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Abstract. The main goal of this paper, is to extend the concept of condition pseudospectrum to the case of
closed linear relations pencils and to reveal some of their properties. We will start by giving the definition
and then we will focus on the characterization and some results concerning these pseudospectra.

1. Introduction

The linear relation made their appearance in functional analysis motivated by the need to consider
adjoints of non-densely defined linear differential operators and also through the need of considering the
inverses of certain operators used in the study of some Cauchy problems associated with parabolic type
equation in Banach spaces. The theory of linear relation is the one of the most exciting and influential
field of research in modem mathematics. Applications of this theory can be found in economic theory, non
cooperative games, artificial intelligence, medicine and existence of solutions for differential inclusions, we
recall as examples ([1], [2], [5], [6], [13]).

Several mathematical and physical problems lead to operators pencils,λS−T (operator-valued functions
of a complex argument). Recently the spectral theory of operator pencils attracts an attention of many
mathematicians. Mainly, the completeness of the root vectors and asymptotic distributions of characteristic
values are considered. In [10], A. Jeribi, N. Moalla, and S. Yengui gave a characterization of the essential
spectrum of the operator pencil in order to extend many known results in the literature. After that A.
Ammar, F. Abdelmouleh and A. Jeribi in [11] pursued the study of the S-essential spectra and investigated
the S-Browder essential spectra of bounded linear operators on a Banach space X. To have further details
of the properties of the operators pencils , we may refer to ([3],[9]).

The concept of condition pseudospectra of linear operators pencils are interesting objects by themselves
since they carry more information than spectra and pseudospectra, especially, about transient instead of
just asymptotic behaviour of dynamical systems. Also, they have better convergence and approximation
properties than spectra and pseudospectra of linear operators pencils.

The definition of condition pseudospectra of linear operator pencilλS−T in infinite dimensional Banach
spaces is giving for every 0 < ε < 1 by:

Λε,S(T) = σS(T) ∪
{
λ ∈ C : ‖λS − T‖‖(λS − T)−1

‖ >
1
ε

}
,
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with the convention that ‖λS − T‖‖(λS − T)−1
‖ = ∞, if λS − T is not invertible. Note that if S = I ( the

identity operator on X), we recover the usual definition of condition pseudospectra of linear operator T.
Inspired by the notion of linear relation, T. Álvarez, A. Ammar and A. Jeribi in their works [15], thought

to introduce and investigate the characterization of some S-essential spectra of a closed linear relations in
terms of certain linear relations of semi Fredholm type.

The main focus in this paper is to study some results of condition pseudospectra of closed linear
relations pencils in Banach spaces and give the characterization of these condition pseudospectra. Our
paper is organized as follows: In section 2, we recall some basic notation and results from the theory
of linear relations that we will need to prove the main results of others sections. Section 3 is devoted
to investigate some properties and useful results for the condition pseudospectra of multivalued linear
operators pencils. Finally, in section 4, we will give the characterization of the condition pseudospectra of
multivalued linear operators pencils.

2. Preliminary and auxiliary results

Let X and Y be a vector spaces over the some field K = R or C. A linear relation T from X to Y is a
mapping from a subspace

D(T) = {x ∈ X : Tx , ∅} ⊆ X

called the domain of T, into the collection of nonempty subsets of Y such that

T(α1x1 + α2x2) = α1T(x1) + α2T(x2)

for all non zero scalars α1, α2 and x1, x2 ∈ D(T). If T maps the points of its domain to singletons, then
T is said to be single valued or simply an operator, that is equivalent to T(0) = {0}. We denote by L(X,Y)
the set of bounded operators from X to Y. The collection of linear relations is denoted by LR(X,Y) and we
write LR(X) := LR(X,X). A linear relation T ∈ LR(X,Y) is uniquely determined by its graph, G(T), which is
defined by

G(T) = {(x, y) ∈ X × Y : x ∈ D(T) and y ∈ Tx}.

The inverse of T ∈ LR(X,Y) is the linear relation T−1 defined by

G(T−1) = {(y, x) ∈ Y × X : (x, y) ∈ G(T)}.

Let T,S ∈ LR(X,Y), the subspaces R(T), N(T) and T(0) stand respectively for the range and the null space of
T , which are defined by

R(T) =
{
y : (x, y) ∈ G(T)

}
,

N(T) =
{
x ∈ D(T) : (x, 0) ∈ G(T)

}
, and

T(0) =
{
y : (0, y) ∈ G(T)

}
.

Notice that when x ∈ D(T), y ∈ Tx if, and only if, Tx = y + T(0). A linear relation T is said to be surjective, if
R(T) = Y. Similarly, T is said to be injective, if the null spaces N(T) = T−1(0) = {0}. When T is both injective
and surjective, we say that T is bijective.

Remark 2.1. (i) T injective if, and only if, T−1T = ID(T)
(ii) T single valued if, and only if, TT−1 = IR(T).

For T, S ∈ LR(X,Y), then the linear relation T + S is defined by

G(T + S) = {(x,u + v) ∈ X × Y : (x,u) ∈ G(T) and (x, v) ∈ G(S)}.

for T ∈ LR(X,Y) and S ∈ LR(Y,Z), then the composition or product ST ∈ LR(X,Z) is defined by

G(ST) = {(x, z) ∈ X × Z : (x, y) ∈ G(T) and (y, z) ∈ G(S) for some y ∈ Y}.
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The closure of a linear relation T ∈ LR(X,Y) is the linear relation T defined by

G(T) := G(T).

A linear relation T is said to be closed if its graph is a closed subspace, continuous if ‖T‖ < ∞, bounded if it
is continuous andD(T) = X and open if T−1 is continuous equivalently γ(T) > 0 where γ(T) is the minimum
modulus of T defined by

γ(T) = sup{λ ≥ 0 : λ d(x,N(T)) ≤ ‖Tx‖, x ∈ D(T)}.

We denote the set of all closed and bounded linear relations from X to Y by CR(X,Y) and BR(X,Y) respectively
and we write CR(X) = CR(X,X) and BR(X) = BR(X,X).
If M and N are subspaces of X and of the dual space X′

respectively, then

M⊥ =
{
x′ ∈ X

′

: x′(x) = 0 for all x ∈M
}
,

and
N> =

{
x ∈ X : x′(x) = 0 for all x′ ∈ N

}
.

The adjoint (or conjugate) T′ of a linear relation T ∈ LR(X,Y) is defined by

G(T
′

) = G(−T−1)⊥ ⊂ Y
′

× X
′

,

This means that (y′, x′) ∈ G(T′ ) if, and only if, y′(y) = x′(x) for all (x, y) ∈ G(T).

Proposition 2.2. [13, Proposition I.2.8] Let X,Y be two linear spaces and Let T ∈ LR(X,Y), then for x ∈ D(T), we
have the following equivalence:
(i) y ∈ Tx if, and only if, Tx = y + T(0). In particular,
(ii) 0 ∈ Tx if, and only if, Tx = T(0). ♦

Proposition 2.3. ([13, Proposition I.4.2] and [14, Lemma 2]) Let X,Y be two linear spaces and T ∈ LR(Y,Z) and
S,R ∈ LR(X,Y).

(i) If T(0) ⊂ N(S) (or T(0) ⊂ N(R)), then (R + S)T = RT + ST.

(ii) IfD(T) contains the range of both R and S (in particular,D(T)is the whole space), then T(R + S) = TR + TS.

(iii) If S(0) ⊂ T(0) andD(T) ⊂ D(S). Then T = T + S − S. ♦

Lemma 2.4. Let X and Y be normed spaces and T ∈ LR(X,Y) then for x ∈ D(T),
(a) [13, Propositions II.1.4] ‖Tx‖ = d(y,T(0)) for any y ∈ Tx.
(b) [13, Propositions II.1.4] ‖Tx‖ = d(Tx,T(0)) = d(Tx, 0)
(c) [13, Propositions II.1.6] ‖T‖ = supx∈BX‖Tx‖ with BX := {x ∈ X : ‖x‖ ≤ 1}.
(d) [13, Theorem II.2.5] γ(T) = ‖T−1

‖
−1

♦

Proposition 2.5. [13, Propositions II.1.5 and II.3.13] Let X,Y be two normed spaces and let S,T ∈ LR(X,Y) and
R ∈ LR(Y,Z)

(i) For x ∈ D(S + T) we have
‖S + T‖ ≤ ‖S‖ + ‖T‖,

if additionally S(0) ⊂ T(0) then,
‖T‖ − ‖S‖ ≤ ‖T − S‖.

(ii) If S(0) ⊂ D(R), then we have
‖RS‖ ≤ ‖R‖‖S‖.

♦
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In [15], T. Álvarez, A. Ammar and A. Jeribi are presented the S-resolvent in this way:

Definition 2.6. Let X a normed space and let T ∈ LR(X) and S a continuous linear relation such that S(0) ⊂ T(0)
andD(S) ⊃ D(T) . We define the S-resolvent set of T by:

ρS(T) := {λ ∈ C : λS − T is injective, open with dense range on X},

and the S-spectrum of T by σS(T) := C \ ρS(T). ♦

Remark 2.7. It is clear that if T ∈ CR(X) and X complete, we will return to the S-spectrum definition in [15], the
authers defined the S-spectrum in Banach space with closed linear relation in the following way:

ρS(T) := {λ ∈ C : λS − T is bijective on X},
= {λ ∈ C : (λS − T)−1 is a bounded linear operator on X}.

♦

Proposition 2.8. [13, Proposition III.1.5 , III.1.13 and VI.1.11]) Let X a normed linear space and let T,S ∈ LR(X)
(i) If S is continuous andD(T) ⊂ D(S), S′ + T′ = (S + T)′.
(ii) ‖T′‖ ≤ ‖T‖ and if T is continuous, then ‖T′‖ = ‖T‖ < ∞.
(iii) σ(T) = σ(T′). ♦

Lemma 2.9. [12, Lemma 3.5] Let X is a normed spaces and Y is a Banach space. Let T ∈ LR(X,Y) be closed and
S ∈ LR(X,Y) be continuous such that S(0) ⊂ T(0) andD(S) ⊃ D(T), then T + S is closed. ♦

Lemma 2.10. [13, Proposition II.5.17] Let S ∈ LR(Z,X) be closed and let the relation T have closed range and
satisfy α(T) < ∞ and γ(T) > 0. Then, TS is closed. ♦

Lemma 2.11. [13, Corollary III.7.7] Let T be open and injective with dense range. Then, for any relation S such
that S(0) ⊂ T(0),D(S) ⊃ D(T) and ‖S‖ < γ(T), we have T + S is open injective with dense range. ♦

Lemma 2.12. [4, Lemma2.2] Let S ∈ LR(X). Then ‖S‖ = 0 if, and only if, R(S) ⊂ S(0). ♦

Lemma 2.13. [4, Lemma2.3]Let T ∈ LR(X) and S a continuous linear relation such that S(0) ⊂ T(0) and D(S) ⊃
D(T). Then ‖S‖ = 0 implies ρS(T) = ∅ or C. ♦

Lemma 2.14. [4, Theorem 3.9] Let X a normed space and let T ∈ LR(X) and S a continuous linear relation such
that S(0) ⊂ T(0) andD(S) ⊃ D(T),

σS(T) = σS′ (T′).

♦

Definition 2.15. Let X a complex Banach space and let T,S ∈ LR(X) such that S is continuous, T is closed with
S(0) ⊂ T(0), ‖S‖ , 0 andD(T) ⊂ D(S). We define the S-pseudospectra of linear relation for every ε > 0 by:

σε,S(T) = σS(T) ∪
{
λ ∈ C : ‖(λS − T)−1

‖ >
1
ε

}
.

The pseudoresolvent of T is denoted by ρε,S(T) and is defined as,

ρε,S(T) = ρS(T) ∩
{
λ ∈ C : ‖(λS − T)−1

‖ ≤
1
ε

}
. ♦
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3. Some properties of S-condition pseudospectrum Σε,S(T)

In this section, we define the S-condition pseudospectrum of linear relation in LR(X), where X is a
complex Banach space and consider some basic properties in order to put this definition in its due place.
We begin with the following definition.

Definition 3.1. Let T,S ∈ LR(X) such thatS is continuous, T is closed withS(0) ⊂ T(0), ‖S‖ , 0 andD(T) ⊂ D(S).
For every 0 < ε < 1 , the S-condition pseudospectrum of T is denoted by Σε,S(T) and is defined as,

Σε,S(T) = σS(T) ∪
{
λ ∈ C : ‖λS − T‖‖(λS − T)−1

‖ >
1
ε

}
.

the S-condition pseudoresolvent of T is denoted by ρε,S(T) and is defined as,

ρε,S(T) = ρS(T) ∩
{
λ ∈ C : ‖λS − T‖‖(λS − T)−1

‖ ≤
1
ε

}
,

with the convention that ‖λS − T‖‖(λS − T)−1
‖ = ∞, if λS − T is unbounded or nonexistent, i.e., if λ is in the

spectrum σS(T). ♦

Remark 3.2. Note that if S = I ( the identity linear relation on X), we recover the usual definition of condition
pseudospectra of closed linear reation T :

Σε(T) = σ(T) ∪
{
λ ∈ C : ‖λ − T‖‖(λ − T)−1

‖ >
1
ε

}
,

and the usual definition of condition pseudoresolvent of T:

ρε(T) = ρ(T) ∩
{
λ ∈ C : ‖λ − T‖‖(λ − T)−1

‖ ≤
1
ε

}
. ♦

Throughout of this sequel of this section, X will denote a Banach space over the complex field C and
S,T ∈ LR(X) such that S is continuos, T is closed with S(0) ⊂ T(0) and D(T) ⊂ D(S) and ‖S‖ , 0, except
where stated otherwise.
In the next proposition we will establish the relationship between S-condition pseudospectrum and S-
pseudospectrum of an bounded linear relation.

Proposition 3.3. Let T,S ∈ BR(X) and for every 0 < ε < 1 such that ε < ‖λS − T‖ we have
(i) λ ∈ Σε,S(T) if, and only if, λ ∈ σε‖λS−T‖,S(T).
(ii) λ ∈ σε,S(T) if, and only if, λ ∈ Σ ε

‖λS−T‖ ,S
(T). ♦

Proof. (i) If λ ∈ Σε,S(T), then

λ ∈ σS(T) and ‖λS − T‖‖(λS − T)−1
‖ ≥

1
ε
,

hence,

λ ∈ σS(T) and ‖(λS − T)−1
‖ ≥

1
ε‖λS − T‖

,

which implies that λ ∈ σε‖λ−T‖,S(T). The converse is similar.
(ii) Let λ ∈ σε,S(T), then

λ ∈ σS(T) and ‖(λS − T)−1
‖ ≥

1
ε
,

thus

λ ∈ σS(T) and ‖λS − T‖‖(λS − T)−1
‖ ≥
‖λS − T‖

ε
.

This proves that λ ∈ Σ ε
‖λS−T‖ ,S

(T). The converse is similar.
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Proposition 3.4. For all 0 < ε < 1, we have
(i) σS(T) =

⋂
ε>0

Σε,S(T).

(ii) If 0 < ε1 < ε2 < 1, then σS(T) ⊂ Σε1,S(T) ⊂ Σε2,S(T).
(iii) For any α, β ∈ C, with β , 0 we have Σε,S(αS + βT) = α + Σε,S(T)β. ♦

Proof. (i) It is clear that σS(T) ⊂ Σε,S(T), then σS(T) ⊂
⋂
ε>0

Σε,S(T).

Conversely, if λ ∈
⋂
ε>0

Σε,S(T), then for all, ε > 0, we have λ ∈ Σε,S(T). We will discuss these two cases:

First case: If λ ∈ σS(T), we get the desired result.

Second case: Ifλ ∈
{
λ ∈ C : ‖λS − T‖‖(λS − T)−1

‖ >
1
ε

}
, taking limits as ε→ 0+,we get ‖λS − T‖‖(λS − T)−1

‖ = ∞.

Thus λ ∈ σS(T).

(ii) Let λ ∈ Σε1,S(T), then ‖λS − T‖‖(λS − T)−1
‖ >

1
ε1
>

1
ε2

. Hence λ ∈ Σε2,S(T).

(iii) Let α, β ∈ C, such that β , 0. then λ < Σε,S(αS + βT) if, and only if,

λ ∈ ρS(αS + βT) and ‖(λ − α)S − βT‖‖((λ − α)S − βT)−1
‖ ≤

1
ε
,

if, and only if, (λ − α)S − βT is injective, open with dense range and

‖(λ − α)S − βT‖‖((λ − α)S − βT)−1
‖ ≤

1
ε
,

if, and only if, β−1(λ − α)S − T is injective, open with dense range and
‖β−1(λ − α)S − T‖‖(β−1(λ − α)S − T)−1

‖ = ‖β−1((λ − α)S − βT)‖‖(β−1((λ − α)S − βT)−1
‖

= ‖(λ − α)S − βT‖‖((λ − α)S − βT)−1
‖ ≤

1
ε
,

if, and only if, β−1(λ − α) ∈ ρS(T) and ‖β−1(λ − α)S − T‖‖(β−1(λ − α)S − T)−1
‖ ≤

1
ε
,

if, and only if, β−1(λ − α) < Σε,S(T), if, and only if, λ < α + Σε,S(T)β.

Proposition 3.5. Let S ∈ BR(X) such that 0 ∈ ρε(S), S(0) = T(0) and for all 0 < ε < 1, we have

Σ ε
‖S‖‖S−1‖

(S−1T) ⊂ Σε,S(T) ⊂ Σε‖S‖‖S−1‖(S
−1T).

♦

Proof. First of all, it is necessary to show that

λ − S−1T = S−1(λS − T), (1)

and

λS − T = S(λ − S−1T). (2)

Since S is a bounded linear relation, then ID(S) = S−1
S = IX. Using Proposition 2.3, we have

S
−1(λS − T) = λS−1

S − λS−1T,
= λ − S−1T.

Hence, (1) holds. Let x ∈ X, then x ∈ D(S−1) = R(S) hence ∃a ∈ X, (a, x) ∈ S such that (x, a) ∈ S−1, so we have
(x, x) ∈ SS−1. This implies that I ⊂ SS−1, therefore λS− T ⊂ SS−1(λS− T) = S(λ−S−1). Which results that

λS − T ⊂ S(λ − S−1T).
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Furthemore, we have

S(λ − S−1T)(0) = S(λ(0) − S−1T(0))
= S(0 − S−1T(0))
= SS

−1T(0)
= SS

−1
S(0)

= S(0)
= T(0)
= (λS − T)(0),

and moreoverD(λS − T) = D(λS) ∩D(T) = D(T) and

D(S(λ − S−1T)) =
{
x ∈ D(λ − S−1T) : (λ − S−1T)x ∩D(S) = λ − S−1T)x ∩ X , ∅

}
.

On the other hand,

D(λ − S−1T) = D(λ) ∩D(S−1T)
= D(S−1T)

=
{
x ∈ D : Tx ∩D(S−1) = Tx ∩ R(S) , ∅

}
= D(T)
= D(λS − T).

Then, from these properties we infer that

λS − T = S(λ − S−1T).

So, that (2) holds. Further C = S−1T is closed. Indeed, S is continuos so that by [13, II.5.1], we have S is

closed thenS−1 is closed. Moreover, α(S−1) = 0 < ∞ and γ(S−1) =
1
‖S‖

> 0. Hence by Lemma 2.10, we have

S
−1T is closed.

For the first inclusion, we suppose that λ ∈ Σ ε
‖S‖‖S−1‖

(S−1T), so we have

‖S‖‖S
−1
‖

ε
< ‖λ − S−1T‖‖(λ − S−1T)−1

‖

= ‖S
−1(λS − T)‖‖(S−1(λS − T))−1

‖

= ‖S
−1(λS − T)‖‖(λS − T)−1

S‖.

Since we haveD(S−1) = R(S) = X, and

D(λS − T)−1 = R(λS − T)
= SR(λ − S−1T)
= R(S)
= X.

Then , (λS − T)(0) ⊂ D(S−1) and S(0) ⊂ D(λS − T)−1. Therefore from Proposition 2.5, we have

‖S
−1(λS − T)‖‖(λS − T)−1S‖ ≤ ‖S−1

‖‖S‖‖(λS − T)‖‖(λS − T)−1
‖.

Hence,
1
ε
< ‖(λS − T)‖‖(λS − T)−1

‖.
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Consequently, we obtain λ ∈ Σε,S(T). For the second inclusion, we assume that λ ∈ Σε,S(T), so we have

1
ε

< ‖(λS − T)‖‖(λS − T)−1
‖

= ‖S(λ − S−1T)‖‖(S(λ − S−1T))−1
‖

= ‖S(λ − S−1T)‖‖(λ − S−1T)−1
S
−1
‖.

Since we haveD(S) = X and

D((λ − S−1T)−1) = R(λ − S−1T)
= S

−1R(λS − T)
= R(S−1)
= D(S) = X,

therefore, we have S−1(0) ⊂ D((λ−S−1T)−1) and (λ−S−1T)(0) ⊂ D(S). Then from Proposition 2.5, we have

‖S(λ − S−1T)‖‖(λ − S−1T)−1
S
−1
‖ ≤ ‖S‖‖S

−1
‖‖λ − S−1T‖‖(λ − S−1T)−1

‖.

Hence,
1

‖S‖‖S−1‖ε
< ‖λ − S−1T‖‖(λ − S−1T)−1

‖.

Now, it remains to shows that 0 < ‖S‖‖S−1
‖ε < 1. Since 0 ∈ ρε(S), then we have 0 < ‖S‖‖S−1

‖ <
1
ε

. Thus,

0 < ‖S‖‖S−1
‖ε < 1. Finally, we conclude that λ ∈ Σε‖S‖‖S−1‖(S−1T).

Theorem 3.6. Let T,S be continuous linear relation and 0 < ε < 1.

Σε,S(T) = Σε,S′ (T′).

♦

Proof. At the first, it is clear from the proof of Lemma 2.14 that (λS − T)′ = λS′ − T′. Now let λ ∈ ρε,S′ (T′).
Then,

λ ∈ ρS′ (T′) and ‖λS′ − T′‖‖(λS′ − T′)−1
‖ ≤

1
ε
.

So from Lemma 2.14, we obtain λ ∈ ρ(T,S) and therefore (λS − T)−1 is continuous. We also have (λS − T)
is continuous, hence from Proposition 2.8, it follows that

‖λS − T‖‖(λS − T)−1
‖ = ‖(λS − T)′‖‖((λS − T)′)−1

‖ ≤
1
ε

= ‖λS′ − T′‖‖(λS′ − T′)−1
‖ ≤

1
ε
,

furthermore,
λ ∈ ρε,S(T).

However, the opposite inclusion follows by symmetry.

Proposition 3.7. Let T ∈ BR(X) and S is a bounded and closed operator such that 0 ∈ ρε‖S‖‖S−1‖(T), with
k = ‖S‖‖S−1

‖‖T‖‖T−1
‖ and 0 < ε < 1. We have:

(i) If λ ∈ Σε,S(T) \ {0}, then 1
λ ∈ Σεk,S−1 (T−1) \ {0}.

(ii) If λ ∈ Σε,S−1 (T−1) \ {0}, then 1
λ ∈ Σεk,S(T) \ {0}. ♦
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Proof. (i) Let λ ∈ Σε,S(T) \ {0}. Then,
1
ε
< ‖λS − T‖‖(λS − T)−1

‖

By using Remark 2.1 and Proposition 2.3, it follows that

‖λS − T‖‖(λS − T)−1
‖ = ‖S(λ − S−1T)‖‖(S(λ − S−1T))−1

‖

= ‖ − λS(
S−1

λ
− T−1)T‖‖(−λ(S(

S−1

λ
− T−1)T)−1

‖

= ‖ − λS(
S−1

λ
− T−1)T‖‖(−λ(T−1(

S−1

λ
− T−1)−1S−1)‖

≤ ‖S‖‖S−1
‖‖T‖‖T−1

‖‖(
S−1

λ
− T−1)‖‖(

S−1

λ
− T−1)−1

‖.

Which implies that
1

ε‖S‖‖S−1‖‖T‖‖T−1‖
< ‖(

S−1

λ
− T−1)‖‖(

S−1

λ
− T−1)−1

‖.

Now, it remains to shows that 0 < ‖S‖‖S−1
‖‖T‖‖T−1

‖ε < 1. Indeed, 0 ∈ ρε‖S‖‖S−1‖(T), then we have

0 < ‖T‖‖T−1
‖ <

1
ε‖S‖‖S−1‖

.

Hence, we obtain

0 < ‖S‖‖S−1
‖‖T‖‖T−1

‖ <
1
ε
.

Thus, 0 < ‖S‖‖S−1
‖‖T‖‖T−1

‖ε < 1. Consequently,

1
λ
∈ Σεk,S−1 (T−1) \ {0}.

(ii) Let λ ∈ Σε,S−1 (T−1) \ {0}. Then,

1
ε
< ‖λS−1

− T−1
‖‖(λS−1

− T−1)−1
‖.

On the other hand, we have

‖λS−1
− T−1

‖‖(λS−1
− T−1)−1

‖ = ‖ − λT−1(
S
λ
− T)S−1

‖‖ − λ−1(T−1(
S
λ
− T)S−1)−1

‖

= ‖ − λT−1(
S
λ
− T)S−1

‖‖ − λ−1S(
S
λ
− T)−1T‖

≤ ‖S‖‖S−1
‖‖T‖‖T−1

‖‖(
S
λ
− T)‖‖(

S
λ
− T)−1

‖.

Thus,
1

ε‖S‖‖S−1‖‖T‖‖T−1‖
≤ ‖(

S
λ
− T)‖‖(

S
λ
− T)−1

‖.

Moreover, we have
0 < ‖S‖‖S−1

‖‖T‖‖T−1
‖ε < 1.

Consequently,
1
λ
∈ Σεk,S(T) \ {0}.
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4. Characterization of S-condition pseudospectrum

Throughout of this section, X will denote a Banach space over the complex field C and S,T ∈ LR(X)
such that S is continuos, T is closed with S(0) ⊂ T(0), D(S) ⊃ D(T) and ‖S‖ , 0, except where stated
otherwise. The purpose of this section is to give a characterization of the S-condition pseudospectrum of
linear relation. Our first result is the following.

Lemma 4.1. Let T,S ∈ BR(X) and 0 < ε < 1. Then, λ ∈ Σε,S(T) \σS(T) if, and only if, there exists x ∈ X, such that

‖(λS − T)x‖ < ε‖λS − T‖‖x‖. ♦

Proof. Assume that λ ∈ Σε,S(T) \ σS(T), then

‖λS − T‖‖(λS − T)−1
‖ >

1
ε
,

and thus we have

‖(λS − T)−1
‖ >

1
ε‖λS − T‖

.

Moreover,

sup
y∈X\{0}

‖(λS − T)−1y‖
‖y‖

>
1

ε‖λS − T‖
.

Hence, there exists a nonzero y ∈ X, such that

‖(λS − T)−1y‖ >
‖y‖

ε‖λS − T‖
. (3)

Put x = (λS − T)−1y, so

(λS − T)x = (λS − T)(λS − T)−1y
= y + (λS − T)(0).

Knowing that (λS − T)(0) = λS(0) − T(0) = T(0) (as S(0) ⊂ T(0)), this allows us to deduce that

‖(λS − T)x‖ = d(y, (λS − T)(0))
= d(y,T(0))
≤ d(y, 0) (since 0 ∈ T(0))
≤ ‖y‖.

Therefore, from Eq (3), we infer that

‖x‖ >
‖y‖

ε‖λS − T‖
≥
‖(λS − T)x‖
ε‖λS − T‖

.

Finally, we have as a result,
‖(λS − T)x‖ < ε‖λS − T‖‖x‖.

For the revese inclusion, we assume there exists x ∈ X such that

‖(λS − T)x‖ < ε‖λS − T‖‖x‖.

Since λ ∈ ρS(T), then λS − T is injective and open. Moreover, we have

γ(λS − T)‖x‖ ≤ ‖(λS − T)x‖ < ε‖λS − T‖‖x‖,
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therefore,
0 < γ(λS − T) < ε‖λS − T‖.

We already have
γ(λS − T) = ‖(λS − T)−1

‖
−1,

which shows that
‖(λS − T)−1

‖ >
1

ε‖λS − T‖
,

and, consequently
λ ∈ σε‖λS−T‖(T),

equivalently, in virtue of Proposition3.3, we obtain λ ∈ Σε,S(T).

Theorem 4.2. Let V is a closed and bounded operator such that SV = VS and 0 ∈ ρ(V). Let R = VTV−1 Then, for
all 0 < ε < 1, k = ‖V‖‖V−1

‖ and 0 < k2ε < 1 we have

Σ ε
k2 ,S

(T) ⊆ Σε,S(R) ⊆ Σk2ε,S(T). ♦

Proof. First of all, we have from [5, Theorem 3.1] R is closed. On the other hand, we have

λS − R = λS − VTV−1

(λS − R)V = (λS − VTV−1)V.

Since V is injective and by virtue of Proposition 2.3(i), we obtain that

(λS − R)V = λSV − TV−1V
= λSV − VT.

Moreover, since V is injective and by using Proposition 2.3(ii), we deduce that

V−1(λS − R)V = V−1(λSV − VT)
= λV−1VS − V−1VT
= λS − T.

Because V is a single valued, this, further, implies that

(λS − R) = V(λS − T)V−1.

Then, it is obvious that

(λS − T)−1 = V−1(λS − R)−1V and (λS − R)−1 = V(λS − T)−1V−1.

Next, we show that σS(T) = σS(R). To see this, let λ ∈ ρS(T) then the closed relation λS − T is injective,
surjective and open. By [13, Proposition VI.5.2] it follows that V(λS − T)V−1 = λS − R is also closed,
bounded below (injective and open), surjective. Hence λ ∈ ρS(R). Conversely, if λ ∈ ρS(R), then the closed
relation λS − R is injective, surjective and open. Taking into account the [13, Proposition VI.5.2], it follows
that V−1(λS−R)V = λS−T is also closed, bounded below (injective and open), surjective. Hence λ ∈ ρS(T).
Now, we start with the first inclusion. So, we can write

‖λS − R‖‖(λS − R)−1
‖ = ‖V(λS − T)V−1

‖‖V(λS − T)−1V−1
‖

≤ ‖V(λS − T)‖‖V−1
‖‖V(λS − T)−1

‖‖V−1
‖

≤ ‖V‖‖(λS − T)‖‖V−1
‖‖V‖‖(λS − T)−1

‖‖V−1
‖

≤

(
‖V‖‖V−1

‖

)2
‖(λS − T)‖‖(λS − T)−1

‖

≤ k2
‖(λS − T)‖‖(λS − T)−1

‖.
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In the similar way,

‖λS − T‖‖(λS − T)−1
‖ = ‖V−1(λS − R)V‖‖V−1(λS − R)−1V‖

≤

(
‖V‖‖V−1

‖

)2
‖(λS − R)‖‖(λS − R)−1

‖

≤ k2
‖(λS − R)‖‖(λS − R)−1

‖.

For λ ∈ Σε/k2,S(T), we have

λ ∈ σS(T) and ‖λS − T‖‖(λS − T)−1
‖ >

k2

ε
,

then,

λ ∈ σS(R) and ‖λS − R‖‖(λS − R)−1
‖ ≥

1
k2 ‖λS − T‖‖(λS − T)−1

‖ >
1
ε
,

hence,
λ ∈ Σε,S(R).

Therefore,
Σε/k2,S(T) ⊆ Σε,S(R).

For the second inclusion, let λ ∈ Σε,S(R), then

λ ∈ σS(R) and ‖λS − R‖‖(λS − R)−1
‖ >

1
ε
,

this induces that,

λ ∈ σS(T) and ‖λS − T‖‖(λS − T)−1
‖ ≥

1
k2 ‖λS − R‖‖(λS − R)−1

‖ >
1

k2ε
,

hence,
λ ∈ Σk2ε,S(T).

Consequently,
Σε,S(R) ⊆ Σk2ε,S(T).

In the sequel of this section, we suppose that X is a Banach space and A is a linear relation satisfying the
following property (P):

(P) : ∀ A ∈ LR(X) with 0 ∈ ρ(A), ∃ B ∈ LR(X) with 0 < ρ(B) such that ‖A − B‖ =
1
‖A−1‖

.

The following example shows the above property.

Example 4.3. Let X be a Banach space and we consider

A =

(
I 0
0 I

2

)
and B =

(
I
2 0
0 0

)
.

So we have,

A−1 =

(
I 0
0 2I

)
and A − B =

(
I
2 0
0 I

2

)
.

This implies that,

‖A−1
‖ = max

{
‖I‖, ‖2I‖

}
= 2 and ‖A − B‖ = max

{
‖

I
2
‖, ‖

I
2
‖

}
=

1
2
.

Hence we have,

‖A − B‖ =
1
2

=
1
‖A−1‖

.
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Theorem 4.4. Let X is a Banach space and 0 < ε < 1. Suppose that there exists a non invertible linear relation R
such thatD(T) ⊃ D(R), T(0) ⊂ R(0) then, λ ∈ Σε,S(T) if, and only if, ‖R‖ < ε‖λS − T‖ and λ ∈ σS(T + R). ♦

Proof. Assume that λ ∈ Σε,S(T). There are two cases to consider:
First case: If λ ∈ σS(T), then it is sufficient to take R = 0.

Second case: If λ ∈ Σε,S(T) \ σS(T), then λS − T is invertible. Hence, by property (P), there exists a non
invertible linear relation D such that

‖λS − T −D‖ =
1

‖(λS − T)−1‖
.

Putting R = λS − T −D. Then ,

‖R‖ =
1

‖(λS − T)−1‖
< ε‖λS − T‖.

Also D = λS − T − R is non invertible, that is λ ∈ σS(T + R). For the reverse inclusion, we suppose
λ ∈ σS(T + R). We derive a contradiction from the assumption that λ < Σε,S(T), which is equivalent to

λ ∈ ρS(T) and ‖λS − T‖‖(λS − T)−1
‖ ≤

1
ε
.

Since λ ∈ ρS(T), then λS−T is an invertible linear relation and we have λS−T−R is not invertible. Or, we
have (λS − T)(0) ⊂ T(0) ⊂ R(0) and D(λS − T) ⊃ D(T) ⊃ D(R), hence taking into account Proposition 2.3
and in view of property (P), it follows that

‖R‖ = ‖(λS − T − R) − (λS − T)‖ =
1

‖(λS − T)−1‖
.

Therefore,
1

‖(λS − T)−1‖
= ‖R‖ < ε‖λS − T‖.

Consequently,

‖λS − T‖‖(λS − T)−1
‖ >

1
ε
.

Which is a contraction.
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