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Abstract. In this paper, we introduce finite mixture models with singular multivariate normal components.
These models are useful when the observed data involves collinearities, that is when the covariance matrices
are singular. They are also useful when the covariance matrices are ill-conditioned. In the latter case,
the classical approaches may lead to numerical instabilities and give inaccurate estimations. Hence, an
extension of the Expectation Maximization algorithm, with complete proof, is proposed to derive the
maximum likelihood estimators and cluster the data instances for mixtures of singular multivariate normal
distributions. The accuracy of the proposed algorithm is then demonstrated on the grounds of several
numerical experiments. Finally, we discuss the application of the proposed distribution to financial asset
returns modeling and portfolio selection.

1. Introduction

The multivariate Normal distribution is of great importance in statistics. It stands out because it is
relatively easy to use, at the heart of the central limit theorem and adapted to a large number of natural
phenomena modeling. The dependence structure of a Gaussian vector is fully determined through its
covariance matrix Σ. Several statistical methods, including the principal component analysis, linear dis-
criminant analysis, clustering analysis, and regression models, require the knowledge of the covariance
structure. When the observed data involves collinearities or the variable dimension d is larger than the
sample size n, the covariance matrix is singular. In this case, its estimation is a challenging problem. The
maximum likelihood estimator of Σ yields a nonunique estimate ([24], [18]). When the studied model
includes many classes, a mixture of non-singular normal distributions is used. These models were studied
by many authors such as [5], [28], [19], [6] and [12]. They are increasingly used to model the distributions
of diverse phenomena. The Gaussian mixture can also be useful for approximating a multimodal density
function [16]. The maximum Likelihood estimates of the mixture parameters are computed using the
Expectation-Maximization (EM) algorithm (see [8]).
In this paper, we introduced the singular Gaussian mixture model which addresses two main shortcomings
in the existing research. First, this model is useful to adapt several statistical techniques such as the discrim-
inant analysis [15] and density approximation, in the presence of singular covariance matrices. Second, it
is also effective with ill-conditioned covariance matrices and can be used in various applications such as
returns modeling and risk management. Besides, an extended EM algorithm for the parameters estimation
of a singular Gaussian mixture was provided. The proposed algorithm offers an interesting way to deal
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with numerical problems in the presence of ill-conditioned covariance matrices.

The remaining of this paper is organized as follows: In Section 2, we remind the reader of the main
properties of a singular multivariate normal distribution and the maximum likelihood estimators of its
parameters. Section 3 discusses the suggested mixture model and its main properties. In Section 4, the
maximum likelihood estimators of the mixture parameters are derived and a customized EM algorithm is
proposed for their computation and the data clustering. The proposed approach is evaluated, in Section 5,
on the basis of a simulation study. Finally, Section 6 illustrates the use of the mixture of singular multivariate
Gaussian distributions to model financial assets returns in the context of portfolio selection.

2. Singular multivariate normal distributions

2.1. Density function
Consider a d-dimensional Gaussian random vector X with mean vector µ and covariance matrix Σ.

When Σ is positive definite (Σ > 0), the density function of X with respect to the Lebesgue measure on Rd

is given by

f (y) = (2π)−
d
2 |Σ|−

1
2 exp(−

1
2

(y − µ)TΣ−1(y − µ)), (1)

where |Σ| denotes the determinant of Σ.
However, when Σ is singular, the density function is restricted to an affine subspace of Rd ([9]). Hence, Σ
is diagonalized as follows

Σ = (P1,P2)
(
Λ 0
0 0

) (
P1

T

P2
T

)
where P1 is a d × r matrix whose orthonormal column vectors span the Σ’s image and P2 is a d × (d − r)
matrix whose orthonormal column vectors span the Σ’s null space. The rank of Σ is denoted by r and Λ is
a r × r diagonal matrix containing positive Σ’s eigenvalues Λ = dia1(λ1, ..., λr). P1 and P2 are such that

P1P1
T + P2P2

T = Id. (2)

Where Id is the d-dimensional identity matrix.
The density function is concentrated on the affine subspace

E = {y ∈ Rd; P2
T y = P2

Tµ}. (3)

A density function of X with respect to the restriction of the Lebesgue measure to E was first introduced
by [14], for any generalized inverse Σ− defined by ΣΣ−Σ = Σ:

f (y|µ,Σ) = (2π)−
r
2 |Λ|−

1
2 exp(−

1
2

(y − µ)TΣ−(y − µ)), (4)

A particular generalized inverse of Σ, denoted by Σ+ is the Moore-Penrose pseudo-inverse ([22]):

Σ+ = P1Λ
−1P1

T (5)

2.2. Maximum likelihood estimation
This subsection provides the maximum likelihood estimators for singular multivariate normal distribu-

tion parameters ([25]). Consider a random sample of size n with observations matrix y = (y1 : ... : yn). The
likelihood function is given by

l(y, µ,P1,Λ) = (2π)−
nr
2 |Λ|−

n
2 exp(

n∑
i=1

−
1
2

(yi − µ)TΣ+(yi − µ))

= (2π)−
nr
2 |Λ|−

n
2 exp(−

1
2

tr(Λ−1P1
TSP1)).
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Where S = (y−µ1T)(y−µ1T)T; 1 stands for n× 1 vector of ones i.e., 1 = (1, ..., 1)T. The maximum likelihood
estimators (MLE) are given by the following proposition.

Proposition 2.1. - [25]
Let Y ∼ Nd,n(µ1T,Σ, In) a d × n random matrix whose columns are i.i.d and normally distributed with mean µ and
covariance matrix Σ, where Σ is of rank r, and Σ = P1ΛP1

T. Let S = Y(In −
1
n11

T)YT and H be the p × r matrix of
eigenvectors corresponding to the r largest eigenvalues of S, denoted by L = dia1(l1, ..., lr). Then the MLE of µ, Λ and
P1 are respectively given by

µ̂ = Ȳ = 1
n

n∑
i=1

Yi

Λ̂ = 1
n L

P̂1 = H
Σ̂ = 1

n HLHT

3. Mixture of singular multivariate normal distributions

Consider a mixture of K d-variate singular normal distributions with density

f (y|Θ) =

K∑
k=1

πk fk(y|µk,Σk) (6)

where the πk’s are the mixing weights (0 < πk < 1;
K∑

k=1
πk = 1) and fk(y|µk,Σk) is the density function of

the multivariate singular Gaussian distribution with mean µk and covariance matrix Σk. The set of all the
mixture parameters is denoted by Θ = {πk, µk,Σk; k = 1, ...,K}. The mixture components are assumed to be
concentrated on the same affine subspace E. This assumption is crucial since it allows having a dominated
mixture model. In fact, under this assumption, the mixture model has the density function defined by (6)
with respect to the restriction of the Lebesgue measure to an r-dimensional subspace.
Practically, this assumption seems natural when the data involves collinearties that are inherent in the
studied population or when the empirical covariance matrix is ill-conditioned. In the latter case, the data
is projected onto an r-dimensional affine subspace and consequently all the covariance matrices have the
same rank r.

This mixture is useful when the considered sample y = (y1 : ... : yn) is drawn from a population
which consists of K groups G1, G2,...,GK, in proportions π1, ..., πK. Given Gk, yi is drawn from the Gaussian
distribution with mean µk and covariance matrix Σk.
In the remaining text of this paper, the random variables are denoted by capital letters whereas their
associated observations are denoted by the same lower-case letters. It is also convenient to associate a
K-dimensional component-label vector zi = (zi1, ..., ziK) to each observation yi in order to manage the groups
membership. So, the kth element of zi, zik = (zi)k, is defined to be one or zero, according to whether yi is a

member of the group Gk or not (zik ∈ {0, 1} ;
K∑

k=1
zik = 1). Thus, Zi is distributed according to a multinomial

distribution with probabilities vector π = (π1, ..., πK), we write

Zi ∼MultK(1, π) and P(Zi = zi) =
K∏

k=1
πzik

k

The concept of associating a label zi to each observation yi is useful for computing the MLE (Maximum
Likelihood Estimate) of the mixture distribution via a straightforward application of the EM algorithm.
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4. Parameters estimation

In this section, we introduce a customized version of the EM algorithm to iteratively estimate the mixture
parameters Θ. Consider a random sample with n random vectors Y1, ...,Yn independent and identically
distributed with mixture density function given by (6).

In the EM framework, the feature data y1, ..., yn are viewed as incomplete data since their associated
component-label vectors z1, ..., zn are not available. The complete data is (yT, zT)T where y = (y1 : ... : yn) is
the incomplete data and z = (z1 : ... : zn) is the hidden data.
The complete likelihood function is given by

l(y1, ..., yn, z1, ..., zn|Θ) =

n∏
i=1

K∏
k=1

[πzik
k f zik

k (yi)] (7)

The complete-data log-likelihood can be written as

L(y1, ..., yn, z1, ..., zn|Θ) =

n∑
i=1

K∑
k=1

ziklo1(πk) + ziklo1( fk(yi)) (8)

The EM algorithm proceeds in two steps, E-step (Expectation) and M-step (Maximization). The E-step
takes the conditional expectation of the complete-data log-likelihood given the observed data y, using the
current fit for Θ. The M-step gives the best update for Θ in the current iteration. The choice of the starting
values Θ(0) is very important especially for the singular normal distributions mixture.

4.1. Initial values choice

On the first iteration of the EM algorithm, we need to specify the initial values of Θ. Since each
component of the mixture is concentrated on the affine subspace E, we should add some restrictions on the
possible values for Σk and µk. The following values can be chosen:

• Any arbitrary value for π(0)
k , for example 1

K .

• Any arbitrary value verifying: µk
(0)
∈ E. This can be obtained by taking a convex combination on

elements of a subset of the data set. In fact, since all the observations are concentrated on the same
affine subspace E, which is stable by convex combination, with probability one, the proposed initial
value of µk

(0) belongs to E.

• Any arbitrary value Σk positive semi-definite verifying : ϕ(Σk) = Ē where ϕ(A) denotes the column
space of a matrix A and Ē is the vector subspace associated to E.

From a practical point of view, one can partition the data set into K subsetsD1, ...,DK (using prior knowledge
or a deterministic clustering algorithm such as k-means). Then, the initial values of the parameters are
constructed using the following formulas :

• π(0)
k = |Dk |

n ,

• µk
(0) = 1

|Dk |

∑
yi∈Dk

yi,

• Σk
(0) = 1

|Dk |

∑
yi∈Dk

(yi − µk
(0))(yi − µ

(0)
k )T,

where |Dk| is the cardinality ofDk.
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4.2. E-Step
The addition of the hidden random variables Z = (Z1 : ... : Zn) is handled by the E-step. After l iterations,

the conditional expectation of the complete-data log likelihood given the random sample Y = (Y1 : ... : Yn),
using the current fit Θ(l), can be written as follows

Q(Θ||Θ(l)) = EΘ(l) (L(Y,Z,Θ)|Y) (9)

Thanks to the linearity of L in the unobservable variable Zik, the E-step requires only the computation of
the current expectation of Zik given Y = y. This expectation is

τ(l)
ik = EΘ(l) (Zik|Y = y) = PΘ(l) (Zik = 1|Y = y) =

π(l)
k fk(yi|µk

(l),Σk
(l))

K∑
k=1
π(l)

k fk(yi|µk
(l),Σk

(l))
(10)

τ(l)
ik can be viewed as the probability that yi belongs to the kth component of the mixture. Using (10), the

conditional expectation of the complete-data log-likelihood given Y = y is

Q(Θ||Θ(l)) =

n∑
i=1

K∑
k=1

τ(l)
ik [lo1(πk) + lo1( fk(yi|µk,Σk))] (11)

Using the density function defined in (4), we get

Q(Θ||Θ(l)) =

n∑
i=1

K∑
k=1

τ(l)
ik [lo1(πk) −

r
2

lo1(2π) −
1
2

lo1|Λk| −
1
2

(yi − µk)TΣk
+(yi − µk)] (12)

4.3. M-Step
The M-step, at the (l + 1)th iteration, requires the global maximization of Q(Θ||Θ(l)) with respect to Θ over

the parameters space to give the updated estimates:

Θ(l+1) = arg max
Θ

Q(Θ||Θ(l)) (13)

The mixing proportions are updated using the classical result

π(l+1)
k =

1
n

n∑
i=1

τ(l)
ik (14)

We now state the main theorem which gives the updates of the component means and covariance matrices.
This theorem relies on the same assumption as the model defined in (6): all the mixture components are
concentrated on the same affine subspace with probability one. Hence, all the covariance matrices have the
same rank r.

Theorem 4.1. For k ∈ {1, ...,K}, let r = rank(Σk),

Sk =

n∑
i=1

τ(l)
ik (Yi − µk

(l+1))(Yi − µk
(l+1))T (15)

and Hk be the d × r matrix of eigenvectors corresponding to the r largest eigenvalues of Sk, denoted by Lk =
dia1(lk1, ..., lkr). Then, the maximum of Q with respect to Σk is achieved for

Σk
(l+1) = HkLkHk

T

nk
where nk =

n∑
i=1
τ(l)

ik .
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Λk
(l+1) = 1

nk
Lk.

P1k
(l+1) = Hk.

The updates of the components means µk are given by

µk
(l+1) =

n∑
i=1
τ(l)

ik Yi

nk
(16)

In order to prove Theorem 4.1, we need the following two propositions. The first proposition is a well-
known linear algebra result (see [7]):

Proposition 4.2. Let A,B be d × d symmetric matrices. Then

min
Uunitary

tr(AUTBU) =

d∑
k=1

αkβk, (17)

where α1 ≥ α2 ≥ ... ≥ αd and β1 ≤ β2 ≤ ... ≤ βd are the eigenvalues of A and B respectively, inversely ordered. (Note
that U is unitary if U−1 = UT.)

The second proposition is the following:

Proposition 4.3. For k ∈ {1, ...,K}, with the starting values chosen in Subsection 4.1, we have with probability one:

(i) ∀l ∈N, µk
(l)
∈ E.

(ii) ∀l ∈N, ϕ(Σk
(l)) ⊆ Ē and if n ≥ r then ϕ(Σk

(l)) = Ē

Proof: Since µk
(l) and Σk

(l) are defined iteratively and the initial values µ(0)
k and Σk

(0) meet the required
conditions, we only need to prove that µk

(l+1)
∈ E and ϕ(Σk

(l+1)) ⊆ Ē.
Since all the Yi are elements of E with probability one, we get from (16) that µk

(l+1)
∈ E as a convex combi-

nation of elements of E.
For the second part of the proof, we see that Σk

(l+1) is the sum of n elements having the form ViVi
T where

Vi = (Yi − µk
(l+1)) ∈ Ē. The latter remark implies that ϕ(Σk

(l+1)) ⊆ Ē with probability one. And if n ≥ r, the
equality is achieved. �

Proof of Theorem 4.1
Note that Q is concave with respect to µk. In order to maximize it with respect to µk, we simply have to
write the first-order condition

∂Q
∂µk

= 0 =
n∑

i=1
τ(l)

ik Σk
+(Yi − µk).

Using (5), the condition becomes

P1kΛk
−1[

n∑
i=1
τ(l)

ik P1k
T(Yi − µk)] = 0

Since P1kΛk
−1 is full-column rank (one-to-one), with probability one, we necessarily have

n∑
i=1
τ(l)

ik P1k
T(Yi − µk) = 0

Multiplying the above equation by P1k and using (2), we get
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n∑
i=1
τ(l)

ik P1kP1k
T(Yi − µk) = 0⇔

n∑
i=1
τ(l)

ik (Yi − µk) =
n∑

i=1
τ(l)

ik P2kP2k
T(Yi − µk)

Since Yi ∈ E, the right-hand term is equal to 0 (with probability one), we get

n∑
i=1

τ(l)
ik Yi = µk

n∑
i=1

τ(l)
ik

which completes the second part of the proof (µk update).
As previously done, Σk is decomposed as Σk = P1kΛkP1k

T. Similarly, we write Sk = HkLkHk
T where Hk is

semi-orthogonal i.e., Hk
THk = Ir. Then, from Proposition 4.3, it follows

ϕ(P1k) = ϕ(Σk) = Ē = ϕ(Sk) = ϕ(Hk) (18)

In fact, the previous decompositions imply that ϕ(Σk) ⊆ ϕ(P1k) and ϕ(Sk) ⊆ ϕ(Hk). The equalities are
achieved since Σk, P1k, Sk and Hk have same rank r.
Thus, it exists a full-rank r × r matrix ψk such that P1k = Hkψk.

Ir = P1k
TP1k = ψk

THk
THkψk = ψk

Tψk. (19)

Since ψk is square and full-rank, it follows that ψk is unitary.
Moreover, using the fact that

(Yi − µk)TΣk
+(Yi − µk) = tr((Yi − µk)TΣk

+(Yi − µk)) = tr((Yi − µk)(Yi − µk)TΣk
+),

the conditional expectation of the complete-data log likelihood given Y becomes

Q(Θ||Θ(l)) = c −
1
2

K∑
k=1

n∑
i=1

τ(l)
ik [lo1|Λk| + tr((Yi − µk)(Yi − µk)TΣk

+)]. (20)

Where c =
n∑

i=1

K∑
k=1
τ(l)

ik [lo1(πk) − r
2 lo1(2π)] is constant with respect to µk and Σk. Then, thanks to trace function

linearity, and using (15) we get

Q(Θ||Θ(l)) = c −
1
2

K∑
k=1

tr(SkΣk
+) +

n∑
i=1

τ(l)
ik lo1|Λk|

 . (21)

Replacing Σk
+ and Sk respectively by P1kΛk

−1P1k
T and HkLkHk

T we get

Q(Θ||Θ(l)) = c −
1
2

K∑
k=1

tr(HkLkHk
TP1kΛk

−1P1k
T) + lo1|Λk|

n∑
i=1

τ(l)
ik

 (22)

= c −
1
2

K∑
k=1

[
tr(Λk

−1ψk
TLkψk) + nklo1|Λk|

]
. (23)

The latter equality (23) is obtained using (19), and the invariance of the trace function under cyclic permu-
tations.
For each k ∈ {1, 2, ...,K}, we order the eigenvalues of Sk and Σk such that l1k ≥ l2k ≥ ... ≥ lrk and
λ1k ≥ λ2k ≥ ... ≥ λrk respectively. Then, Proposition 4.2 with Λk

−1, ψk, and Lk we get that for any ψk
unitary,

tr(Λk
−1ψk

TLkψk) ≥
r∑

m=1

lmk

λmk
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Therefore,

Q(Θ||Θ(l)) = c −
1
2

K∑
k=1

tr(Λk
−1ψk

TLkψk) + nklo1

 r∏
m=1

λmk




≤ c −
1
2

K∑
k=1

r∑
m=1

[
lmk

λmk
+ nklo1(λmk)

]
. (24)

The equality is obtained for ψk = Ir. Then, after replacing ψk by Ir, using the fact that ex
≥ x + 1 with

x = lo1(
lmk

nkλmk
), we get

∀k ∈ {1, ...,K} , ∀m ∈ {1, ..., r} ,
lmk

nkλmk
≥ 1 + lo1(

lmk

nkλmk
)

By replacing and simplifying (24), we finally get

Q(Θ||Θ(l)) ≤ c −
1
2

K∑
k=1

r∑
m=1

nk

[
1 + lo1(

lmk

nk
)
]

(25)

The equality is achieved for x = 0 i.e., λmk =
lmk

nk
. Thus, we obtain a global maximum of Q(Θ||Θ(l)) with

repect to Σk achieved for Σk = HkLkHk
T. �

5. Simulation study

The performance of the proposed algorithm was evaluated on the grounds of a simulation study
involving three five-variate singular normal components. We consider two different types of experiments
using simulated data: the first analyzes the convergence properties of the algorithm; the second is designed
to show how to use the algorithm with real data.

5.1. Example 1
5.1.1. Methodology

Each run of the proposed EM algorithm performs the following steps:

• We first generate a random sample (y, z) of size n from the singular Gaussian mixture distribution
with density

f (y) = π1 f1(y|µ1,Σ1) + π2 f2(y|µ2,Σ2) + π3 f3(y|µ3,Σ3) (26)

for a parameters set Θ = (µ1,Σ1, π1, µ2,Σ2, π2, µ3,Σ3, π3).
Here, all the covariance matrices are singular and of rank r = 4. As described in Section 3, y is the
observed data and z contains component-labels. We then split, arbitrarily, the generated data into a
training set and a test set.

• The second step is to apply the described algorithm, using the observed data y only from the training
set, in order to estimate the parameters. The algorithm is stopped when the distance between two
successive estimations is small enough, i.e.,:

||Θ(l+1)
−Θ(l)

|| < ε(1 + ||Θ(l)
||), (27)

where ||.|| denotes a norm and ε is a relative tolerance (we choose ε = 10−4). Moreover, an upper
bound on the number of iterations is added in order to avoid infinite loops.
The estimation errors are then computed as follows :
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– Mean relative error of each component:

||µk − µ̂k||2

||µk||2
=

√
d∑

i=1

[
(µk)i − (µ̂k)i

]2

√
d∑

i=1
(µk)2

i

– Covariance matrix relative estimation error of each component :

||Σk − Σ̂k||

||Σk||
=

√
trace((Σk − Σ̂k)2)√

trace(Σk
2)

– Proportion estimation error of each component:

|πk − π̂k|

• The test set is then used to compute the classification error rate (CER): This rate is given by the
number of misclassified observed data divided by the size of the test set. In fact, the proposed
algorithm provides a clustering criterion through the probability τi j defined in (10).

Using the above-described strategy, we performed several experiments. First, for a given parameters set
Θ0, the algorithm was applied using 100 different samples of size n = 5000. The goal here is to check the
consistency of the estimation method with respect to the random sample. The obtained results reported
in Table 1 show that the algorithm converges and gives almost the same parameters estimation for all the
random samples. This fact appears more clearly in Figure 1 which reports the scatter diagrams of the
relative errors.

Table 1: Average estimation errors and their associated confidence intervals for 100 EM runs with different random samples of size
n=5000 drawn using a parameters set Θ0.

µ error π error Σ error CER Iterations Nb

Average 0.017 0.005 0.041 3.18% 32.47
Confidence interval [0.016 ; 0.018] [0.004 ; 0.006] [0.038 ; 0.045] [2.86% ; 3.06%] [31.91 ; 33.03]
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Figure 1: Estimation errors and misclassification rate in relation to the number of iterations with a sample of size n=5000

The second experiment aims at evaluating the algorithm consistency with respect to the model parame-
ters. Hence, we randomly generated 15 parameter sets (Θ1, ...,Θ15) and for each parameters set Θi, we drew
10 different random samples of size n = 5000 and performed 10 runs using these samples. As previously,
we computed the relative errors for each run. The average errors and their associated confidence inter-
vals are reported in Table 2. The obtained results confirm the consistency of the algorithm. On average,
the algorithm converges within almost 32 iterations. The obtained estimations are very close to the true
parameters for all the random samples and for all the parameter sets.

Table 2: Average estimation errors and their associated confidence intervals for 150 EM runs with different random samples of size
n=5000 drawn using 15 different parameter sets.

µ error π error Σ error CER Iterations Nb

Average 0.028 0.008 0.052 6.00% 36.36
Confidence interval [0.017 ; 0.038] [0.004 ; 0.011] [0.045 ; 0.059] [5.36% ; 6.65%] [33.14 ; 39.6]

In order to evaluate the algorithm convergence speed, we performed two additional experiments. First,
we tested the effect of limiting the number of iterations on the estimation errors and classification error
rates. Using a sample of size n = 5000 drawn with the parameters set Θ0, we run the algorithm many times
varying the iterations number from 5 to 100. For each run, we computed the the above-described errors.
Figure 2 displays the obtained results. For all the error curves, the same kind of shape is observed : a rapid
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improvement of the estimations followed by a slow decrease of the errors.
The last test aims at evaluating the algorithm convergence with respect to the sample size. Many

simulations were performed using samples with different sizes n varying from 200 to 2000 (see Figure 3).
We observe a rapid decrease until the sample size reaches 500. Thereafter, the errors are almost constant
and close to zero.
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Figure 2: Estimation errors and misclassification rate in relation to the number of iterations with a sample of size n=2000

5.2. Example 2

In this second example, we consider the case of a mixture of normal distributions with ill-conditioned
covariance matrices. In practice, when working with real data containing collinear features, the empirical
covariance matrix S is ill-conditioned and not necessarily singular. However, the observed data are almost
concentrated on an affine subspace. As illustration, we considered a mixture of two non-singular three-
variate normal distributions with ill-conditioned covariance matrices. Hence, we generated a random
sample of size n = 500 using the following mixture density function

f (y) = π1 f1(y|µ1,Σ1) + π2 f2(y|µ2,Σ2), (28)

where the mixture parameters Θ =
{
π1, µ1,Σ1, π2, µ2,Σ2

}
are reported in Table 3. The 3D-scatter diagram of

the random sample, reported in Figure 4, shows that the observations are almost concentrated on the 2-D
plan plotted on the same figure. Consequently, projecting the data on this plan gives rise to a mixture of
singular Gaussian distributions for which the proposed algorithm is suitable.



K. Masmoudi, A. Masmoudi / Filomat 33:15 (2019), 4753–4767 4764

Sample size
0 500 1000 1500 2000

M
ea

ns
‘ E

st
im

at
io

n 
E

rr
or

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sample size
0 500 1000 1500 2000C

ov
ar

ia
nc

e 
M

at
ric

es
‘ E

st
im

at
io

n 
E

rr
or

s

0

0.2

0.4

0.6

0.8

1

Sample size
0 500 1000 1500 2000

P
ro

po
rt

io
ns

‘ E
st

im
at

io
n 

E
rr

or
s

0

0.01

0.02

0.03

0.04

0.05

0.06

Sample size
0 500 1000 1500 2000

M
is

cl
as

si
fic

at
io

n 
ra

te

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 3: Estimation errors and misclassification rate in relation to the sample size

Table 3: Mixture parameters used for scatter plot in Figure 4

π µ Σ

Component (1) 0.5

−0.12
0.69
−1.15


 1.7456 −0.3670 1.4447
−0.3670 2.4747 0.7549
1.4447 0.7549 1.6641


Component (2) 0.5

4.96
3.45
4.75


 4.4157 −0.9191 3.6591
−0.9191 6.3672 1.9658
3.6591 1.9658 4.2378


When further generalized, for d-dimensional distributions, one can project data on the r-dimensional

affine subspace E corresponding to the r largest eigenvalues of the empirical covariance matrix S. This
projection procedure solves some numerical problems faced when working directly with the raw data. In
fact, when applying the classical EM algorithm, the precision matrices are computed in each iteration to
determine the probabilities τi j. The inverse computation fails after few iterations. In this context, the use
of the projection combined with our proposed model improves the estimation results.

In order to illustrate this procedure, as in the previous example 5.1, we considered 15 parameter sets
for the mixture density (28) and generated for each set of parameters, 10 different random samples of size
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Figure 4: Visualization of sample drawn from mixture of two three-variate normal distributions with ill-conditioned covariance
matrices.

n = 3000. We, then, compared the estimates obtained using our suggested algorithm with projected data
and the classical EM algorithm applied to the raw data. The obtained results, summarized in Table 4,
confirm the expected improvements due to the projection-based algorithm: on average, for parameter sets
used in this test, the relative errors are reduced to the half. The error reduction factor may vary with
mixture parameters and the used random samples. However, the most important gain is the robustness of
the proposed method.

Table 4: Average estimation errors obtained using the classical EM algorithm and the updated EM with projected data for 150 runs
with different random samples of size n=3000 drawn using 15 different parameter sets.

µ error π error Σ error CER

EM Raw Data 0.028 0.015 0.113 5.04%
EM Projected Data 0.015 0.012 0.052 5.74%

6. Asset returns modeling with singular Gaussian mixture

6.1. Historical context
The normal distribution is widely used to model the financial asset returns. This choice is motivated

by the simplicity of this distribution and its coherence with the mean-variance paradigm [17]. However,
two major problems exist within this model. First, as shown by many studies, the returns of a single asset
are leptokurtic (fat tails) and asymmetric (see [10], [2]). Second, when several assets are considered, the
covariance matrix of the returns distribution may be singular or ill-conditioned (see [4],[23]). In order to
tackle the first problem, many authors proposed to use a finite mixture of Gaussian distributions ([11],
[27], [1], [20]). Buser ([4]) proposed an extension of the mean-variance model of portfolio selection to solve
the second issue. More recently, other authors ([23], [26], [13], [21]), have given some additional results
concerning the portfolio selection when the covariance matrix is singular.
Moreover, the problem of portfolio optimization when the returns have a Gaussian mixture distribution was
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addressed by [3]. In their work, they introduced an approach which improves the standard mean-variance
procedure. The proposed methodology is reduced to three steps :

1. Model calibration from historical data (parameters estimation).
2. Solving a three-dimensional family of linear quadratic programs to obtain the efficient frontier.
3. Solving a three-dimensional non-linear program to determine the optimal portfolio.

6.2. Proposed model

In this subsection, we propose to use a mixture of singular Gaussian distributions to address simulta-
neously the two problems previously discussed : singularity of the covariance matrix and non-normality
of the returns. The mixture components are associated to different market regimes. Here, we assume the
existence of two regimes corresponding to bear and bull markets.
Consider d risky financial assets and let R = (R1, ...,Rd)T be their random rates of return. The random vector
R has a distribution with density function :

f (y) = πD fD(y|µD,ΣD) + πT fD(y|µT,ΣT), (29)

This density function describes a market with two regimes :

• A ”Distressed” market regime where the returns vector R has a singular Gaussian distribution with
mean µD and covariance matrix ΣD.

• A ”Tranquil” market regime where the returns vector R has a singular Gaussian distribution with
mean µT and covariance matrix ΣT.

Note that πD and πT are the mixing weights (πT +πD = 1). Both covariance matrices ΣD and ΣT are singular
with rank r < d.
Within this model, the methodology proposed in [3] remains applicable. Hence, the EM algorithm described
in Section 4 can be used to achieve the first step (parameters estimation). The second and third steps remain
unchanged. The optimal portfolio depends on the chosen objective function. A detailed analysis and
further research are necessary to reveal more properties for the selected portfolios.

7. Conclusion

In this paper, we have introduced the finite singular multivariate Gaussian mixture model. The main
objectives were to estimate the model parameters and give a clustering approach of the observed data. We
proposed an extension of the EM algorithm in order to meet these objectives. More precisely, we gave,
with a detailed proof, new formulas used in the maximization step of this algorithm. The performance of
the proposed algorithm was evaluated through different numerical experiments. The obtained estimates
are very close to the true parameters used in samples generation. Moreover, when covariance matrices are
ill-conditioned, the use of the singular Gaussian mixture model with projected data addresses instability
problems faced in the classical EM algorithm and improves the estimators quality and the model robustness.
Finally, we illustrated a possible application of the proposed model to portfolio selection when the asset
returns have a singular covariance matrix. We demonstrated the usefulness of the mixture of singular
normal distributions in this context as it simultaneously addresses the non-normality of the returns and the
singularity of the covariance matrix.

Our future perspective includes the theoretical investigation of mixture of singular multivariate normal
distributions when the components are concentrated on different affine subspaces. Hence, several cases
should be considered depending on the intersection of such subspaces.
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