a_1, a_2, \cdots), a_k = 1 \text{ or } a_k = -1\} \subset C'_{\mathbf{m}}$. Thus by Theorem 1 all operators in the collection $\{T_a, S_a, B_a; a = (a_0, a_1, a_2, \cdots), a_k = 1 \text{ or } a_k = -1\}$ of non-positive operators have a common non-trivial invariant closed ideal.

It should be noticed that operators in the main result of [3] are positive, while operators in Example 1 and the main result of this paper may be non-positive.

References

- [1] N. Aronszajn, K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. 60 (1954) 345–350.
- [2] P. R. Halmos, Invariant subspaces of polynomially compact operators, Pacific J. Math. 16 (1966) 433-437.
- [3] M. Liu, Common invariant subspaces for finitely quasinilpotent collections of positive operators on a Banach space with a Schauder bsis, Rocky Mountain J. Math. 37 (2007) 1187–1193.
- [4] J. Liu, On invariant subspaces for polynomially bounded operators, Czec. Math. J. 67 (2017) 1-9.
- [5] V. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator, Func. Anal. Appl. 7 (1973) 213–214.
- [6] P. Meyer-Nieberg, Banach Lattices, Sringer-Verlag, Berlin Heidelberg, 1991.
- [7] B. de Pagter, Irreducible compact operators, Math. Z. 192 (1986) 149–153.