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Abstract. The relationships between certain families of special curves, including the general helices,
slant helices, rectifying curves, Salkowski curves, spherical curves, and centrodes, are analyzed. First,
characterizations of proper slant helices and Salkowski curves are developed, and it is shown that, for any
given proper slant helix with principal normal n, one may associate a unique general helix whose binormal
b coincides with n. It is also shown that centrodes of Salkowski curves are proper slant helices. Moreover,
with each unit–speed non–helical Frenet curve in the Euclidean space E3, one may associate a unique
circular helix, and characterizations of the slant helices, rectifying curves, Salkowski curves, and spherical
curves are presented in terms of their associated circular helices. Finally, these families of special curves
are studied in the context of general polynomial/rational parameterizations, and it is observed that several
of them are intimately related to the families of polynomial/rational Pythagorean–hodograph curves.

1. Introduction

It is a well–known fact [25] that a space curve is uniquely determined, up to a choice of coordinate system,
by specifying the curvature κ and torsion τ as functions of its arc length s. The functions κ(s) and τ(s), which
describe the deviation of a curve from linearity and planarity, are known as the “natural” or “intrinsic”
equations of a curve [25]. In general, the curvature and torsion are independent, but certain “special”
curves with distinctive geometrical properties correspond to the existence of relationships between them.

The simplest cases are the helical curves, identified by the proportionality condition τ(s)/κ(s) = c, a
constant. Equivalently [25], the curve tangent t maintains a constant angle ψ = cot−1 c with a fixed direction
in space, the axis of the helical curve. If κ and τ are both constant we have a circular helix, while a general
helix corresponds to non–constant κ and τ. Helical curves are of interest in molecular biology [3, 18, 26];
computer–aided geometric design [1, 9–11]; mechanical engineering [17, 23]; and physics [6, 21].

A slant helix [14] may be regarded as a variation on the general helix, in which the curve principal normal
n (rather than the tangent t) maintains a constant angle with a fixed direction in space. This incurs a more
complicated relation between κ, τ, and the derivative of the τ/κ ratio. The slant helices encompass the
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general helices as the particular case where the τ/κ ratio is a constant; a proper slant helix has a non–constant
τ/κ ratio.

The rectifying curves [4, 5] are identified by a torsion/curvature ratio that is a linear function of the arc
length, rather than a constant, i.e., τ(s)/κ(s) = as + b where a , 0 and b are constants. A rectifying curve
α(s) satisfies the condition 〈α(s),n(s)〉 ≡ 0, where n(s) is the principal normal, i.e., at each point the position
vector lies in the rectifying plane, spanned by tangent and binormal. Rectifying curves are of interest in
analyzing joint kinematics, due to their close relationship with the centrode of a curve [4, 5, 7, 13, 27].

The Salkowski curves [22] may be viewed as generalizations of the circular helix, since they exhibit a
constant curvature but non–constant torsion. The Salkowski curves are proper slant helices, and they have
been employed [20] in the context of computer–aided geometric design to construct closed space curves
with constant curvature and continuous torsion.

The spherical curves (i.e., curves that lie on a sphere) are a further related category. They are closely related
to the construction of rectifying curves, and exhibit many interesting geometric properties [16, 19, 24].

The identification of characterizations for helices, rectifying curves, slant helices, and spherical curves,
and the study of their inter–relationships, are interesting basic problems in the theory of Frenet curves.
Characterizations for spherical curves have been given in [2, 28–30] and for rectifying curves in [4, 5, 7].
An important concept associated with a unit–speed Frenet curve α(s) is its centrode ω = τ t + κb, i.e., the
locus traced by the angular velocity vector, which determines the variation of the Frenet frame along α(s).
The centrode has been employed in [4, 5, 7] to characterize rectifying curves.

This paper develops new characterizations for slant helices, and shows that the centrode of a Salkowski
curve is a proper slant helix. Moreover, it is shown that one may associate a unique general helix with each
proper slant helix, and the general helices associated with Salkowski curves are identified. We also make the
interesting observation that every unit–speed Frenet curve is either a general helix, or has a unique circular
helix associated with it — these associated circular helices are used to identify novel characterizations of
proper slant helices, Salkowski curves, spherical curves, and rectifying curves. Finally, these results are
studied in the context of general parameterizations, defined by polynomial/rational functions, and their
connections to the theory of Pythagorean–hodograph curves are elucidated.

2. Preliminaries

A unit–speed curve α(s) : I→ E3 is said to be a Frenet curve if κ(s) > 0 at every point, and τ(s) . 0. The
Frenet frame (t,n,b) consisting of the curve tangent, principal normal, and binormal satisfies the Frenet–
Serret relations

t′ = κn, n′ = −κ t + τb, b′ = −τn, (1)

where primes denote arc–length derivatives.
A Frenet curve α(s) is a general helix if a fixed unit vector u exists, such that 〈t(s),u〉 = cosψ for some

fixed angle ψ (the helix angle). The Lancret characterization [16, 19, 24] states that a space curve α(s) is a
general helix if and only if

τ(s)
κ(s)

= c, (2)

where c = cotψ. When κ and τ are both constant, α(s) is a circular helix.
A curve α(s) is whose principal normal n(s) makes a constant angle with a fixed unit vector is called a

slant helix. It is known [14] that α(s) is a slant helix if and only if its curvature and torsion satisfy

κ2(τ/κ)′

(κ2 + τ2)3/2
= c (3)

for some constant c. Note that the slant helix degenerates to a general helix if c = 0 in (3). Hence, a slant
helix with c , 0 is called a proper slant helix. The Salkowski curves, characterized by constant curvature
and non–constant torsion, are proper slant helices (see Theorem 1 in [20]).
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A rectifying curve α(s) satisfies 〈α(s),n(s)〉 = 0, i.e., the position vector α(s) always lies in the curve
rectifying plane [4, 5]. It is known [4] that α(s) is a rectifying curve if and only if its torsion τ(s) and
curvature κ(s) satisfy

τ(s)
κ(s)

= as + b, (4)

where a , 0 and b are constants. This may be considered the simplest non–trivial generalization of the
constant torsion/curvature ratio (2) for a general helix to an arc–length–dependent ratio.

A spherical curve, i.e., a curve that lies on a sphere of radius r with center at the origin, may be characterized
[19] by the relation

(ρ′σ)′ +
ρ

σ
= 0, where ρ =

1
κ
, σ =

1
τ
. (5)

It is known [4] that a Frenet curve α(s) is a rectifying curve if and only if a unit–speed spherical curve
γ(s) : I→ S2 exists, such that

α(s) = a sec(s + s0)γ(s),

where S2 is the unit sphere with center at the origin, and a , 0 and s0 are constants. If {κ, τ, t,n,b} is the
Frenet–Serret apparatus of the rectifying curve α(s) : I→ E3 and κγ is the curvature of the unit–speed curve
γ(s) : I→ S2, then we have [7]:

κ =
1
a

cos3(s + s0)
√
κ2
γ − 1, τ =

1
a

cos2(s + s0) sin(s + s0)
√
κ2
γ − 1. (6)

The centrode of a unit–speed curve α(s) is defined by

ω(s) = τ(s) t(s) + κ(s) b(s), (7)

i.e., it is the locus traced by the angular velocity vector (or Darboux vector) of the Frenet frame along α(s),
which describes the variation of the frame vectors through the relations

t′ = ω × t, n′ = ω × n, b′ = ω × b,

which are an alternative expression of equations (1). The centrode of a unit speed curve has been used to
characterize rectifying curves [4, 5]. Also, the curve defined by

ωd(s) =
ω(s)
κ(s)

(8)

is called the dilated centrode, and for a non–helical unit speed Frenet curve, it is shown in [7] that ωd(s) is
always a rectifying curve.

3. Characterizations of slant helices

In this section, some properties and characterizations of proper slant helices and Salkowski curves are
derived. In particular, we will show that a unique general helix may be associated with each proper slant
helix, and that the centrode of a Salkwoski curve is a proper slant helix. Let α(s) : I → E3 be a unit–speed
slant helix, with Frenet–Serret apparatus {κ, τ, t,n,b}. Then a fixed unit vector u and constant c exist, such
that 〈u,n(s)〉 = c, s ∈ I [14].

For a proper slant helix, with c , 0, we show that no point s0 ∈ I exists, such that 〈u,b(s0)〉 = 0.
Differentiating 〈u,n(s)〉 = c and using (1) gives

κ 〈u, t(s)〉 = τ 〈u,b(s)〉. (9)
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If 〈u,b(s0)〉 = 0, this equation implies that 〈u, t(s0)〉 = 0, and consequently u = ±n(s0) since u is a unit vector,
so c = ±1. Writing

u = 〈u, t(s)〉 t(s) ± n(s) + 〈u,b(s)〉b(s)

and taking the norm of both sides then gives

1 =
√
〈u, t(s)〉2 + 1 + 〈u,b(s)〉2,

which can only be satisfied if 〈u, t(s)〉 ≡ 0 and 〈u,b(s)〉 ≡ 0, i.e., u = ±n(s). Differentiating this and using
equations (1) gives κ(s) ≡ 0 and τ(s) ≡ 0, in contradiction with the assumption that α(s) is a proper slant
helix. Hence, 〈u,b(s)〉 , 0 for all s ∈ I, and equation (9) gives

τ(s)
κ(s)

=
〈u, t(s)〉
〈u,b(s)〉

. (10)

Lemma 3.1. If α(s) : I→ E3 is a proper slant helix with the Frenet–Serret apparatus {κ, τ, t,n,b} its unit axis vector
u is given by

u =

√

1 − c2√
1 + (τ/κ)2

(τ/κ) t + c n +

√

1 − c2√
1 + (τ/κ)2

b. (11)

Proof : We have

u = 〈u, t〉 t + c n + 〈u,b〉b, (12)

which gives 〈u, t〉2 + 〈u,b〉2 = 1 − c2. From equation (10) we obtain

τ2 + κ2

κ2 =
〈u, t〉2 + 〈u,b〉2

〈u,b〉2
=

1 − c2

〈u,b〉2
.

Since 〈u,b(s)〉 does not change sign on the connected interval s ∈ I, we may choose the direction of u that
gives a positive value, and write

〈u,b〉 =

√

1 − c2√
1 + (τ/κ)2

.

Substituting this and (10) into (12) yields the stated form (11) of u.

Corollary 3.1. A unit–speed Frenet curve α(s) : I → E3 is a proper slant helix if and only if its curvature κ(s) and
torsion τ(s) satisfy (τ/κ)√

1 + (τ/κ)2

′ =
c

√

1 − c2
κ,

 1√
1 + (τ/κ)2

′ =
c

√

1 − c2
τ, (13)

for some non–zero constant c.

Proof : Suppose the curve α(s) is a proper slant helix. Then differentiating (11) and equating components
yields the relations (13).

Conversely, suppose that the two relations (13) hold for a unit–speed Frenet curve. Then the first relation
gives

(τ/κ)

 1√
1 + (τ/κ)2

′ +  1√
1 + (τ/κ)2

 (τ/κ)′ =
c

√

1 − c2
κ,
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and substituting the second relation of (13) into the above yields

−
c

√

1 − c2

τ2

κ
+

 1√
1 + (τ/κ)2

 (τ/κ)′ =
c

√

1 − c2
κ,

which reduces to

(τ/κ)′

(1 + (τ/κ)2)3/2
=

c
√

1 − c2
κ.

Since this is equivalent to equation (3), the curve is a proper slant helix.

Theorem 3.1. A unit–speed Frenet curve α(s) : I→ E3 with Frenet–Serret apparatus {κ, τ, t,n,b} is a proper slant
helix if and only if

τ/κ =
f√

1 − f 2
, where f = c

∫
κ ds (14)

and c is a non–zero constant.

Proof : Suppose the Frenet curve α(s) satisfies the condition (14). Then we have

(τ/κ)′ =
f ′

(1 − f 2)3/2
=

cκ
(1 − f 2)3/2

and 1 + (τ/κ)2 =
1

1 − f 2 .

These equations give

(τ/κ)′

(1 + (τ/κ)2)3/2
= cκ,

which with c , 0 is equivalent to the condition (3) for a proper slant helix.
Conversely, suppose α(s) is a proper slant helix. Then by Theorem A in [15], the indefinite integrals of

κ and τ satisfy(∫
κds

)2
+

(∫
τds

)2
= tan2 θ , (15)

where 0 < θ < 1
2π is the angle between n(s) and the fixed direction u. From this, one can easily deduce the

relations

cos2 θ

sin2 θ

(∫
κds

)2
< 1 ,

κ
τ

= −

∫
τds∫
κds

. (16)

Now from (15) we obtain

1 +

(∫
τds

)2(∫
κds

)2 =
sin2 θ

cos2 θ
(∫
κds

)2 ,

and on using the second relation in (16), this becomes

1 + (κ/τ)2 =
sin2 θ

cos2 θ
(∫
κds

)2 ,
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from which we obtain

(τ/κ)2 =
cos2 θ

(∫
κds

)2

sin2 θ − cos2 θ
(∫
κds

)2 .

This is equivalent to the stated condition (14) with c = ± cotθ, and we note from (16) that f 2 < 1.

As a consequence of Theorem 3.1, and the fact that every Salkowski curve is a proper slant helix, we
have the following characterization of Salkowski curves — essentially a result in [20].

Corollary 3.2. A unit–speed Frenet curve α(s) : I → E3 with curvature1) κ = 1 is a Salkowski curve if and only if
its torsion is of the form

τ(s) =
cs

√

1 − c2s2
,

where c is a non–zero constant.

It is interesting to observe, as the following theorem shows, that a unique general helix may be associated
with each proper slant helix, such that the principal normal vector field of the slant helix coincides with the
binormal vector field of the general helix.

Theorem 3.2. Let α(s) : I→ E3 be a proper slant helix with axis vector u and Frenet–Serret apparatus {κ, τ, t,n,b}
where κ > 0 and 〈u,n〉 = c. Then a unique general helix β(s) : I → E3 exists with curvature c

√

τ2 + κ2/
√

1 − c2,
torsion

√

τ2 + κ2, and binormal vector field n.

Proof : We define the following unit vector fields

p =
(τ/κ) t + b√

1 + (τ/κ)2
, q =

t − (τ/κ) b√
1 + (τ/κ)2

(17)

along the curve α(s). Then one can easily verify that (p,q,n) is an oriented orthonormal frame along α(s),
with

p × q = n, q × n = p, n × p = q.

Differentiating equations (17), and using the relations (13) for a proper slant helix, we obtain

p′ =
c

√

1 − c2

√

τ2 + κ2 q, q′ =
√

τ2 + κ2

(
n −

c
√

1 − c2
p
)
, (18)

and we also have

n′ = −κ t + τb = −
√

τ2 + κ2 q. (19)

Equations (18)–(19) indicate, by the existence theorem [19] for curves, that(
c

√

1 − c2

√

τ2 + κ2,
√

τ2 + κ2,p,q,n
)

is the Frenet–Serret apparatus for a unique unit–speed curve β(s) : I→ E3, and that β(s) is a general helix.

1)The assumption κ = 1 is conventional in the study of Salkowski curves [20], and can be achieved for any curve of constant
curvature by an appropriate scaling.
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Remark 3.1. For the example of a proper slant helix on page 161 of Izumiya–Takeuchi [14], we obtain the
associated circular helix with constant curvature κ̄ = b/

√

a2 − b2 and constant torsion τ̄ =
√

a2 − b2.

Remark 3.2. The Salkowski curves considered by Monterde [20] are proper slant helices, with curvature
κ = 1 and torsion

τ(s) =
± s√

tan2 φ − s2
,

where φ is the constant angle made by the principal normal n with a fixed direction u (see Lemma 1 and
Theorem 1 in [20]). Thus, setting c = cotφ, the curvature κ̄ and torsion τ̄ of the general helix associated
with a Salkowski curve are given by

κ̄ =
c

√

1 − c2
√

1 − c2s2
, τ̄ =

1
√

1 − c2s2
.

Every Salkowski curve is a proper slant helix, but there exist proper slant helices that are not Salkowski
curves (for instance, the example given in [14]). The centrodesω = τ t +κb of Frenet curves are valuable in
analyzing the kinematics of joints [13, 27], and it is of interest to ask whether the centrode of a proper slant
helix is always a proper slant helix. The answer is negative, as illustrated by the example

α(s) = −
a2
− b2

2a

(
cos((a + b)s)

(a + b)2 +
cos((a − b)s)

(a − b)2 ,
sin((a + b)s)

(a + b)2 +
sin((a − b)s)

(a − b)2 ,
2

b
√

a2 − b2
cos bs

)
,

in [14]. For 0 < b < a, this is a unit–speed proper slant helix, with curvature and torsion

κ(s) =
√

a2 − b2 cos bs, τ(s) =
√

a2 − b2 sin bs.

The centrode ω = τ t + κb of this curve has parametric speed vω = |ω′(s)|, curvature κω, and torsion τω
given by

vω = b
√

a2 − b2, κω =
a

b
√

a2 − b2
, τω = 0.

Thus, the centrode of α(s) is an arc of a circle, and not a proper slant helix. On the other hand, one can show
that the centrode of a Salkowski curve is a slant helix, as follows.

Theorem 3.3. A Salkowski curve α(s) : I→ E3 has a centrodeω = τ t + κb that is a proper slant helix, but is not a
Salkowski curve.

Proof : The unit–speed Salkowski curve α(s) has curvature and torsion given [20] by

κ(s) = 1, τ(s) =
±ms

√

1 −m2s2
, (20)

where m , 0,±1/
√

3 is a real number, and the domain of α(s) is given by |ms| < 1. Thus, the centrode of the
Salkowski curve is

ω(s) =
±ms

√

1 −m2s2
t(s) + b(s),

from which we obtain

ω′(s) =
±m

(1 −m2s2)3/2
t(s). (21)
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If sω is arc length along the centrode ω(s), its parametric speed vω is

vω(s) =
dsω
ds

= |ω′(s)| =
|m|

(1 −m2s2)3/2
, (22)

and by the chain rule we have

d
dsω

=
1

vω
d
ds
. (23)

From (21) we obtain the tangent to the centrode as

tω(s) =
ω′(s)
|ω′(s)|

= ± t(s). (24)

Its curvature κω and principal normal nω are obtained using (22)–(23) from

dtω
dsω

=
±1
vω

dt
ds

= κωnω ,

and since dt/ds = κn with κ(s) given by (20), we have

κω(s) =

(
1 −m2s2

)3/2

|m|
, nω(s) = ±n(s). (25)

Equations (24)–(25) give the centrode binormal vector as bω = tω × nω = b. Since

dbω
dsω

=
1

vω
db
ds

= − τωnω ,

and db/ds = − τn where τ(s) is given by (20), we obtain the torsion of the centrode as

τω(s) = ± (1 −m2s2) s. (26)

Since nω(s) = ±n(s), the centrode is a slant helix. Moreover, it is a proper slant helix, since the ratio
τω(s)/κω(s) is non–constant. The constant c in equation (3) can be found as follows. From (23) and (25)–(26),
we have

1
(κ2
ω + τ2

ω)3/2

d
dsω

τω
κω

=
1

(κ2
ω + τ2

ω)3/2

1
vω

d
ds
τω
κω

=
±m3

(1 −m2s2)3 =
±m
κ2
ω

.

Hence, the centrode of a Salkowski curve is a proper slant helix with constant c = ±m in equation (3), and
it is not a Salkowski curve since κω , constant.

Remark 3.3. The torsion/curvature ratio properties of general helices and rectifying curves indicate that
they are mutually disjoint families of curves. It is not known whether a proper slant helix can also be a
rectifying curve. However, Theorem 3.3 and the following Corollary show that the centrode of a Salkowski
curve is both a proper slant helix and a rectifying curve.

Corollary 3.3. The centrode ω = τ t + κb of a Salkowski curve α(s) : I→ E3 is a rectifying curve.

Proof : Using equations (25) and (26), we have

τω(s)
κω(s)

=
|m| s

√

1 −m2s2
.
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Consequently, if sω is arc length along ω(s), using equation (23) we have

d
dsω

τω
κω

=
1

vω
d
ds
τω
κω

= 1,

soω(s) is a general helix, since it satisfies (2) with non–constant τω and κω. Moreover, integrating the above
relation with respect to sω gives

τω
κω

= sω + b,

for some constant b, i.e., the centrode is a rectifying curve satisfying (4).

4. Associated circular helices of Frenet curves

Among all Frenet curves in E3, the helices have a special stature due to their widespread applications
in science and technology. In the present section, we highlight the importance and ubiquity of helices by
showing that every Frenet curve is either a general helix, or else has a unique circular helix associated with
it. We begin by proving this very general result.

Theorem 4.1. Let α(s) : I → E3 be a unit–speed Frenet curve of class Ck, k ≥ 4 with Frenet Serret apparatus
{κ, τ, t,n,b}. Then α(s) is either a general helix, or there is a unique circular helix associated with it, defined by

β(s) =
1
√

2

 1√
1 + (τ/κ)2

,
τ/κ√

1 + (τ/κ)2
, tan−1(τ/κ)

 . (27)

Proof : Suppose that α(s) is a Frenet curve that is not a general helix, i.e., (τ/κ)′ , 0. Then β(s) : I → E3

defined by (27) is a regular curve, with parametric speed

vβ(s) =
dsβ
ds

= |β′(s)| =
|(τ/κ)′|

1 + (τ/κ)2 ,

where sβ is arc length along β(s). Hence, using the Frenet–Serret relations, the Frenet–Serret apparatus of
β(s) can be computed as

κβ = τβ =
1
√

2
, tβ = ±

1
√

2

 −τ/κ√
1 + (τ/κ)2

,
1√

1 + (τ/κ)2
, 1

 ,
nβ =

−(1, τ/κ, 0)√
1 + (τ/κ)2

, bβ =
±(τ/κ,−1,

√
1 + (τ/κ)2)

√
2
√

1 + (τ/κ)2
.

Thus, β(s) is a circular helix, since τβ/κβ = 1. Hence, the unit speed Frenet curve α(s) is either a general
helix, or there is a unique circular helix β(s) defined by (27) associated with it.

Definition 4.1. For a unit speed Frenet curve α(s) : I → E3 of class Ck, k ≥ 4 that is not a general helix, the
unique circular helix β(s) identified by (27) is called the associated circular helix of the Frenet curve α(s).

In the remainder of this section, we use the circular helix associated with non–helical Frenet curves to
formulate new characterizations for slant helices, Salkowski curves, spherical curves and rectifying curves.
Note that a given proper slant helix α(s) : I → E3 has two helices associated with it: the general helix
identified in Theorem 3.2 and the associated circular helix (27). We now prove the following characterization
for a proper slant helix.
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Proposition 4.1. A unit–speed Frenet curve α(s) : I → E3 of class Ck, k ≥ 4 with Frenet–Serret apparatus
{κ, τ, t,n,b} is a proper slant helix if and only if the circular helix associated with it is given by

β(s) =
1
√

2

(√
1 − f 2, f , sin−1 f

)
, (28)

where f = c
∫
κds and c is a non–zero constant.

Proof : Let α(s) be a unit–speed proper slant helix, which by the proof of Theorem 3.1 satisfies f 2 < 1.
Then substituting τ/κ = tanθ in equation (3) yields ±θ′ cosθ = cκ. Absorbing the sign ambiguity into the
constant c and integrating we find

sinθ = c
∫
κ ds = f .

Since c , 0, α(s) is not a general helix. The circular helix (27) associated with α(s) is thus given by

β(s) =
1
√

2
(cosθ, sinθ, θ) =

1
√

2

(√
1 − f 2, f , sin−1 f

)
.

Conversely, let the circular helix associated with the unit–speed Frenet curve α(s) : I→ E3 be given by (28),
where f = c

∫
κ ds, c , 0. Then we have

1 + (τ/κ)2 =
1

1 − f 2 and f =
τ/κ√

1 + (τ/κ)2
, (29)

that is,

τ/κ =
f√

1 − f 2
, where f = c

∫
κ ds,

which by Theorem 3.1 shows that α(s) is a proper slant helix.

Recalling [20] that every Salkowski curve is a proper slant helix, we now find the constant c in equation
(3). The curvature and torsion of a Salkowski curve α(s) are given by (20) with m = cotφ, where φ is the
constant angle made by principal normal with a fixed direction and s is arc length. Hence, for a unit–speed
Salkowski curve, we obtain

(τ/κ)′ =
±m

(1 −m2s2)3/2
and 1 + (τ/κ)2 =

1
1 −m2s2 .

Thus, the equation (3) takes the form

κ2 (τ/κ)′

(τ2 + κ2)3/2
= ±m,

and the constant is c = ±m. This leads to the following characterization of Salkowski curves in terms of
their associated circular helices.

Proposition 4.2. A unit–speed Frenet curve α(s) : I → E3 of class Ck, k ≥ 4 with Frenet–Serret apparatus
{κ, τ, t,n,b} is a Salkowski curve if and only if the circular helix associated with it is given by

β(s) =
1
√

2

(√
1 −m2s2,±ms,± sin−1(ms)

)
, (30)

where m , 0,±1/
√

3 is a non–zero constant.
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Proof : Let α(s) be a unit–speed Salkowski curve with curvature and torsion given by (20). Since α(s) is
a proper slant helix satisfying (3) with c = ±m, its associated circular helix is given by equation (28) in
Proposition 4.1, where f = ±m

∫
κ ds = ±ms + b. By the re–parametrization s → s − b/(±m), we obtain

f = ±ms and then equation (28) reduces to the stated form (30).
Conversely, suppose the unit–speed Frenet curve α(s) has the curve (27) as its associated circular helix.

Setting f = ±ms = c
∫

ds, this becomes

β(s) =
1
√

2
(
√

1 − f 2, f , sin−1 f ),

which by Proposition 4.1 indicates that α(s) is a proper slant helix with curvature κ = 1 and torsion τ
satisfying (29) so that

1 +
(
τ
1

)2
=

1
1 − f 2 , i.e., τ(s) =

±ms
√

1 −m2s2
.

Hence, α(s) is a Salkowski curve [20].

We consider next the circular helices associated with spherical curves.

Proposition 4.3. A non–helical unit–speed Frenet curve α(s) : I → E3 of class Ck, k ≥ 4 with Frenet–Serret
apparatus {κ, τ, t,n,b} is a spherical curve on a sphere of radius c if and only if the circular helix associated with it is
given by

β(s) =
1
√

2

 1√
1 + f 2

,
f√

1 + f 2
, tan−1 f

 , (31)

where f = c τ cos
(∫
τ ds

)
and c is a positive constant.

Proof : Suppose that α(s) is a non–helical unit–speed spherical curve that lies on a sphere of radius c. Then
by integration of equation (5) we have

1
κ2 +

κ′2

κ4τ2 = c2,

which gives

κ′

κ
√
κ2 − 1/c2

= ±c τ

and on integration this yields

cκ = ± sec
( ∫

τds
)
.

Absorbing the sign ambiguity into the constant c and setting f = τ/κ, this is equivalent to

f = c τ cos
( ∫

τds
)
.

Hence, the circular helix (27) associated with α(s) is given by

β(s) =
1
√

2

 1√
1 + f 2

,
f√

1 + f 2
, tan−1 f

 , f = c τ cos
( ∫

τds
)
.
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Conversely, suppose that the circular helix associated withα(s) is given by (31), where f = c τ cos
(∫
τ ds

)
with c a non–zero constant. Then the first component of β(s) gives τ/κ = f , and consequently we have

ρ = c cos
( ∫

τ ds
)
.

Differentiating this twice yields

(ρ′σ)′ = − c τ cos
( ∫

τ ds
)
,

and combining these two relations indicates satisfaction of equation (5), so that α(s) is a spherical curve that
lies on the sphere of radius c.

Finally, we consider the circular helices associated with rectifying curves. We first obtain the following
result, characterizing rectifying curves in terms of their dilated centrodes ωd(s) defined by (8).

Proposition 4.4. A unit–speed Frenet curve α(s) : I→ E3 with Frenet–Serret apparatus {κ, τ, t,n,b} is a rectifying
curve if and only if its position vector is given by

α(s) =
ωd(s)
(τ/κ)′

, (32)

where ωd(s) is the dilated centrode of α(s).

Proof : Suppose that the unit–speed curve α(s) is a rectifying curve. Then its position vector is given [4] by

α(s) = (s + a) t + c b, (33)

where a and c , 0 are constants. Differentiating this relation yields α′(s) = t + ((s + a)κ− cτ) n = t, since α(s)
is unit speed. Hence, we have

τ/κ =
s + a

c
and (τ/κ)′ =

1
c
.

Consequently, using equations (7)–(8) and (33), we have

α(s) = c (τ/κ) t + c b =
ωd(s)
(τ/κ)′

.

Conversely, if α(s) is of them form (32), we have 〈α(s),n(s)〉 = 0 for s ∈ I, since ωd = (τ/κ) t + b, and thus
α(s) is a rectifying curve.

Proposition 4.5. A unit–speed Frenet curve α(s) : I → E3 of class Ck, k ≥ 4 with Frenet–Serret apparatus
{κ, τ, t,n,b} is a rectifying curve if and only if the circular helix associated with it is given by

β(s) =
1
√

2

(
c

√

c2 + s2
,

s
√

c2 + s2
, tan−1(s/c)

)
, (34)

where c is a non–zero constant.

Proof : Suppose that α(s) is a unit–speed rectifying curve. Then by equation (4), we have

τ(s)
κ(s)

= as + b,

where a , 0, b are constants. The re–parametrization s→ s − b/a yields

τ(s)
κ(s)

= as
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and since α(s) is not a general helix, its associated circular helix is given by Theorem 4.1 as

β(s) =
1
√

2

 1√
1 + (as)2

,
as√

1 + (as)2
, tan−1(as)

 ,
which is the required form (34) with c = a−1.

Conversely, suppose that the unit speed curve has the associated circular helix (34). Then from equation
(27) we have

τ
κ

=
s
c
,

i.e, the torsion/curvature ratio of α(s) is a non–trivial linear function of arc length, and hence it is a rectifying
curve.

Remark 4.1. Recall that there are essentially two ways to generate rectifying curves: through the dilated
centrodes of a Frenet curve, and by the dilation of certain spherical curves. Note that for each rectifying
curve α(s), there is a unique unit–speed curve γ(s) (excluding great circles) on the unit sphere S2 with center
at the origin [7] such that

α(s) = a sec(s + s0)γ(s),

where a , 0 and s0 are constants. However, this expression does not define a unit–speed curve — if sα is
arc length along α(s), its parametric speed (assuming that a > 0) is

vα =
dsα
ds

= |α′(s)| = a sec2(s + s0), (35)

since |γ(s)| = |γ′(s)| = 1, 〈γ(s),γ′(s)〉 = 0. The curvature κα and torsion τα of α(s) are given by equation
(6). Integrating (35), the arc length of α(s) is sα = a tan(s + s0) + b for some constant b, and using the
re–parameterization sα → sα − b and equation (6), we obtain

τα
κα

=
s
a
.

Since α(s) is a rectifying curve, it is not a general helix, and its associated circular helix is thus obtained
from (27) as

β(s) =
1
√

2

 1√
1 + (s/a)2

,
s/a√

1 + (s/a)2
, tan−1(s/a)

 ,
which is in agreement with the expression as given in Proposition 4.5.

5. Pythagorean-hodograph curves

Although the unit–speed parameterization offers an intrinsic approach to the differential geometry of
space curves, it is incompatible with simple (rational) curves when κ . 0 [12]. The Pythagorean–hodograph
curves [8] offer a useful compromise between the conflicting requirements of relating the parameter to the
curve intrinsic geometry, while maintaining a rational form. We consider now the results of the preceding
sections in the context of the Pythagorean–hodograph curves, with non–unit–speed parameterizations.

Definition 5.1. A polynomial/rational curve α(ξ) = (x(ξ), y(ξ), z(ξ)), with a general parameter ξ, is called a
Pythagorean–hodograph (PH) curve if the components of its hodograph (derivative) α′(ξ) = (x′(ξ), y′(ξ), z′(ξ))
satisfy

x′2(ξ) + y′2(ξ) + z′2(ξ) = σ2(ξ) (36)

for some polynomial/rational function σ(ξ).
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Here σ(ξ) represents the parametric speed of α(ξ), i.e., the derivative

σ(ξ) = |α′(ξ)| =
ds
dξ

of its arc length s with respect to the parameter ξ. Polynomial/rational PH curves have rational tangents
t(ξ) = α′(ξ)/|α′(ξ)|. However, they differ with regard to the arc length function,

s(ξ) =

∫
σ(ξ) dξ . (37)

For a polynomial PH curve, σ(ξ) is a polynomial, so s(ξ) is evidently also a polynomial. But for a rational
PH curve, σ(ξ) is a rational function, and its integral does not (in general) yield a rational arc length function
s(ξ).

A polynomial PH curve is generated [8] from a quaternion polynomial

A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ) k (38)

and its conjugateA∗(ξ) = u(ξ) − v(ξ) i − p(ξ) j − q(ξ) k by integrating the product

α′(ξ) = A(ξ) iA∗(ξ) = [ u2(ξ) + v2(ξ) − p2(ξ) − q2(ξ) ] i
+ 2 [ u(ξ)q(ξ) + v(ξ)p(ξ) ] j + 2 [ v(ξ)q(ξ) − u(ξ)p(ξ) ] k , (39)

and the resulting PH curve α(ξ) has the parametric speed

σ(ξ) = |A(ξ)|2 = u2(ξ) + v2(ξ) + p2(ξ) + q2(ξ) . (40)

Definition 5.2. A polynomial/rational curve α(ξ) = (x(ξ), y(ξ), z(ξ)), with a general parameter ξ, is called a
double Pythagorean–hodograph (DPH) curve if |α′(ξ)| and |α′(ξ)×α′′(ξ)| are both polynomial/rational functions.

It may be shown [9] that the polynomial PH curve defined by (39) satisfies

|α′(ξ) × α′′(ξ)|2 = σ2(ξ)ρ(ξ), (41)

where ρ(ξ) is the polynomial defined in terms of the components of (38) as

ρ = 4 [ (up′ − u′p + vq′ − v′q)2 + (uq′ − u′q − vp′ + v′p)2 ]. (42)

Thus, if α(ξ) is a polynomial DPH curve, ρ(ξ) must be a perfect square, i.e., for some polynomial ω(ξ) we
have

ρ(ξ) = ω2(ξ) . (43)

Lemma 5.1. The set of all polynomial/rational curves with a rational Frenet–Serret apparatus is identical to the set
of all polynomial/rational DPH curves.

Proof : Recall [19] that, for a curve α(ξ) with a general parameterization, the Frenet–Serret apparatus
(κ, τ, t,n,b) is given by(

|α′ × α′′|
|α′|3

,
〈α′ × α′′,α′′′〉
|α′ × α′′|2

,
α′

|α′|
,
α′ × α′′

|α′ × α′′|
×
α′

|α′|
,
α′ × α′′

|α′ × α′′|

)
. (44)

Thus |α′(ξ)| and |α′(ξ) × α′′(ξ)| being polynomial/rational functions is clearly sufficient and necessary for a
rational Frenet–Serret apparatus.

Note that the centrodes ω(ξ) = τ(ξ) t(ξ) + κ(ξ) b(ξ) and dilated centrodes ωd(ξ) = ω(ξ)/κ(ξ) of polyno-
mial/rational DPH curves are rational curves.
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Lemma 5.2. If a polynomial/rational curve α(ξ) is a general helix, it must be a polynomial/rational PH curve.

Proof : This result is a consequence of the fact that, since t(ξ) = α′(ξ)/|α′(ξ)|, the helix condition 〈t(ξ),u〉 =
cosψ is equivalent [11] to

〈α′(ξ),u〉 = cosψ |α′(ξ)|. (45)

For any polynomial/rational curve α(ξ), the left–hand side of equation (45) is clearly a polynomial/rational
function, but α(ξ) must be a PH curve for the right–hand side to also be a polynomial/rational function.

Remark 5.1. It is known [9, 10] that every helical polynomial PH curve must also be a DPH curve, although
there exist polynomial DPH curves of degree 7 and higher that are not helical.

Lemma 5.3. If a polynomial PH curveα(ξ) is a general helix satisfying (2), the triple product 〈α′(ξ)×α′′(ξ),α′′′(ξ) 〉
must be proportional to the cube of a polynomial ω(ξ).

Proof : Since every helical polynomial PH curve α(ξ) is a polynomial DPH curve, the polynomial (42)
that appears in equation (41) must be of the form (43) for some polynomial ω(ξ). Thus, α(ξ) has a
torsion/curvature ratio of the form

τ(ξ)
κ(ξ)

=
〈α′(ξ) × α′′(ξ),α′′′(ξ) 〉

ω3(ξ)
.

This is constant only if the numerator and denominator are proportional.

Lemma 5.4. If a polynomial/rational curve α(ξ) is a slant helix, it must be a polynomial/rational DPH curve.

Proof : Since the principal normal to α(ξ) is defined by

n(ξ) =
α′(ξ) × α′′(ξ)
|α′(ξ) × α′′(ξ)|

×
α′(ξ)
|α′(ξ)|

,

the slant helix condition 〈n(ξ),u〉 = cosφ reduces to

〈 [α′(ξ) × α′′(ξ) ] × α′(ξ),u 〉 = cosφ |α′(ξ)| |α′(ξ) × α′′(ξ)|.

Again, the left–hand side of this equation is a polynomial/rational function if α(ξ) is a polynomial/rational
curve, so it can only be satisfied when |α′(ξ)| and |α′(ξ) × α′′(ξ)| are both polynomial/rational functions —
i.e., when α(ξ) is a polynomial/rational DPH curve.

Lemma 5.4 has been noted by Monterde [20]. Since the Salkowski curves — with constant curvature
and non–constant torsion — discussed in [20] are rational slant helices, they are also rational DPH curves.
Furthermore, as a corollary to Theorem 3.3 and Lemma 5.4, we deduce the following.

Corollary 5.1. The centrode ω(ξ) = τ(ξ)t(ξ) + κ(ξ)b(ξ) of a Salkowski curve α(ξ) : I → E3 is a rational DPH
curve.

Finally, we consider how rectifying curves fit in the context of PH curves.

Lemma 5.5. If a polynomial curve α(ξ) is a rectifying curve, it must be a DPH curve.

Proof : It is shown in [4] that a rectifying curve must be expressible in terms of its arc length s(ξ), tangent
t(ξ) and binormal b(ξ), and constants p, q as

α(ξ) = (s(ξ) + p) t(ξ) + q b(ξ) .
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Substituting for t(ξ), b(ξ) and clearing denominators, this is equivalent to

|α′(ξ)| |α′(ξ) × α′′(ξ)|α(ξ) = |α′(ξ) × α′′(ξ)| (s(ξ) + p)α′(ξ) + q |α′(ξ)|α′(ξ) × α′′(ξ) .

For a polynomial curve α(ξ) to satisfy this condition, |α′(ξ)|, |α′(ξ) × α′′(ξ)|, and s(ξ) must be polynomials.
These are precisely the defining properties of a polynomial DPH curve. Specifically, substituting from (37)
and (40)–(43) we obtain the polynomial condition

σ(ξ)ω(ξ)α(ξ) = ω(ξ) (s(ξ) + p)α′(ξ) + qα′(ξ) × α′′(ξ) .

If the quaternion polynomial (38) is of degree m, the expression on the left and first term on the right of this
equation are of equal degree 6m − 1, while the second term on the right is of of degree 4m − 1.

The degree considerations in the preceding proof show that the existence of polynomial DPH rectifying
curves is not prima facie impossible, although actually constructng them and identifying their simplest
instances is a non–trivial task, which we do not attempt at present. Similar considerations apply to the
study rational DPH rectifying curves, with the additional complication that such curves do not, in general,
have rational arc length functions.
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