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Further Results on Hybrid (b, c)-Inverses in Rings

Long Wanga

aSchool of Mathematics, Yangzhou University, Yangzhou, 225002, P. R. China

Abstract. Let R be a ring and b, c ∈ R. In this paper, the absorption law for the hybrid (b, c)-inverse in a
ring is considered. Also, by using the Green’s preorders and relations, we obtain the reverse order law of
the hybrid (b, c)-inverse. As applications, we obtain the related results for the (b, c)-inverse.

1. Introduction

Core inverse, dual core inverse, and Mary inverse, as well as classical generalized inverses, are special
types of outer inverses. In [2], Drazin introduced a new class of outer inverse and called it (b, c)-inverse,
which encompasses the above-mentioned generalized inverses.

Definition 1.1. Let R be an associative ring and let b, c ∈ R. An element a ∈ R is (b, c)-invertible if there exists
y ∈ R such that

y ∈ (bRy) ∩ (yRc), yab = b, cay = c.

If such y exists, it is unique and is denoted by a‖(b,c). Drazin [2] also presented an equivalent characterization
for the (b, c)-inverse y of a as yay = y, yR = bR and Ry = Rc.

As generalizations of (b, c)-inverses, hybrid (b, c)-inverses and annihilator (b, c)-inverses were introduced
in [2]. The symbols lann(a) = {1 ∈ R : 1a = 0} and rann(a) = {h ∈ R : ah = 0} denote the sets of all left
annihilators and right annihilators of a, respectively.

Definition 1.2. Let a, b, c, y ∈ R. We say that y is a hybrid (b, c)-inverse of a if

yay = y, yR = bR, rann(y) = rann(c).

If such y exists, it is unique. In this article, we use the symbol a‖(b./c) to denote the hybrid (b, c)-inverse of a.

Definition 1.3. Let a, b, c, y ∈ R. We say that y is a annihilator (b, c)-inverse of a if

yay = y, lann(y) = lann(b), lann(y) = lann(c).
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The topics of research on the (b, c)-inverse and the related generalized inverses attract wide interest (see
[3–6, 13]).

In this paper, we mainly consider the absorption law and the reverse order law for the hybrid (b, c)-
inverse in rings. The paper is organized as follows. In Section 2, the absorption law for the hybrid
(b, c)-inverse are derived. It is proved that if a is hybrid (b, c)-invertible and d is hybrid (b, c)-invertible,
then a‖(b./c) + d‖(b./c) = a‖(b./c)(a + d)d‖(b./c). Moreover, by using Green’s preorders and relations, we obtain if
a‖(b./c) and d‖(u./v) exist, and conditions bRu and cLv are satisfied, then a‖(b./c) + d‖(u./v) = a‖(b./c)(a + d)d‖(u./v).
In Section 3, we get the reverse order law of the hybrid (b, c)-inverse. In particular, let a‖(b./c) and d‖(b./c)

exist. If aa‖(b./c) = a‖(b./c)a, then ad is hybrid (b, c)-invertible and (ad)‖(b./c) = d‖(b./c)a‖(b./c). Moreover, if a‖(b./c)

and d‖(b./c) exist, and conditions ab ≤R ba and ac ≤L ca are satisfied, then ad is hybrid (b, c)-invertible and
(ad)‖(b./c) = d‖(b./c)a‖(b./c).

2. Absorption law for the hybrid (b, c)-inverse

Let a, b ∈ R be two invertible elements. It is well known that

a−1 + b−1 = a−1(a + b)b−1.

The above equality is known as the absorption law of invertible elements. In general, the absorption law
does not hold for generalized inverses (see [9, 10]). In this section, the absorption laws for the hybrid
(b, c)-inverse are obtained. For future reference we state some known results.

Lemma 2.1. ([14, Proposition 2.1]). Let a, b, c, y ∈ R. Then the following conditions are equivalent:
(i) a is hybrid (b, c)-invertible and y is the hybrid (b, c)-inverse of a.
(ii) yab = b, cay = c, yR ⊆ bR and rann(c) ⊆ rann(y).

Lemma 2.2. ([2, P.1992]). Let a, b, c ∈ R. Then a has a hybrid (b, c)-inverse if and only if c ∈ cabR and rann(cab) ⊆
rann(b).

Lemma 2.3. Let a, b, c, d ∈ R. If a‖(b./c) is the hybrid (b, c)-inverse of a and d‖(b./c) is the hybrid (b, c)-inverse of d, then
a‖(b./c) = a‖(b./c)dd‖(b./c) = d‖(b./c)da‖(b./c) and d‖(b./c) = d‖(b./c)aa‖(b./c) = a‖(b./c)ad‖(b./c).

Proof. Let x = a‖(b./c) and y = d‖(b./c). Then by Lemma 2.1, we have y ∈ bR and xab = b. This gives that
y = bs for some s ∈ R, and xay = xa(bs) = (xab)s = bs = y. Moreover, by Lemma 2.1, we have c = cax = cdy,
which means that ax − dy ∈ rann(c). Note that since rann(c) ⊆ rann(y), it follows y(ax − dy) = 0 and
yax = ydy = y. Here, we prove that d‖(b./c) = d‖(b./c)aa‖(b./c) = a‖(b./c)ad‖(b./c). Similarly, we can also get
a‖(b./c) = a‖(b./c)dd‖(b./c) = d‖(b./c)da‖(b./c).

Next, we will consider when d is hybrid (b, c)-invertible if a‖(b./c) exists. In fact, whether we discuss about
the absorption law or the reverse order law for the hybrid (b, c)-inverse, we always assume that a and d are
both hybrid (b, c)-invertible first. Moreover, this kind of problems frequently were studied in optimization
theory. It is of interest to know that, in C∗ algebras, if a contains some properties, wether d = a + ε also
contains the similar properties when ε→ 0. In the following, we will give existence criteria for the hybrid
(b, c)-inverse of d, when a is hybrid (b, c)-invertible. By Lemma 2.1, it is easy to conclude that if a is hybrid
(b, c)-invertible, then b is regular. An element a ∈ R is called (von Neumann) regular if there exists x in R
such that a = axa. Such an x is called an inner inverse of a and is denoted by a−. Before we investigate the
existence criteria for the hybrid (b, c)-inverse, the following lemma is necessary.

Lemma 2.4. ([8]) Let a, e ∈ R with e2 = e. Then the following statements are equivalent:
(i) e ∈ eaeR ∩ Reae.
(ii) eae + 1 − e is invertible (or ae + 1 − e is invertible).
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Theorem 2.5. Let a, b, c, d ∈ R. Assume that a‖(b./c) exists. Let b− be any inner inverses of b and set e = bb−. Then
the following statements are equivalent:

(i) d has a hybrid (b, c)-inverse.
(ii) e ∈ ea‖(b./c)deR ∩ Rea‖(b./c)de.
(iii) a‖(b./c)de + 1 − e is invertible.
In this case, d‖(b./c) = (a‖(b./c)de + 1 − e)−1a‖(b./c).

Proof. (i) ⇒ (ii) Suppose that d‖(b./c) exists. Let x = a‖(b./c) and y = d‖(b./c). It follows from Lemma 2.3 that
x = xdy and y = yax. As a‖(b./c) exists, we have x ∈ bR, y ∈ bR and b = xab by Lemma 2.1. Therefore b =
xab = exab = e(xdy)ab = exdeyab since ey = y. Multiplying on the right by b− gives e = exdeyae and e ∈ exdeR.
Moreover, as d‖(b./c) exists we have y ∈ bR and b = ydb. Therefore b = ydb = eydb = e(yax)db = eyaexdb since
ex = x. Multiplying on the right by b− we obtain e = eyaexde and e ∈ Rexde.

(ii)⇒ (iii) See Lemma 2.4.
(iii)⇒ (i) Set x = a‖(b./c). Firstly we note that ex = x by xR = bR. Set u = exde + 1− e. It is clear that eu = ue

and eu−1 = u−1e. Write y = u−1x. Next, we verify that y is the hybrid (b, c)-inverse of d.
Step 1. ydy = y. Indeed, using ex = x and eu−1 = u−1e, we can check that

ydy = u−1xdu−1x = u−1exdeu−1x
= u−1(exde + 1 − e)eu−1x
= eu−1x = u−1x = y.

Step 2. bR = yR. Indeed, from (1 − e)b = 0 and x = ex, we have

b = u−1ub = u−1(exde + 1 − e)b = u−1exdeb = u−1xdeb = ydeb ∈ yR

Meanwhile, y = u−1x = u−1ex = eu−1x ∈ bR. This shows that bR = yR.
Step 3. rann(c) = rann(y). Since u is invertible element in R, we have rann(y) = rann(x). Moreover, from

Lemma 2.1, we have rann(x) = rann(c). This leads to rann(c) = rann(y).

Next, the absorption law for the hybrid (b, c)-inverse is given when a and d are both hybrid (b, c)-
invertible.

Theorem 2.6. Let a, b, c, d ∈ R. If a is hybrid (b, c)-invertible and d is hybrid (b, c)-invertible, then a‖(b./c) + d‖(b./c) =
a‖(b./c)(a + d)d‖(b./c).

Proof. Let x = a‖(b./c) and y = d‖(b./c). It follows from Lemma 2.3 that xay = y and xdy = x, and consequently
x(a + d)y = xay + xdy = y + x.

By Theorem 2.6, we have the following corollary.

Corollary 2.7. Let a, b, c, d ∈ R If a is (b, c)-invertible and d is (b, c)-invertible, then a‖(b,c) +d‖(b,c) = a‖(b,c)(a+d)d‖(b,c).

Proof. If a is (b, c)-invertible and d is (b, c)-invertible, then a is hybrid (b, c)-invertible and d is hybrid (b, c)-
invertible. Let x = a‖(b,c) and y = d‖(b,c). Then we have x = a‖(b./c) and y = d‖(b./c). It follows from Theorem 2.6
that x + y = x(a + d)y, and consequently a‖(b,c) + d‖(b,c) = a‖(b,c)(a + d)d‖(b,c).

Let a, b, c, d ∈ R. If a and d are both hybrid (b, c)-invertible, then the absorption law for the hybrid
(b, c)-inverse holds by Theorem 2.6. If a is hybrid (b, c)-invertible and d is hybrid (u, v)-invertible for some
u, v ∈ R, does the absorption law for a‖(b./c) and d‖(u./v) holds?

Example 2.8. Let C2×2 denote the set of all 2× 2 complex matrices over the complex field C. Consider a =

(
0 0
1 1

)
,

d =

(
1 1
0 0

)
, b = c =

(
0 1
0 0

)
and u = v =

(
0 0
1 0

)
. Then it is easy to check that a‖(b./c) =

(
0 1
0 0

)
and

d‖(u./v) =

(
0 0
1 0

)
. It is clear that a‖(b./c) + d‖(b./c) , a‖(b./c)(a + d)d‖(b./c).
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Following Green [7], Green’s preorders and relations in a semigroup are defined. Similarly, we say the
Green’s preorder and relations in rings as

a ≤L b⇔ Ra ⊆ Rb⇔ there exists x ∈ R such that a = xb.
a ≤R b⇔ aR ⊆ bR⇔ there exists x ∈ R such that a = bx.
a ≤H b⇔ a ≤L b and a ≤R b.
aLb⇔ Ra = Rb⇔ there exist x, y ∈ R such that a = xb and b = ya.
aRb⇔ aR = bR⇔ there exist x, y ∈ R such that a = bx and b = ay.
aHb⇔ aLb and aRb.

Before investigate the absorption law for a‖(b./c) and d‖(u./v) by using Green’s preorders and relations, the
following lemma is given.

Lemma 2.9. Let a, b, c,u, v ∈ R. If bRu and cLv, then a is hybrid (b, c)-invertible if and only if a is hybrid
(u, v)-invertible. In this case, we have a‖(b./c) = a‖(u./v).

Proof. We present a proof of the necessity. As bRu, then we have u = bγ and b = uδ for some γ, δ ∈ R.
Moreover, by cLv, it gives that v = αc and c = βv for some α, β ∈ R. Since a is hybrid (b, c)-invertible, by
Lemma 2.2, there is w ∈ R such that c = cabw. It follows that v = αc = α(cabw) = (αc)abw = vabw = vauδw, and
consequently vR = vauR. For any x ∈ rann(vau), by c = βv, then vaux = 0 and caux = (βv)aux = βvaux = 0.
Note that u = bγ, then caux = cabγx = 0. Again, from Lemma 2.2, it follows γx ∈ rann(cab) = rann(b).
This implies that bγx = 0 and ux = 0, which gives rann(vau) ⊆ rann(u). So, by Lemma 2.2, one can
see that a is hybrid (u, v)-invertible. Moreover, from Lemma 2.1, it is not difficult to directly check that
a‖(b./c) = a‖(u./v).

Theorem 2.10. Let a, b, c, d,u, v ∈ R with bRu and cLv. If a‖(b./c) and d‖(u./v) exist, then a‖(b./c) + d‖(u./v) =
a‖(b./c)(a + d)d‖(u./v).

Proof. Since bRu and cLv, by Lemma 2.9 we have a‖(b./c) = a‖(u./v). Therefore, by Theorem 2.6, one can see
that

a‖(b./c) + d‖(u./v) = a‖(u./v) + d‖(u./v)

= a‖(u./v)(a + d)d‖(u./v)

= a‖(b./c)(a + d)d‖(u./v).

An involutory ring R means that R is a unital ring with involution, i.e., a ring with unity 1, and a
mapping a 7→ a∗ from R to R such that (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗, for all a, b ∈ R. Let R be an
involutory ring and a ∈ R. By [2, P.1910] and [12, Theorem 3.10], we have that a is Moore-Penrose invertible
if and only if a is (a∗, a∗)-invertible if and only if a is hybrid (a∗, a∗)-invertible. Let R be an associative ring
and a ∈ R. a is Drazin invertible if and only if there exists k ∈ N such that a is (ak, ak)-invertible if and only
if there exists k ∈ N such that a is hybrid (ak, ak)-invertible, where the positive integer k is the Drazin index
of a, denoted by ind(a). a is group invertible if and only if a is (a, a)-invertible if and only if a is hybrid
(a, a)-invertible. As applications of Theorem 2.10, we have the following corollary. We use the symbols a†,
a] and aD to denote the Moore-Penrose inverse, the group inverse and the Drazin inverse of a.

Corollary 2.11. Let a, b ∈ R. Then
(i) If a† and b† exist with aHb, then a† + b† = a†(a + b)b†.
(ii) If a] and b] exist with aHb, then a] + b] = a](a + b)b].
(iii) If aD and bD exist with an

Hbm, where ind(a) = n and ind(b) = m, then aD + bD = aD(a + b)bD.
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3. Reverse order law for the hybrid (b, c)-inverse

Let a, b ∈ R be two invertible elements. It is well known that

(ab)−1 = b−1a−1.

The above equality is known as the reverse order law of invertible elements. In general, the reverse order
law does not hold for generalized inverses (see [1, 11]). In this section, the reverse order laws for the hybrid
(b, c)-inverse are obtained.

Theorem 3.1. Let a, b, c, d ∈ R such that a‖(b./c) and d‖(b./c) exist. If aa‖(b./c) = a‖(b./c)a, then ad is hybrid (b, c)-invertible
and (ad)‖(b./c) = d‖(b./c)a‖(b./c).

Proof. Let x = a‖(b./c), y = d‖(b./c) and z = yx. We verify that z is the hybrid (b, c)-inverse of ad.
Step 1. zadz = z. Indeed, by Lemma 2.3, we know that xdy = x and yax = y, which give that

z(ad)z = yxadyx = y(xa)dyx = yaxdyx = ya(xdy)x = yaxx = (yax)x = yx = z.
Step 2. zR = bR. Indeed, as yR = bR, then we have zR = yxR ⊆ bR = yR = yaxR = yxaR ⊆ yxR = zR,

which gives zR = bR.
Step 3. rann(z) = rann(c). It is easy to get rann(c) = rann(x) ⊆ rann(yx) = rann(z).
Next, we claim that rann(z) ⊆ rann(c). Given any t ∈ rann(z), then yxt = 0, i.e., xt ∈ rann(y) = rann(c).

Moreover, since ax = xa and x = xax, it gives that x = ax2. It follows from xR = bR that xt = ax2t ∈ abR.
Hence, one can see that xt ∈ rann(c) ∩ abR. By [14, Theorem 2.4], we know that rann(c) ∩ abR = {0}, which
gives xt = 0. Therefore, it implies t ∈ rann(x) = rann(c), and consequently rann(z) ⊆ rann(x) = rann(c).

Remark 3.2. By [12, Proposition 3.3], we know that if a is (b, c)-invertible, then b and c are both regular. Moreover,
from Theorem 3.1, if a‖(b./c) and d‖(u./v) exist with aa‖(b./c) = a‖(b./c)a, then z = d‖(b./c)a‖(b./c) is regular and rann(z) =
rann(c).

Lemma 3.3. [12, Lemma 3.2] Let a ∈ R be regular. Then lann(rann(a)) = Ra.

In view of Remark 3.2 and Lemma 3.3, we obtain the following result.

Corollary 3.4. Let a, b, c, d ∈ R such that a‖(b,c) and d‖(b,c) exist. If a‖(b,c)a = aa‖(b,c) then ad is (b, c)-invertible and
(ad)‖(b,c) = d‖(b,c)a‖(b,c).

Proof. From Theorem 3.1 and Remark 3.2, one can see z = d‖(b,c)a‖(b,c) is regular and rann(z) = rann(c). As
a‖(b,c) exists, it follows from [12, Proposition 3.3] that c is regular. Then, we obtain Rz = lann(rann(z)) =
lann(rann(c)) = Rc. On account of [2, Proposition 6.1], we conclude that ad is (b, c)-invertible and (ad)‖(b,c) =
d‖(b,c)a‖(b,c).

Lemma 3.5. Let a, b, c ∈ R with ab ≤R ba and ac ≤L ca. If a‖(b./c) exists, then aa‖(b./c) = a‖(b./c)a.

Proof. Let x = a‖(b./c). Since ab ≤R ba and ac ≤L ca, there is ab = baµ and ca = νac for some µ, ν ∈ R.
Hence, it follows from c = cax that ca = νac = νa(cax) = (νac)ax = caax. Note that a‖(b./c) exists, it gives
rann(x) = rann(c), and consequently a − aax ∈ rann(c) = rann(x), which implies xa = xaax. Moreover, by
bR = xR, we have x = bs for some s ∈ R. On account of b = xab, we conclude that ax = a(bs) = (ab)s =
(baµ)s = (xab)aµs = xa(baµ)s = xaa(bs) = xaax. Thus, ax = xa, as required.

In view of Theorem 3.1 and Lemma 3.5, we obtain the following result.

Theorem 3.6. Let a, b, c, d ∈ R with ab ≤R ba and ac ≤L ca. If a‖(b./c) and d‖(b./c) exist, then ad is hybrid (b, c)-
invertible and (ad)‖(b./c) = d‖(b./c)a‖(b./c).

Corollary 3.7. Let a, b, c, d ∈ R such that ab = ba and ac = ca. If a‖(b./c) and d‖(b./c) exist, then ad is hybrid
(b, c)-invertible and (ad)‖(b./c) = d‖(b./c)a‖(b./c).
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In view of Lemma 3.3 and Corollary 3.7, we obtain the following result.

Corollary 3.8. Let a, b, c, d ∈ R such that ab = ba and ac = ca. If a‖(b,c) and d‖(b,c) exist, then ad is (b, c)-invertible
and (ad)‖(b,c) = d‖(b,c)a‖(b,c).

Theorem 3.9. Let a, b, c, d ∈ R with db ≤R bd and ca ≤L ac. If a‖(b./c) and d‖(b./c) exist, then ad is hybrid (b, c)-
invertible and (ad)‖(b./c) = d‖(b./c)a‖(b./c).

Proof. Let x = a‖(b./c), y = d‖(b./c) and z = yx. Since db ≤R bd and ca ≤L ac, there is db = bdµ and ca = νac
for some µ, ν ∈ R. It follows from b = xab = ydb that z(ad)b = yxa(db) = y(xab)dµ = y(bdµ) = ydb = b.
Moreover, by c = cdy = cax, we have c(ad)z = (ca)dyx = νa(cdy)x = (νac)x = cax = c. Since yxR ⊆ yR = bR
and bR = z(ad)bR ⊆ zR, we have zR = bR. Note that rann(c) = rann(x) ⊆ rann(yx) = rann(z) and c = c(ad)z.
Then rann(c) = rann(z). On account of [14, Proposition 2.1] we conclude that ad is hybrid (b, c)-invertible
and (ad)‖(b./c) = d‖(b./c)a‖(b./c).

Corollary 3.10. Let a, b, c, d ∈ R such that bd = db and ac = ca. If a‖(b./c) and d‖(b./c) exist, then ad is hybrid
(b, c)-invertible and (ad)‖(b./c) = d‖(b./c)a‖(b./c).

In view of Lemma 3.3 and Corollary 3.10, we obtain the following result.

Corollary 3.11. Let a, b, c, d ∈ R such that bd = db and ac = ca. If a‖(b,c) and d‖(b,c) exist, then ad is (b, c)-invertible
and (ad)‖(b,c) = d‖(b,c)a‖(b,c).

Since a‖(b./c) is an outer inverse of a when it exists, both aa‖(b./c) and a‖(b./c)a are idempotents. These will be
referred to as the hybrid (b, c)-idempotents associated with a. We are interested in finding characterizations
of those elements in the ring with equal hybrid (b, c)-idempotents. In fact, it is also closely related to the
reverse order law. We use the symbol R] to denote the set of all group invertible elements.

Theorem 3.12. Let a, b, c, d ∈ R such that a‖(b./c) and d‖(b./c) exist. Then the following statements are equivalent:
(i) aa‖(b./c) = dd‖(b./c).
(ii) aa‖(b./c)dd‖(b./c) = dd‖(b./c)aa‖(b./c).
(iii) ad‖(b./c)da‖(b./c) = da‖(b./c)ad‖(b./c).
(iv) ad‖(b./c)

∈ R] and (ad‖(b./c))] = da‖(b./c).
(v) da‖(b./c)

∈ R] and (da‖(b./c))] = ad‖(b./c).

Proof. (i)⇔ (ii)⇔ (iii). Let x = a‖(b./c) and y = d‖(b./c). From Lemma 2.3 we obtain

x = xdy = ydx;
y = yax = xay.

(1)

Hence,

ax = dy ⇔ axdy = dyax
⇔ aydx = dxay.

(iii) ⇔ (iv). Set 1 = da‖(b./c). We will prove that x is the group inverse of ad‖(b./c). Using (iii) and Lemma
2.3, we get

1ad‖(b./c) = dxay = aydx = ad‖(b./c)1;

ad‖(b./c)1ad‖(b./c) = a(ydx)ay = a(xay) = ay = ad‖(b./c);

1ad‖(b./c)1 = 1aydx = 1a(ydx) = 1ax = dxax = dx = 1.

This implies that ad‖(b./c)
∈ R] and (ad‖(b./c))] = da‖(b./c).

Conversely, if the latter holds, then 1ad‖(b./c) = ad‖(b./c)1 i.e., da‖(b./c)ad‖(b./c) = ad‖(b./c)da‖(b./c).
(iii)⇔ (v). The proof is similar to the previous equivalence.
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Next, we consider conditions under which the reverse order law for the hybrid (b, c)-inverse of the
product ad, (ad)‖(b./c) = d‖(b./c)a‖(b./c) holds.

Theorem 3.13. Let a, b, c, d ∈ R such that a‖(b./c) and d‖(b./c) exist. Then the following statements are equivalent:
(i) ad has a hybrid (b, c)-inverse of the form (ad)‖(b./c) = d‖(b./c)a‖(b./c).
(ii) d‖(b./c) = d‖(b./c)add‖(b./c)a‖(b./c) = d‖(b./c)a‖(b./c)add‖(b./c).
(iii) a‖(b./c) = a‖(b./c)add‖(b./c)a‖(b./c) = d‖(b./c)a‖(b./c)ada‖(b./c).

Proof. (i)⇔ (ii). Suppose that ad has a hybrid (b, c)-inverse, and (ad)‖(b./c) = d‖(b./c)a‖(b./c). Then Lemma 2.3 is
true for (ad)‖(b./c) in place of a‖(b./c). It follows that

d‖(b./c) = d‖(b./c)ad(ad)‖(b./c) = (ad)‖(b./c)add‖(b./c).

Substituting (ad)‖(b./c) = d‖(b./c)a‖(b./c) yields

d‖(b./c) = d‖(b./c)add‖(b./c)a‖(b./c) = d‖(b./c)a‖(b./c)add‖(b./c).

Conversely, if the latter identities hold, we claim z = d‖(b./c)a‖(b./c) is the hybrid (b, c)-inverse of ad. Write
x = a‖(b./c) and y = d‖(b./c). Indeed, it is clear that z = yx ∈ yR = bR. Moreover, it is also easy to find
rann(c) = rann(x) ⊆ rann(yx) = rann(z). On account of ydb = b and y = yxady in the condition (ii), we
conclude that

zadb = yxadb = yxad(ydb) = (yxady)db = ydb = b.

Similarly, in view of y = yadyx in the condition (ii) and cdy = c, one can see that

cadz = cadyx = (cdy)adyx = cd(yadyx) = cdy = c.

Then ad has a hybrid (b, c)-inverse of the form (ad)‖(b./c) = d‖(b./c)a‖(b./c) by [14, Proposition 2.1].
(ii)⇒ (iii). By Lemma 2.3 we have x = xdy = ydx. From the condition (ii), one can see that

x = xdy = xd(yadyx) = (xdy)adyx = xadyx.

That is, a‖(b./c) = a‖(b./c)add‖(b./c)a‖(b./c). Moreover, again from the condition (ii), it follows

x = ydx = (yxady)dx = yxad(ydx) = yxadx.

That is, a‖(b./c) = d‖(b./c)a‖(b./c)ada‖(b./c).
(iii)⇒ (ii). The proof is similar to (ii)⇒ (iii).

We close this section with the characterization of a‖(b./c)a = dd‖(b./c) in rings.

Theorem 3.14. Let a, b, c, d ∈ R such that a‖(b./c) and d‖(b./c) exist. Then the following statements are equivalent:
(i) a‖(b./c)a = dd‖(b./c).
(ii) a‖(b./c)dd‖(b./c)a = dd‖(b./c)aa‖(b./c).
(iii) d‖(b./c)da‖(b./c)a = da‖(b./c)ad‖(b./c).
(iv) a‖(b./c) = dd‖(b./c)a‖(b./c) and d‖(b./c) = d‖(b./c)a‖(b./c)a.
(v) a‖(b./c)ad‖(b./c) = d‖(b./c)a‖(b./c)a and a‖(b./c)dd‖(b./c) = dd‖(b./c)a‖(b./c).
If any of the previous statements is valid, then (ad)‖(b./c) = d‖(b./c)a‖(b./c).

Proof. Let x = a‖(b./c) and y = d‖(b./c). From Lemma 2.3 we obtain (3.1), that is,

x = xdy = ydx;
y = yax = xay.

(i)⇔ (ii)⇔ (iii). By (1), it is clear that

xa = xdya = ydxa;
dy = dyax = dxay.
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Hence, it follows that

xa = dy ⇔ xdya = dyax
⇔ ydxa = dxay.

(i) ⇔ (iv). The necessary condition is immediate. Next, we assume that x = dyx and y = yxa. Then we
have xa = dyxa and dy = dyxa, consequently xa = dy, as desired.

(v)⇔ (i). The proof is similar to the above.
Finally, we will prove that dy = xa implies that ad has a hybrid (b, c)-inverse given by (ad)‖(b./c) =

d‖(b./c)a‖(b./c). From y = ydy and dy = xa, it gives y = yxa, and consequently y = ydy = (yxa)dy. Moreover,
note that y = yax and dy = xa, it follows that y = yax = (yax)ax = ya(dy)x. By Theorem 3.13 (ii) our assertion
is proved.
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