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Abstract. We consider the notion of generalized density, namely, the natural density of weight 1 recently
introduced in [4] and primarily study some sufficient and almost converse necessary conditions for the
generalized statistically convergent sequence under which the subsequence is also generalized statistically
convergent. Also we consider similar types of results for the case of generalized statistically bounded
sequence. Some results are further obtained in a more general form by using the notion of ideals. The entire
investigation is performed in the setting of Riesz spaces extending the recent results in [13].

1. Introduction

A Riesz space is an ordered vector space which is a lattice at the same time. It was first introduced
by F. Riesz [32] in 1928. Riesz spaces have many applications in measure theory, operator theory and
optimization. They have also some applications in economics(see [3]).

Recall that a topology on a vector space that makes the operations of addition and scalar multiplica-
tion continuous is said to be a linear topology. A vector space equipped with a linear topology is called a
topological vector space. A Riesz space equipped with a linear topology that has a base at zero consisting
of solid sets is called a locally solid Riesz space [3].

The notion of statistical convergence, which is an extension of the idea of usual convergence, was in-
troduced by Fast [19] and Schoenberg [35] and its topological consequences were studied by Fridy [21]
and Šalát [23]. The study of statistical convergence and its numerous extensions and, in particular, of the
ideal convergence and its applications, has been one of the most active areas of research in the summability
theory over the last 15 years. Subsequently, in a very recent development, the idea of statistical convergence
of sequences was studied by Albayrak and Pehlivan [2] in locally solid Riesz spaces.

Naturally, it seems likely that the investigations of these generalized methods of convergence may provide
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a natural foundation for upbuilding of various tangent spaces to general metric spaces. The construction
of tangent spaces in [7, 8, 15–17] is primarily based on the fundamental fact that, for a convergent sequence
(xn) in a metric space, each its subsequence (xnk ) is also convergent. However, this is generally not true for
the generalized methods of convergence mentioned above.
Very recently (see [25]), following the line of investigation in [27], the conditions have been studied for the
density of a subsequence of a statistically bounded and also statistically convergent sequence under which
the indicated subsequence is also statistically bounded or statistically convergent in the setting of metric
space.

As a natural consequence, in [13] Das and Savas investigated the similar type problem that are proposed
in [25] for metric valued sequences by considering the notion of natural density of weight 1, which was
introduced in [4].

In the present paper we continue the investigation proposed in [25] and study similar type problems
for Riesz space-valued sequences by considering the notion of natural density of weight 1 as also the notion
of f -density (introduced and studied in [2]).

2. Preliminaries

First we recall some of the basic concepts related to Riesz spaces and we refer to [32] for more details.

Definition 2.1. Let L be a real vector space and ” ≤ ” be a partial order on this space. L is said to be an ordered
vector space if it satisfies the following properties:

(i) If x, y ∈ L and y ≤ x then y + z ≤ x + z for each z ∈ L.
(ii) If x, y ∈ L and y ≤ x then λy ≤ λx for each λ ≥ 0.

Definition 2.2. A nonempty set L is said to a lattice with respect to the partial order ≤ if for each pair of elements
x, y ∈ L, both the supremum and infimum of the set {x, y} exists in L.

We shall write x ∨ y = sup{x, y} and x ∧ y = in f {x, y}. For x ∈ L we further define |x| = x ∨ (−x).

Definition 2.3. If L is an ordered vector space as well as a lattice, then we call L a Riesz space or a Vector lattice.

A subset S of a Riesz space L is said to be solid if y ∈ S and |x| ≤ |y| imply that x ∈ S.

Definition 2.4. A topological vector space (L, τ) is a real vector space L which has a topology τ, such that, the
mappings : L × L −→ L and : R × L −→ L defined by (x, y) −→ x + y and (a, x) −→ ax are continuous. In this case
the topology is called linear topology.

A topological vector space L is said to be locally solid if τ has a base at zero(local base) consisting of
solid sets.

Definition 2.5. A locally solid Riesz space (L, τ) is a Riesz space L equipped with a locally solid topology τ on L.

Every linear topology τ on a vector space L has a base N consisting of the neighborhoods of θ (zero)
satisfying the following properties:

(a) Each V ∈ N is a balanced set; that is, λx ∈ V holds for all x ∈ V and every λ ∈ R with | λ |≤ 1.
(b) Each V ∈ N is an absorbing set; that is, for every x ∈ L, there exists a λ > 0 such that λx ∈ V.
(c) For each V ∈ N there exists some W ∈ N with W + W ⊆ V
Recall that the Natural density or Asymptotic density of A ⊆N is defined by [6, 34, 36]

d(A) = lim
n→∞

|A(n)|
n

where A(n) = |{k ≤ n : k ∈ A}| = |A∩{1, 2, 3...,n}|, the number of elements of A not exceeding n. For example,
a finite subset of positive integers has natural density zero.
In the sequel, by the symbol Nsol we will denote base at zero consisting of solid sets and satisfying the
properties (a), (b) and (c) in a locally solid topology. Throughout the paper (L, τ) denotes a locally solid
Riesz space and L̃ denotes the set of all sequences of points from L and D be an arbitrary directed set.
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3. Main Results

3.1. Results for f-density
The idea of modulus function was introduced by Nakano in 1953 [30]. He used the term concave

modular, and defined it on semi-ordered linear space. Several consequences were rather studied by
Ruckle[33], Maddox[28] etc.

Let f : [0,∞)→ [0,∞). f is called modulus function if it satisfies:

i) f (x) = 0 if and only if x = 0
ii) f (x + y) ≤ f (x) + f (y) for every x, y ∈ [0,∞)

iii) f (x) is increasing
iv) f is continuous from the right at 0.

Some examples are:

i) f (x) = x, x ∈ [0,∞)
ii) f (x) = x

1+x , x ∈ [0,∞)
iii) f (x) = log(1 + x), x ∈ [0,∞)
iv) f (x) = xp with 0 < p ≤ 1, x ∈ [0,∞).

From the condition that satisfied by a modulus function, it is clear that modulus function must be continuous
on R+. Using f -density we now introduce a version of statistical convergence in locally solid Riesz space
which we call it f -statistical convergence as in [2]. Throughout this section f denotes unbounded modulus
function.

The notion of f -density (density function via modulus function) was introduced by Aizpuru [1] as
follows:

Definition 3.1. Let f be an unbounded modulus function. The f -density of a set A ⊆N is defined by

d f (A) = lim sup
n→∞

f (| A(n) |)
f (n)

in case the limit exists.

Definition 3.2. If d f (A) = 1 then we say the set A ⊂N is f -dense subset ofN.

Note 3.1. For density function it is clear that d(A) = 1 − d(N\A), whenever one of the sides exists. If A ⊆ N and
d f (A) = 0 then d f (N\A) = 1 − d f (A). On the other cases the relation is not true.[1]

Definition 3.3. Let (L, τ) be a locally solid Riesz space and x̃ = (xn) be a sequence in L. Then we will say that
(xn) is f -statistical convergent to x0 and write f -st lim xn = x if for any τ-neighborhood U of zero we have
d f ({n ∈N : xn − x0 < U}) = 0.
i.e.

lim sup
n→∞

f (|{n ∈N : xn − x0 < U}|)
f (n)

= 0.

Note 3.2. f -statistical convergence coincides with statistical convergence when we take the modulus function as the
identity mapping.

Definition 3.4. Let (L, τ) be a locally solid Riesz space and x̃ = (xn) be a sequence in L. x̃ is called bounded if for
every x ∈ L there is a τ-neighborhood U of zero such that xn − x ∈ U for all n.

Definition 3.5. Let (L, τ) be a locally solid Riesz space and x̃ = (xn) be a sequence in L. x̃ is called f -statistically
bounded if for every x ∈ L there is a τ-neighborhood U of zero such that

lim sup
n→∞

f (|{k : k ≤ n, xn − x < U}|)
f (n)

= 0.
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Note 3.3. It is clear from the definition that, a sequence x̃ = (xn) in L is f -statistically bounded if and only if the
sequence (xn − x) is f -statistical bounded for an arbitrary x ∈ L.

Definition 3.6. Two sequences x̃ = (xn) ∈ L̃ and ỹ = (yn) ∈ L̃ are f -statistically equivalent, if there is a f -dense set
A ⊂N such that xn = yn for every n ∈ A.

Definition 3.7. Let x̃ = (xn) ∈ L̃. If (nk) is an infinite strictly increasing sequence of natural number, then x̃′ = (xnk )
is called a subsequence of x̃. Let Kx̃′ = {nk : k ∈N}. x̃′ is called f -dense subsequence of x̃ if Kx̃′ is a f -dense subset of
N, i.e. d f (Kx̃′ ) = 1.

We know that for any metric space if a sequence is convergent then it is bounded. We now show that
similar type relation holds for f -statistical convergence.

Theorem 3.1. Let (L, τ) be a locally solid Riesz space and x̃ = (xn) be a sequence in L. The following statements hold:
(i) If x̃ is bounded then x̃ is f -statistically bounded.
(ii) If x̃ is f -statistically convergent to x0 ∈ L then x̃ is f -statistically bounded.

Proof. (i) Let x̃ is bounded. Then for every x ∈ L, there exists a τ-neighborhood U of zero such that xn−x ∈ U
for all n. So, |{k : k ≤ n, xn − x < U}| = 0. This implies f (| {k : k ≤ n, xn − x < U} |) = 0. Hence x̃ is f -statistical
bounded.

(ii) Let f -stlim xn = x0. For any arbitrary τ-neighborhood U of zero we can choose a τ-neighborhood
W of zero such that {k : k ≤ n, xn − x0 < W} ⊂ {n : xn − x0 < U} i.e. |{k : k ≤ n, xn − x0 < W}| ≤
|{n : xn − x0 < U}|. As given x̃ is f -statistical convergent and f is unbounded modulus function so,

lim sup
n→∞

f (|{k : k ≤ n, xk − x0 <W}|)
f (n)

= 0. Therefore x̃ is f -statistically bounded.

Converses of each cases of the theorem above are not true in general. The following example gives
support about this.

Example 3.1. Consider real line R with usual metric and consider the sequence x̃ = (xn) where xn = {(−1)n
}.

Take f (x) = x, x ∈ [0,∞) as a modulus function. Clearly this sequence x̃ is f -statistically bounded but it is not
f -statistically convergent.

Example 3.2. Consider the sequence x̃ = (xn) in real line R with usual metric where xn = 0 if n , 10k and xn = k if
n = 10k. Also consider f (x) = x, x ∈ [0,∞) as a modulus function. Then x̃ is f -statistically bounded which is not a
bounded sequence.

Theorem 3.2. Let (L, τ) be a locally solid Riesz space and let x̃ = (xn) be f -statistical convergent sequence. Also let
x̃′ = (xnk ) be any subsequence of x̃. Then x̃′ is f -statistically bounded.

Proof. Let x̃ = (xn) be f -statistically converges to x0. Then obviously x̃ is f -statistically bounded by above
theorem. It is clear that for any τ neighborhood U of zero, {nk : nk ≤ n, xnk −x0 < U} ⊂ {k : k ≤ n, xk−x0 < U}.
Hence |{nk : nk ≤ n, xnk − x0 < U}| ≤ |{k : k ≤ n, xk − x0 < U}|. As x̃ is f -statistically bounded so for

any unbounded modulus function f , we have 0 ≤ lim sup
n→∞

f (|{nk : nk ≤ n, xnk − x0 ∈ U}|)
f (n)

≤ 0. That is x̃′ is

f -statistically bounded.

We know that, every subsequence of a convergent sequence is also convergent in a metric space. But
this is not generally true for statistical convergence. In the articles [25, 27] some investigation done that
under what condition subsequence of a statistical convergent sequence is also convergent. Following this
line of investigation some work done in [13]. We prove the next results in this direction.

Theorem 3.3. Let (L, τ) be a locally solid Riesz space, let x̃ = (xn) ∈ L̃ and let x̃′ = (xnk ) be a subsequence of x̃ such

that lim inf
n→∞

f (|Kx̃′ (n)|)
f (n)

> 0. If x̃ is f -statistically convergent to x0 ∈ L then x̃′ is also f -statistically convergent to x0.
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Proof. Suppose that x̃ is f -statistically convergent to x0. Let U be a τ-neighborhood of zero. Then from
definition

lim sup
n→∞

f (|{m : m ≤ n, xn − x0 < U}|)
f (n)

= 0

. In order to prove that x̃′ is f -statistically convergent to x0 we have to show that

lim sup
n→∞

f (|{nk : nk ≤ n, xnk − x0 < U}|)
f (|Kx̃′ (n)|)

= 0,

where Kx̃′ (n) = Kx̃′ ∩ {1, 2, 3, ...,n}.
Then clearly, {nk : nk ≤ n, xnk − x0 < U} ⊆ {m : m ≤ n, xm − x0 < U}. Thus we can write

f (|{nk : nk ≤ n, xnk − x0 < U}|)
f (|Kx̃′ (n)|)

≤
f (|{m : m ≤ n, xm − x0 < U}|)

f (|Kx̃′ (n)|)

We know for any two sequences (αn) and (βn) of nonnegative real numbers with 0 , lim inf
n→∞

αn < ∞, we have
lim inf

n→∞
αnlim sup

n→∞
βn ≤ lim sup

n→∞
αnβn.

Now take αn =
f (|Kx̃′ (n)|)

f (n) and βn =
f ({m: m≤n, xm−x0<U})

f (|Kx̃′ (n)|) , then αnβn =
f ({m: m≤n, xm−x0<U})

f (n) . Therefore it follows that

lim inf
n→∞

f (|Kx̃′ (n)|)
f (n)

lim sup
n→∞

f (|{m : m ≤ n, xm − x0 < U}|)
f (|Kx̃′ (n)|)

≤ lim sup
n→∞

f (|{m : m ≤ n, xm − x0 < U}|)
f (n)

.

Since x̃ is f -statistically convergent to x0, the right hand side of the above inequality is zero. Also by our

assumption lim inf
n→∞

f (|Kx̃′ (n)|)
f (n)

> 0, hence we find

lim sup
n→∞

f (|{m : m ≤ n, xm − x0 < U}|)
f (|Kx̃′ (n)|)

= 0.

Then by (1)

lim sup
n→∞

f (|{nk : nk ≤ n, xnk − x0 < U}|)
f (|Kx̃′ (n)|)

= 0.

Hence x̃′ is f -statistically convergent to x0.

Theorem 3.4. Let (L, τ) be a locally solid Riesz space and let x̃, ỹ be two f -statistically equivalent sequence in L. If

K is a subset of N such that 0 ≤ lim sup
n→∞

f (n)
f (|K(n)|)

< +∞ and if x̃′ = (xnk ) and ỹ′ = (ynk ) are subsequences of x̃, ỹ

respectively such that Kx̃′ = Kỹ′ = K, then x̃′ and ỹ are f -statistically equivalent.

Proof. Given that x̃, ỹ are f -statistically equivalent, so there exists f -dense set M ⊂ N such that xn = yn for
all n ∈M. Equivalently, f (|{n∈N : xn,yn and n≤m}|)

f (m) = 0
We have to show that x̃′ and ỹ′ are f -statistically equivalent, i.e. xnk = ynk for all nk ∈M with d f (M) = 1.

Equivalently we have to show that d f {nk : xnk , ynk } = 0. i.e.

lim sup
m→∞

f (|{nk ∈ K : xnk , ynk and nk ≤ m}|)
f (|K(m)|)

= 0

Now for any m ∈N, we have

{nk ∈ K : xnk , ynk and nk ≤ m} ≤ {n ∈N : xn , ynand n ≤ m}.
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So for any unbounded modulus function f , we have

lim sup
m→∞

f (|{nk ∈ K : xnk , ynk and nk ≤ m}|)
f (|K(m)|)

≤ lim sup
m→∞

f (|{n ∈N : xn , yn and n ≤ m}|)
f (|K(m)|)

≤ lim sup
m→∞

f (|{n ∈N : xn , yn and n ≤ m}|)
f (m)

lim sup
m→∞

f (m)
f (|K(m)|)

[We know for any two bounded sequences of non-negative reals (un) and (vn), then

lim sup(unvn) ≤ (lim sup un)(lim sup vn)]

Now using the given assumption that x̃, ỹ be two f -statistically equivalent sequence in L and

0 ≤ lim sup
n→∞

f (n)
f (|K(n)|)

< +∞, we get

lim sup
m→∞

f (|{nk ∈ K : xnk , ynk and nk ≤ m}|)
f (|K(m)|

= 0.

Hence x̃′ and ỹ are f -statistically equivalent.

3.2. Results for weighted density
In [4], the notion of natural density was further extended as follows: Let 1 :N→ [0,∞) be a function with

lim
n→∞
1(n) = ∞. The upper density of weight 1was defind in [4] by the formula d1(A) = lim sup

n→∞

card(A ∩ [1,n])
1(n)

for A ⊂ N. Let I1 = {A ⊂ N : d1(A) = 0}. Then I1 is an ideal of N. Also N ∈ I1 if and only if n
1(n) → 0.

Hence we assume that n
1(n) 9 0. Hence N < I1, and it was observed in [4] that I1 is a proper admissible

P-ideal of N. The collection of all functions 1 of this kind satisfying the above mentioned properties is
denoted by G. As a natural consequence we can introduce the following definitions:

Definition 3.8. Let (L, τ) be a locally solid Riesz space and x̃ = (xn) be a sequence in L. x̃ is called bounded if for
every x ∈ L there is a τ-neighborhood U of zero such that xn − x ∈ U for all n.

Definition 3.9. Let (L, τ) be a locally solid Riesz space and x̃ = (xn) be a sequence in L. x̃ is called d1-statistically
bounded if for every x ∈ L there is a τ-neighborhood U of zero such that

lim sup
n→∞

|{k : k ≤ n, xn − x < U}|
1(n)

= 0.

Definition 3.10. Let (L, τ) be a locally solid Riesz space and (xn) ∈ L̃. Then (xn) is said to be d1-statistically
convergent to x0 ∈ L if for any τ-neighborhood U of zero we have d1(AU) = 0, where AU = {n ∈N : xn − x0 < U}.

In what follows, we present several more basic definition required throughout the paper.

Definition 3.11. [11] A set K ⊂N is called d1-dense subset ofN if d1(Kc) = 0.

Definition 3.12. Let (L, τ) be a locally solid Riesz space. A sequence (xn) ∈ L̃ is said to be I(τ)-convergent to an
element x0 ∈ L if for each τ-neighborhood U of zero {k ∈N : xk − x0 < U} ∈ I.

Definition 3.13. [13]A set K ⊂N is called I-dense subset ofN if K ∈ F (I).

Definition 3.14. (cf. [13]) If (n(k)) is an infinite strictly increasing sequence of natural numbers and x̃ = (xn) ∈ L̃,
then we write x̃′ = (xn(k)) and Kx̃′ = {n(k) : k ∈ N}. A subsequence x̃′ is called an I-dense subsequence of x̃, if Kx̃′ is
an I-dense subset ofN.
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Definition 3.15. (cf. [13]) Two sequences x̃ = (xn) ∈ L̃ and ỹ = (yn) ∈ L̃ are I-equivalent,x̃ � ỹ, if there is an
I-dense set M ⊂N such that xn = yn for every n ∈M.

The following definitions are special case of the last two definitions:

Definition 3.16. If (n(k)) is an infinite strictly increasing sequence of natural numbers and x̃ = (xn) ∈ L̃, then we
write x̃′ = (xn(k)) and Kx̃′ = {n(k) : k ∈ N}. A subsequence x̃′ is called an d1-dense subsequence of x̃, if Kx̃′ is an
d1-dense subset ofN.

Definition 3.17. Two sequences x̃ = (xn) ∈ L̃ and ỹ = (yn) ∈ L̃ are d1-statistically equivalent,x̃ � ỹ(d1-statistically),
if there is an d1-dense set M ⊂N such that xn = yn for every n ∈M.

The first result shows that there is a one-to-one correspondence between topologies on L and the subsets of
L̃ consisting of all I-convergent net for certain special types of ideals. The result is in line of Theorem 3.1
in [13].

Theorem 3.5. Let (L, τ1) and (L, τ2) be two locally solid Riesz spaces. Let I be a DP-ideal, which is not maximal.
Then the following statement are equivalent: (i) The set of all τ1 − I-convergent nets coincides with the set of all
τ2 − I-convergent nets. (ii) The set of all nets convergent in (L, τ1) coincides with the set of all nets convergent in
(L, τ2). (iii) The topologies τ1 and τ2 are homeomorphic on L.

Proof. (ii)⇔ (iii): The result is well known.
(ii)→ (i): Let x̃ = (xn) be τ1 − I-convergent. Since I is a DP-ideal, we conclude that x̃ is τ1 − I

∗ convergent
i.e. there is a set M ∈ F (I) such that (x̃)M is τ1-convergent [26]. By (ii) (x̃)M is τ2-convergent, and hence x̃ is
τ2 − I

∗ convergent, which evidently implies that x̃ is τ2 − I convergent.
(i) → (iii) : Assume that (i) holds. If possible suppose that the topologies are distinct. Then there exists
x0 ∈ L and a τ1-neighborhood U0 of zero such that {x ∈ L : x − x0 ∈ U0} + {x ∈ L : x − x0 ∈ U2} for all
τ2-neighborhood U2 of zero or the opposite inclusion. Without loss of any generality we can assume that
the first one holds. For any n ∈ D we can choose xn ∈ L and a neighborhood Un of zero such that xn−x0 ∈ Un
and xn − x0 < U0 for each n ∈ D. We choose a set K ⊂ D such that K < I as well as Kc < I (because I is not
maximal). Further we define a net ỹ = (yn) ∈ L̃ by

yn =

xn if n ∈ K
x0 if n < K.

Clearly {n ∈ N : yn − x0 ∈ U0} = K < I. We now observe that the net ỹ = (yn) converges to x0 in (L, τ2)
and therefore is τ2 − I-convergent. By virtue of (i), ỹ = (yn) is also τ1 − I-convergent. Note that ỹ must be
τ1−I-convergent to x0 because, otherwise if ỹ is τ1−I-convergent to y0 , x0, then taking a τ1-neighborhood
U′ of zero with x0− y0 < U′, we obtain that {n : yn− y0 < U′} ⊃ Kc. Since Kc < I, we get {n : yn− y0 < U′} < I.
Which contradicts the fact that ỹ = (yn) is τ1 − I-convergent to y0. However if ỹ is τ1 − I-convergent to x0
then we must have {n : yn − x0 ∈ U0} = K ∈ I. Which contradicts the fact K < I. Thus (i)→ (iii) holds.

If the given sequence is d1-statistical convergent, it is natural to ask how we can check that its subsequence
is d1-statistical convergent to the same limit. Also it is natural to ask when the converse assertion is true.
We prove the next results in this direction, as also in the case of d1-statistical bounded sequences.

Theorem 3.6. Let (L, τ) be a locally solid Riesz space, let x̃ = (xn) ∈ L̃ and let x̃′ = (xn(k)) be a subsequence of x̃ such

that lim inf
n→∞

1(|Kx̃′ (n)|)
1(n)

> 0. If x̃ is d1-statistically convergent to x0 ∈ L, then x̃′ is also d1-statistically convergent to
x0.

Proof. Suppose that x̃ is d1-statistically convergent to x0. Let U be a τ-neighborhood of zero. Then clearly
{n(k) : n(k) ≤ n, xn(k) − x0 < U} ⊆ {m : m ≤ n, xm − x0 < U}. Thus we can write



S. K. Pal, S. Chakraborty / Filomat 33:15 (2019), 4989–5002 4996

1
1(|Kx̃′ (n)|)

|{n(k) : n(k) ≤ n, xn(k) − x0 < U}| ≤
|{m : m ≤ n, xm − x0 < U}|

1(|Kx̃′ (n)|)

In order to prove that x̃′ is d1-statistically convergent to x0 we have to show that

lim sup
n→∞

|{n(k) : n(k) ≤ n, xn(k) − x0 < U}|
1(|Kx̃′ (n)|)

= 0.

Now we know for any two sequences (αn) and (βn) of nonnegative real numbers with 0 , lim inf
n→∞

αn < ∞, we

have lim inf
n→∞

αnlim sup
n→∞

βn ≤ lim sup
n→∞

αnβn. Takeαn =
1(|Kx̃′ (n)|)
1(n) and βn = {m:m≤n,xm−x0<U}

1(|Kx̃′ (n)|) thenαnβn = {m:m≤n,xm−x0<U}
1(n) .

Therefore it follows that

lim inf
n→∞

1(|Kx̃′ (n)|)
1(n)

lim sup
n→∞

{m : m ≤ n, xm − x0 < U}
1(|Kx̃′ (n)|)

≤ lim sup
n→∞

{m : m ≤ n, xm − x0 < U}
1(n)

.

Since x̃ is d1-statistically convergent to x0, the right hand side of the above inequality is zero. Also by our

assumption lim inf
n→∞

1(|Kx̃′ (n)|)
1(n)

> 0, hence we find

lim sup
n→∞

{m : m ≤ n, xm − x0 < U}
1(|Kx̃′ (n)|)

= 0.

Hence x̃′ is d1-statistically convergent to x0.

The relation between bounded sequences and convergent sequences in an arbitrary metric space is known.
How will it be for d1-statistical boundedness and d1-statistical convergence? The next results will answer
this question and give some relations between d1-statistical bondedness and d1-statistical convergence of
Riesz space-valued sequences.

Theorem 3.7. Let (L, τ) be a locally solid Riesz space and x̃ = (xn) be a sequence in L. Then the following statements
hold:
(i) If x̃ is bounded then x̃ is d1-statistically bounded.
(ii) If x̃ is d1-statistically convergent to x0 ∈ L then x̃ is d1-statistically bounded.

Proof. (i) The proof is trivial.
(ii) For any arbitrary τ-neighborhood U of zero we can choose a τ-neighborhood U0 of zero such that
{k : k ≤ n, xk − x0 < U0} ⊂ {k : k ≤ n, xk − x0 ∈ U} i.e. |{k : k ≤ n, xk − x0 < U0}| ≤ |{k : k ≤ n, xk − x0 ∈ U}|. For

this inequality we have lim sup
n→∞

|{k : k ≤ n, xk − x0 < U0}|

1(n)
= 0. Therefore x̃ is d1-statistically bounded.

Note 3.4. The converse of (i) and (ii) does not hold generally as can be seen from [24].

Theorem 3.8. Let (L, τ) be a locally solid Riesz space and let x̃ = (xn) ∈ L̃. Let x̃′ = (xnk ) be a subsequence of x̃ which
is dense in (xn). If x̃ is d1-statistically bounded then x̃′ is also d1-statistically bounded.

Proof. Suppose x̃ is d1-statistically bounded. It is clear that there exists a τ-neighborhood U0 of zero and
x0 ∈ L such that {nk : nk ≤ n, xnk −x0 < U0} ⊂ {k : k ≤ n, xk−x0 < U0}. Then since |{nk : nk ≤ n, xnk −x0 < U0}| ≤

|{k : k ≤ n, xk − x0 < U0}| we have 0 ≤ lim sup
n→∞

|{nk : nk ≤ n, xnk − x0 ∈ U0}|

1(n)
≤ 0. That is x̃′ is d1-statistically

bounded.
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Theorem 3.9. Let (L, τ) be a locally solid Riesz space and let x̃ = (xn) ∈ L̃. Then the following statements are
equivalent:
(a) x̃ is d1-statistically convergent;

(b) Every subsequence x̃′ of x̃ with lim inf
n→∞

1(|Kx̃′ (n)|)
1(n)

> 0 is d1-statistically convergent;

(c) Every d1-statistically dense subsequence x̃′ of x̃ is d1-statistically convergent provided that 1 ∈ G is such that

0 < lim inf
n→∞

n
1(n)

< ∞.

Proof. (a)⇒ (b) follows from the Theorem 3.2. Since it is obvious that x̃ is a d1-dense subsequence of itself,
we conclude that (c)⇒ (a).
(b)⇒ (c) The proof is similar to the proof of Theorem 3.3 [13].

The next results are given in the more general version in terms of ideals.

Lemma 3.1. Let (L, τ) be a locally solid Riesz space with |L| > 2, let x̃ = (xn) ∈ L̃ and let x̃′ = (xn(k)) be an infinite
subsequence of x̃ such that Kx̃′ ∈ I. Then there exists a sequence ỹ ∈ L̃ and a subsequence ỹ′ of ỹ such that Kx̃′ = Kỹ′ ,
where ỹ′ is not I-convergent provided that I is not a maximal ideal.

Proof. Choose a and b be two disjoint elements from L and a subset M ⊂N such that M < I and in addition
M < F (I). Now let us define a sequence ỹ = (yn) ∈ L̃ as:

yn =


xn if n ∈N \ Kx̃′

a if n = n(k) ∈ Kx̃′ , where k ∈M
b if n = n(k) ∈ Kx̃′ , where k <M

Since Kx̃′ ∈ I, we getN \Kx̃′ ∈ F (I), which shows that x̃ � ỹ(ideally). Obviously taking ỹ′ = (yn(k)) we have
Kx̃′ = Kỹ′ . Hence for any c ∈ L choose a τ-neighborhood U of zero with (a− c)∨ (b− c) ∈ U, we observe that
{k : yn(k) − c < U} ⊃M or Mc and thus cannot belong to I. This shows that ỹ′ is not I-convergent.

Lemma 3.2. Let (L, τ) be a locally solid Riesz space, let a ∈ L and x̃ = (xn), ỹ = (yn) ∈ L̃. If x̃ is I-convergent to a
and x̃ � ỹ(ideally), then ỹ is also I-convergent to a.

Proof. Since x̃ � ỹ(ideally), there is M ∈ F (I) such that xn = yn for all n ∈ M. Hence clearly for any τ-
neighborhood U of zero {n : yn−a < U} ⊂Mc

∪{n : xn−a < U}. Since x̃ isI-convergent to a, {n : xn−a < U} ∈ I.
Which implies that {n : yn − a < U} ∈ I and hence ỹ is also I-convergent to a.

Using these Lemma 3.1 and Lemma 3.2 we can formulate the following theorem:

Theorem 3.10. Let (L, τ) be a locally solid Riesz space with |L| > 2, let a ∈ L and I be not maximal. Also let x̃ = (xn)
be I-convergent to a. Then for every infinite subsequence x̃′ of x̃ with Kx̃′ ∈ I there exists a sequence ỹ in L and a
subsequence ỹ′ of ỹ such that:
(i) x̃ � ỹ(ideally) and Kx̃′ = Kỹ′

(ii) ỹ is I-convergent to a.
(iii) ỹ′ is not I-convergent.

Lemma 3.3. Let (L, τ) be a locally solid Riesz space and x̃, ỹ ∈ L̃ with x̃ � ỹ(d1-statistically). If K is a subset of

N such that lim inf
n→∞

1(|K(n)|)
1(n)

> 0 and if x̃′ = (xn(k)) and ỹ′ = (yn(k)) are subsequences of x̃, ỹ respectively such that

Kx̃′ = Kỹ′ = K then the relation x̃′ � ỹ(d1-statistically) is true.

Proof. The proof is similar to the usual case with some trivial modification and so we omit it.
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Theorem 3.11. Let (L, τ) be a locally solid Riesz space and x̃ = (xn) be d1-statistically convergent to a. Suppose
that x̃′ = (xn(k)) is a subsequence of x̃ for which there are ỹ = (yn) and ỹ′ such that (i) x̃ � ỹ(d1-statistically) and

Kx̃′ = Kỹ′ . (ii) ỹ′ is not d1-statistically convergent. Then lim inf
n→∞

|Kx̃(n)|
1(n)

= 0 provided that 1 :N→ [0,∞) satisfying

the inequalities 0 < lim inf
n→∞

n
1(n)

and lim sup
n→∞

n
1(n)

< ∞.

Proof. If possible suppose that lim inf
n→∞

|Kx̃(n)|
1(n)

> 0. Then

lim inf
n→∞

1(|Kx̃′ (n)|)
1(n)

≥ lim inf
n→∞

1(|Kx̃′ (n)|)
|Kx̃′ (n)|

lim inf
n→∞

|Kx̃′ (n)|
1(n)

> 0

Let ỹ ∈ L̃ and ỹ′ be a subsequence of ỹ such that (i) and (ii) hold. Then we have Kx̃′ = Kỹ′ and x̃ � ỹ(d1-
statistically). Thus it follows from Lemma 3.2 that x̃′ � ỹ′(d1-statistically). Now applying Theorem 3.4 we
conclude that x̃′ is d1-statistically convergent to a. Since x̃′ � ỹ′(d1-statistically), by Lemma 3.2, ỹ′ is also
d1-statistically convergent to a. Which contradicts (ii). Hence the theorem.

Now we will give some relations between d1-statistical boundedness with usual boundedness.

Lemma 3.4. Let (L, τ) be a locally solid Riesz space and let x̃ = (xn) ∈ L̃. Then the sequence x̃ is d1-statistically
bounded if and only if the sequence (xn − x) is d1-statistical bounded for an arbitrary x ∈ L.

Proof. It follows from the definition.

Theorem 3.12. Let (L, τ) be a locally solid Riesz space and let x̃ = (xn) ∈ L̃ be a d1-statistically bounded sequence.
Then the sequence has at least one bounded subsequence.

Proof. From the Lemma 3.4 the sequence (xn − x) is d1-statistical bounded for an arbitrary x ∈ L. Thus there
exists a τ-neighborhood U0 of zero such that d1(A) = 1 and d1(B) = 0. Where, A = {k : xk − x ∈ U0} and
B = {k : xk − x < U0}. Let k1 ∈ N be the minimal element of A and xk1 − x ∈ U0. Since d1(A) = 1, it can
be chosen k2 ≥ k1 such that the minimal element of the set {k : k > k1, k ∈ A} satisfying xk2 − x ∈ U0. In
the n-th step we can chose kn ≥ kn−1 which is the minimal element of the set {k : k > kn−1, k ∈ A} such
that xk − x ∈ U0. So we obtain a non-decreasing sequence (kn) such that x̃′ = (xnk ) is the subsequence of x̃
satisfying xkn − x ∈ U0 for all kn ∈N. This shows that the subsequence x̃′ is bounded.

Theorem 3.13. Let (L, τ) be a locally solid Riesz space. Also let x̃ = (xn), ỹ = (yn) ∈ L̃ and x̃ is d1-statistically
bounded. If x̃ � ỹ(d1-statistically), then ỹ is also d1-statistical bounded.

Proof. The proof is parallel to the proof in [24].

Note 3.5. Let (L, τ) be a locally solid Riesz space and x̃ ∈ L̃. If every subsequence x̃′ of x̃ with

lim inf
n→∞

1(|Kx̃′ (n)|)
1(n)

> 0 is d1-statistically bounded then x̃ must be d1-statistical bounded.

3.3. Some further investigation for convergence of functions:
In this section we investigate certain aspects of ideal convergence of Riesz space valued functions, in a

very general context. We consider the situation when an I-convergent function f from S to a Riesz space
L will have a F-subfunction which is K- convergent to the same limit. Further we also introduce the notion
of I-cluster points of Riesz space valued functions and make some observations.

Let S be an arbitrary infinite set and (L, τ) be a Locally solid Riesz space. Let I, K be ideals of S. F(I)
denotes filter associated with ideal I. We recall that a topological space (L, τ) is called finitely generated
space(Alexandroff space) if any intersection of open subsets of L, is open set. L is finitely generated if and
only if each point of L has a smallest neighborhood.
The notion of IK-convergence was first introduced by Maĉaj [27].
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Definition 3.18. Any function f : S→ L is said to be I-convergent to x ∈ L if for every τ neighborhood U of zero,
the set {s ∈ S : f (s) − x < U} ∈ I.

In this case we say Iτ − lim f = x

Definition 3.19. Any function f : S→ L is said to be I∗τ-convergent to x ∈ L if there exists set M ∈ F(I) such that
1 is defined by

1(s) =

 f (s) if s ∈M
x if s <M.

is convergent to x.
In this case we say I∗τ − lim f = x

Definition 3.20. Any function f : S→ L is said to be IK
τ -convergent to x ∈ L if there exists set M ∈ F(I) such that

1 is defined by

1(s) =

 f (s) if s ∈M
x if s <M.

is K-convergent to x.
In this case we say IK

τ − lim f = x

Note 3.6. If S =N, then we obtain usual I-convergence, I∗-convergence, IK-convergence

From the above definitions the theorem easily follows.

Theorem 3.14. Let I and K be two ideals of S, and f : S → L be a function such that Kτ − lim f = x then
I

K
τ − lim f = x

Definition 3.21. f : S→ X is an arbitrary function. Let F ⊆ 2S. A nonempty function 1 is defined by

1(s) =

 f (s) if s ∈ A
x if s < A.

where A ∈ F and x ∈ L is called a F-subfunction of f with respect to x.

Theorem 3.15. Let I and K be two ideals on a set S such that K ⊂ I, and F ⊂ 2S. Let (L, τ) be Riesz space where
the topology τ on L is first countable and not finitely generated. Then the following two conditions are equivalent :
(i) for any I-convergent function f : S→ L has a F-subfunction which is K-convergent to the same limit.
(ii)for any sequence of sets (An)n∈N from I there exist A ∈ F such that A ∩ An ∈ K for all n ∈N

Proof. (i) ⇒ (ii): As L is not finitely generated, so we get x ∈ L, such that there is a sequence of distinct
points xn in X convergent to x. Let (An)n∈N be a sequence of sets from I. We have to prove that there exist
A ∈ F such that A ∩ An ∈ K for all n ∈N.

Let Un =
n⋃

k=1
Ak, then clearly An ⊂ Un and each Un belongs to I.

Now we define f : S→ L by

f (s) =

xn when s ∈ Un+1 rUn

x when s <
⋃

n∈N
An.

Take any τ neighborhood U of zero, then there exists m ∈ N such that xn − x ∈ U for all n ≥ m. Hence
{s ∈ S : f (s) − x < U} ⊂ Um+1 ∈ I. Hence f is I-convergent to x.
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Now from the given condition f has a F-subfunction 1 which is K-convergent to x. i.e., there is A ∈ F
such that the function 1 defined by

1(s) =

 f (s) if s ∈ A
x if s < A.

is K-convergent to x. Which implies A ∩Un ∈ K for all n.
Consequently A ∩ An ⊂ A ∩Un ∈ K.

(ii)⇒ (i): Let f : S→ L be a function such thatIτ−lim f = x, where x ∈ L. As (L, τ) is first countable space,
let Un be the monotonically decreasing τ-neighborhoods of zero. Now define, Vn = {s ∈ S : f (s) − x < Un},
clearly Vn is sequence of sets from I. So from the given condition there exists A ∈ F such that A ∩ Vn ∈ K
for all n ∈N.
We define 1 by,

1(s) =

 f (s) if s ∈ A
x if s < A.

Clearly 1 is F-subfunction of f . We have to show that Kτ − lim 1 = x.
Consider any τ-neighborhood U of zero, as Un is the monotonically decreasing τ-neighborhoods of zero.
So we get a n0 ∈ N such that Un0 ⊂ U. Then {s ∈ S : 1(s) − x < U} ⊂ {s ∈ S : 1(s) − x < Un0 } ⊂ A ∩ Vn ⊂ K.
Hence 1 is K-convergent to x.

Let S be an arbitrary infinite set and (L, τ) be a locally solid Riesz space. Also let I be an ideal of S.

Definition 3.22. let f : S→ L be a function. x ∈ L is said to be limit point of f , if for every τ neighborhood U of x ,
the set {s ∈ S : f (s) ∈ U} is infinite.

By L( f ) we denote the set of all limit points of f .

Definition 3.23. x ∈ L is said to be I-cluster point of a function f : S → L if for every τ neighborhood U of x,
{s ∈ S : f (s) ∈ U} < I.

By CI( f ) we denote the set of all I-cluster points of f with respect to the ideal I.

Definition 3.24. A function f : S→ L is said to be I-maximal if for any set A ⊂ L, either {s ∈ S : f (s) < A} ∈ I or
{s ∈ S : f (s) < L \ A} ∈ I.

Theorem 3.16. Let the function f : S→ L be I-maximal. If x0 ∈ CI( f ) then f is I-convergent to x0.

Proof. Let x0 ∈ CI( f ). Let U be any τ-neighborhood of x0. By our assumption f is I-maximal. So either
{s ∈ S : f (s) < U} ∈ I or {s ∈ S : f (s) < L \ U} ∈ I. If {s ∈ S : f (s) < L \ U} ∈ I then this implies
{s ∈ S : f (s) ∈ U} ∈ I. Which contradicts the fact that x0 ∈ CI( f ). So {s ∈ S : f (s) < U} ∈ I. Hence f is
I-convergent to x0.

Theorem 3.17. If f : S→ L and 1 : S→ L be two functions such that {s ∈ S : f (s) , 1(s)} ∈ I, then CI( f ) = CI(1).

Proof. Let x0 ∈ CI( f ) then for any τ-neighborhood U of x0, {s ∈ S : f (s) ∈ U} < I. If possible let x0 < CI(1)
then there exist τ-neighborhood W of x0 such that {s ∈ S : 1(s) ∈W} ∈ I. Now,
{s ∈ S : f (s) ∈W} ⊂ {s ∈ S : 1(s) ∈W}

⋃
{s ∈ S : f (s) , 1(s)} ∈ I.

So we get a τ-neighborhood W of x0, that {s ∈ S : f (s) ∈ W} ∈ I. This contradicts the assumption that
x0 ∈ CI( f ). Hence x0 ∈ CI(1). This implies CI( f ) ⊆ CI(1). Similarly CI(1) ⊆ CI( f ). Hence CI( f ) = CI(1).

Theorem 3.18. Let f : S→ L be a function. Let x0 ∈ L. Then the following two conditions are equivalent
(i) x0 ∈ CI( f )
(ii) x0 ∈ f (M), for every M ∈ F(I).

Here f (M) = { f (m) : m ∈M}, F(I) is filter associated with the ideal I and f (M) denotes the closure of f (m).
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Proof. (i)⇒ (ii) : Let x0 ∈ CI( f ). Let U be any τ-neighborhood of x0. So {s ∈ S : f (s) ∈ U} < I. This implies
for any M ∈ F(I), M 1 {s ∈ S : f (s) ∈ L \ U}. Hence there exists m ∈ M such that f (m) ∈ U. Which implies
U ∩ f (M) , φ, this is true for any arbitrary τ-neighborhood U of x0. Hence x0 ∈ f (M), for every M ∈ F(I).
(ii) ⇒ (i) : Let x0 ∈ f (M), for every M ∈ F(I). If possible let x0 < CI( f ). Then we get a τ-neighborhood
V of x0 such that {s ∈ S : f (s) ∈ V} ∈ I. Hence for M = {s ∈ S : f (s) ∈ L \ V} ∈ F(I)} and x0 ∈ f (M). So
V ∩ f (M) , φ. Then there exists y0 ∈ V such that y0 = f (m0) for some m0 ∈ M ⊆ F(I), which implies
y0 = f (m0) ∈ L \ V. We get a contradiction. Hence x0 ∈ CI( f ).

Theorem 3.19. Let f : S → L be a function. Then for any compact subset G of L if {s ∈ S : f (s) ∈ G} < I then
G ∩ CI( f ) , φ.

Proof. If possible let G ∩ CI( f ) = φ. Then for every x ∈ G, x < CI( f ). So we get a τ-neighborhood
Ux of x such that {s ∈ S : f (s) ∈ Ux} ∈ I. Clearly {Ux : x ∈ G} is an τ-open cover of compact set G

hence {s ∈ S : f (s) ∈ G} ⊂
n⋃

i=1
{s ∈ S : f (s) ∈ Uxi } ∈ I. Which contradicts the given assumption. Hence

G ∩ CI( f ) , φ.
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