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Abstract. In this paper, we study the generating functions for the number of visible levels in compositions
of n and set partitions of [n].

1. Introduction

A composition of the positive integer n is a word σ = σ1 · · · σm over the alphabet of positive integers
such that σ1 + · · · + σm = n. The letters of σ are called parts. Let the set of compositions of n be denoted
by C(n). Each composition can be represented as a bargraph which is a column convex polyomino, where
the lower edge lies on the x-axis. Specifically, the bargraph is made up of square cells on a regular planar
lattice grid such that the size and the number of parts of σ, namely n and m, are the total number of cells
and number of columns of the bargraph, respectively. The part σi is the height of the i-th column in the
corresponding bargraph. For example, the bargraph of the composition 1223434124 of 26 is represented
on Figure 1. The most recent results regarding bargraphs are due to Blecher, Brennan, Knopfmacher, and

Figure 1: The bargraph 1223434124 where the visible levels are shown with arcs.

in the fourth listed paper also Prodinger in [1–4], where the authors study several statistics on bargraphs
including height, width, number of peaks, number of levels, etc. Motivated by work of Gutin, Severini,
and the second author [8] as well as work of Shattuck and the second author [10], we define the following
statistic on bargraphs. Given the bargraph σ = σ1 · · · σm, we say the ith column is visible and level to the jth
column, i < j, if σk < σi = σ j for all k = i + 1, i + 2, . . . , j − 1. In this context, the pair (i, j) is called a visible
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Email addresses: cakic@etf.rs (Nenad Cakić), tmansour@univ.haiifa.ac.il (Toufik Mansour), rnsmith@brockport.edu

(Rebecca Smith)
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level. For example, Figure 1 presents the bargraph σ = 1223434124 with three visible levels, namely (σ2, σ3),
(σ5, σ7), and (σ7, σ10), which are shown by the three arcs.

A set partition of [n] = {1, 2, . . . ,n} is a collection of nonempty, pairwise disjoint subsets, called blocks,
whose union is [n]. If n = 0, there is a single empty set partition of [0] which has no blocks. We will show
in Theorem 2.2 that the ordinary generating function for the total number of visible levels in bargraphs
representing compositions of [n] is

(1 − x)3

(1 − 2x)2

∑
j≥1

x2 j

1 − 2x + x j .

Further, in Corollary 3.2 we show that the generating function for the total number of visible levels in all
words over the alphabet [k] of length n, that is the total number of visible levels in all bargraphs with exactly
n columns each of height at most k, is given by

Jk(x) =
x2

(1 − kx)2

k−1∑
j=0

1
1 − jx

.

Let P(n, k) denote the set of all set partitions of [n] with exactly k blocks. Further denote set of all set
partitions of [n] by P(n). The standard form of a set partition π ∈ P(n, k) is B1,B2, . . . ,Bk, where min(B1) <
· · · < min(Bk). Equivalently, one may also represent a set partition by the canonical sequential form π =
π1π2 · · ·πn, wherein i ∈ Bπi for i ∈ [n]. That is, πi = j if i ∈ B j. For example, the set partition π =
{1, 6, 8}, {2, 3, 9}, {4, 7, 10}, {5} has the canonical sequential form π = 1223413123. Recently, statistics on set
partitions have been considered by several authors including Shattuck and the second author (for example,
see [9, 11–13]).

Letπ = π1π2 · · ·πn be any set partition of P(n, k). As before, the pair (πi, π j) with i < j is said to be a visible
level (respectively, visible rise, visible descent) if πi = π j (respectively, πi < π j, πi > π j) and πm < min{πi, π j}

for all m = i + 1, i + 2, . . . , j − 1. For instance, the set partition π = π1π2 · · ·π19 = 1121213232212421412 of
P(19, 4) has six visible levels, namely (π1, π2) = (1, 1), (π3, π5) = (2, 2), (π7, π9) = (3, 3), (π10, π11) = (2, 2),
(π11, π13) = (2, 2), (π14, π17) = (4, 4), and (π18, π19) = (1, 1).

This notion of visibility in bargraphs is the defining property of horizontal visibility graphs. A horizontal
visibility graph is a simple graph such that if the vertices v1, v2, . . . , vk are totally ordered, then there is an
edge viv j exactly if vi, v j > vm and i < m < j. The formal definition of horizontal visibility graphs was given
by Luque, Lacasa, Ballesteros, and Luque [7]. These graphs can be used to describe diagrams that represent
the floorplan and routing in circuits (see Ho, Suzuki, and Sarrafzadeh [6]), show up in computational
geometry (see de Berg, van Kreveld, Overmars, and Schwarzkopf [5]), and discrete dynamical systems (see
[7]). These horizontal visibility graphs can be viewed as bargraphs where there is an edge for each visible
level, rise, or descent. In this work, we consider bargraphs that represent partitions of n and set partitions
of [n] focusing on the special case of visible levels.

In Section 3, we study the generating function for the number of set partitions of [n] with k blocks
according to the number of visible levels. In particular, we show in Theorem 3.5 that the exponential
generating function for the total number of visible levels in all set partitions of [n] is given by

eex
−1

∫ x

0

(
rer
− e1−er

∫ r

0
teet+2t−1dt

)
dr.

2. Visible levels in bargraphs

We begin our study by utilizing generating functions that track the number of bargraphs by both the
composition that they represent and the number of visible levels present.

Let C(x, q) =
∑

n≥0
∑
π∈C(n) qvisl(π)xn be the generating function for the number of bargraphs (compositions)

according to the number of visible levels. In order to study the generating function C(x, q), we refine it as
follows. Let Cd(n) be the set of all bargraphs π of n where the height of each column (value of each part) of
π is at most d. Define Cd(x, q) =

∑
n≥d

∑
π∈Cd(n) qvisl(π)xn.
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Proposition 2.1. We have

Cd(x, q) = Cd−1(x, q) +
xd(Cd−1(x, q))2

1 − xdqCd−1(x, q)

with C0(x, q) = 1.

Proof. Note that each bargraph π in Cd(n) can be decomposed as a bargraph in Cd−1(n) or π = π′dπ′′ with
π′ ∈ Cd−1(n′) and π′′ ∈ Cd(n′′) such that n′ + n′′ + d = n. The recurrence follows.

Note that Cd(x, 1) =
Cd−1(x,1)

1−xdCd−1(x,1) with C0(x, 1) = 1. So Cd(x, 1) = 1
1−x−x2−···−xd , for all d ≥ 1.

Now let us consider the total number of visible levels in bargraphs of Cd(n). To do so, we define
Dd(x) = d

dq Cd(x, q) |q=1.

Theorem 2.2. The generating function for the total number of visible levels over all bargraphs of n is given by

(1 − x)3

(1 − 2x)2

∑
j≥1

x2 j

1 − 2x + x j .

Proof. By Proposition 2.1, we have

Dd(x) = Dd−1(x) +
2xdCd−1(x, 1)Dd−1(x)

1 − xdCd−1(x, 1)
+

xd(Cd−1(x, 1))2(xdCd−1(x, 1) + xdDd−1(x))
(1 − xdCd−1(x, 1))2

with D0(x) = 0. Thus,

Dd(x) = (1 + xdCd(x, 1))2Dd−1(x) + x2d(Cd(x, 1))2Cd−1(x, 1)

with D0(x) = 0. Hence, by induction on d and the fact that Cd(x, 1) = 1
1−x−x2−···−xd , we have

Dd(x) =

d∑
j=1

x2 j

(1 − x − · · · − x j)2(1 − x − · · · − x j−1)

d∏
i= j+1

(
1 +

xi

1 − x − · · · − xi

)2

,

which is equivalent to

Dd(x) =
1

(1 − x − · · · − xd)2

d∑
j=1

x2 j

1 − x−x j

1−x

.

By taking d→∞, we obtain the desired result.

Theorem 2.2 and analytic generating function techniques (see Sedgewick and Flajolet [14] for more
information) allow us to obtain the following corollary.

Corollary 2.3. The total number of visible levels over all bargraphs of n asymptotically approaches (n + 1)2n−3.

Proof. By Theorem 2.2, we have the generating function for the total number of visible levels over all
bargraphs of n is

f (x) =
(1 − x)3

(1 − 2x)2

∑
j≥1

x2 j

1 − 2x + x j .

Let

fN(x) =
(1 − x)3

(1 − 2x)2

N∑
j=1

x2 j

1 − 2x + x j .
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Note that the generating function fN(x) is meromorphic in the interval |x| ≤ 3
5 with unique pole at 1/2 of

multiplicity 2. Then (applying Theorem IV.9 in [14]), the coefficient of xn in fN(x) asymptotically approaches

(n + 1)2n−3
N∑

j=1

(1
2

) j

= (n + 1)2n−3
(
1 −

(1
2

)N)
,

for all N ≥ n. Hence the coefficient of xn in f (x) is given by (n + 1)2n−3 as n→∞.

3. Visible levels in set partitions

For the remainder of the paper, we consider bargraphs as set partitions. Let

Pk(x, q) =
∑
n≥0

∑
π∈P(n,k)

qvisl(π)xn

be the generating function for the number of set partitions in P(n, k) according to the number visible levels.

Theorem 3.1. The generating function Pk(x, q) is given by

Pk(x, q) = xk
k−1∏
j=0

L j(x, q)
1 − xqL j(x, q)

,

where Lk(x, q) = Lk−1(x, q) +
x(Lk−1(x,q))2

1−xqLk−1(x,q) with L0(x, q) = 1.

Proof. Note that each set partition π in P(n, k) can be decomposed as π = π′kπ′′, where π′ ∈ P(n′, k − 1) and
π′′ is a word over the alphabet [k] of length n′′ such that n′ + n′′ = n − 1. Thus,

Pk(x, q) = Pk−1(x, q)L′k(x, q),

where L′k(x, q) =
∑

n≥0
∑
π=kπ′∈[k]n qvisl(π)xn is the generating function for the number of words π = kπ′ over

the alphabet [k] of length n according to the number visible levels. Therefore,

Pk(x, q) = L′k(x, q)L′k−1(x, q) · · · L′1(x, q). (1)

To study the generating function L′k(x, q), we focus on Lk(x, q) =
∑

n≥0
∑
π∈[k]n qvisl(π)xn, which is the

generating function for the number of words over the alphabet [k] of length n according to the number
visible levels. Note that each word π over the alphabet [k] can be written as π = π(0)kπ(1)

· · · kπ(s) with s ≥ 0,
where π( j) is a word over the alphabet [k − 1]. Thus (similar to Proposition 2.1),

Lk(x, q) = Lk−1(x, q) +
x(Lk−1(x, q))2

1 − xqLk−1(x, q)
(2)

with L0(x, q) = 1.
Note that each word π = kπ′ over the alphabet [k] is such that either π′ is a word over the alphabet

[k − 1] or π′ contains the letter k at least once. So L′k(x, q) = xLk−1(x, q) + xqLk−1(x, q)L′k(x, q), which leads to

L′k(x, q) =
xLk−1(x, q)

1 − xqLk−1(x, q)
. (3)

From (1)-(3), we have the desired result.
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For instance, Theorem 3.1 gives P0(x, q) = 1, P1(x, q) = x
1−xq and

P2(x, q) =
(1 + x − xq)x2

(1 − 2xq − x2q + x2q2)(1 − xq)
.

We can also use Theorem 3.1 to obtain the generating function for the total number of the visible levels
in bargraphs representing words of length n on the alphabet [k].

Corollary 3.2. The generating function for the total number of visible levels in all words over the alphabet [k] of
length n is given by

Jk(x) =
x2

(1 − kx)2

k−1∑
j=0

1
1 − jx

.

Proof. Define Jk(x) = ∂
∂q Lk(x, q) |q=1, so by (2), we have

Jk(x) =
Jk−1(x) + x2(Lk−1(x, 1))3

(1 − xLk−1(x, 1))2

with J0(x) = 0. Note that Lk−1(x, 1) = 1
1−(k−1)x , so

Jk(x) =
(1 − (k − 1)x)2

(1 − kx)2 Jk−1(x) +
x2

(1 − kx)2(1 − (k − 1)x)
.

Hence, by induction on k, we have the desired result.

Next, we examine the generating function for the total number of visible levels in bargraphs representing
set partitions of [n].

Define, Qk(x) = ∂
∂q Pk(x, q) |q=1, so Theorem 3.1 gives

Qk(x) = xk
k−1∏
j=0

L j(x, 1)
1 − xL j(x, 1)

k−1∑
j=0

J j(x) + x(L j(x, 1))2

(1 − xL j(x, 1))L j(x, 1)
,

which, by L j(x, 1) = 1
1− jx , implies

Qk(x) =
xk∏k

j=1(1 − jx)

k−1∑
j=0

x + x2 ∑ j−1
i=0 1/(1 − ix)

1 − ( j + 1)x
.

Therefore, by Corollary 3.2, we have

Qk(x) =
xk+1∏k

j=1(1 − jx)

k∑
j=1

1 + x
∑ j−2

i=0
1

1−ix

1 − jx
. (4)

Given the ordinary generating function A(x) =
∑

n≥0 anxn, we define the corresponding exponential
generating function as Ã(x) =

∑
n≥0 an

xn

n! (for example, see [14] to see basic and advanced properties of
ordinary and exponential generating functions). In order to study further the coefficients of the generating
function Qk(x), we denote the corresponding exponential generating function of Qk(x) as Q̃k(x).

Theorem 3.3. The generating function Q̃(x, y) is given by

Q̃(x, y) =

∫ x

0
ey(ex−t

−1) ∂
∂x

Q̃′(x, y) |(x,y)=(t,yex−t) dt,
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where

Q̃′(x, y) =
y
2

∫ x

0
t2ey(ex−t

−1)+x−tdt +

∫ x

0

∂
∂x

Q̃′′(x, y) |(x,y)=(t,yex−t ) ey(ex−t
−1)dt

− y
∫ x

0

∂
∂y

Q̃′′(x, y) |(x,y)=(t,yex−t ) ey(ex−t
−1)+x−tdt

and
∂
∂x

Q̃′′(x, y) = (x + 1)y −
1 + yex

2
−

y2

2
eyex

(Ei(1, yex) − Ei(1, y)) +
1 − y

2
ey(ex

−1),

with

Ei(1, yex) − Ei(1, y) = x +
∑
j≥1

(−1) j e jx
− 1

j · j!
y j.

Proof. By (4), we have that Q0(x) = 0, Q1(x) = x2

(1−x)2 , and Q2(x) =
x3(2−2x−x2)

(1−x)2(1−2x)2 . For all k ≥ 1, we also have

Q′k(x) := (1 − kx)Qk(x) − xQk−1(x) =
xk+1∏k

j=1(1 − jx)
(1 + x

k−2∑
i=0

1
1 − ix

) (5)

with Q′0(x) = 0. Moreover, for all k ≥ 2, we have

Q′′k (x) := Q′k(x) −
x

1 − kx
Q′k−1(x) =

xk+2∏k
j=1(1 − jx)

1
1 − (k − 2)x

(6)

with Q′′0 (x) = 0 and Q′′1 (x) = x2.
Rewriting (6) as 1

x2 Q′′k (x) − k−2
x Q′′k (x) = xk∏k

j=1(1− jx)
, we obtain

d2

dx2 Q̃′′k(x) − (k − 2)
d

dx
Q̃′′k(x) =

(ex
− 1)k

k!
(7)

with Q̃′′0(x) = 0 and Q̃′′1(x) = x2/2!, where the corresponding exponential generating function for the
ordinary generating function xk∏k

j=1(1− jx)
is given by (ex

−1)k

k! (for instance, see [9]).

For given a sequence of generating functions Ak(x), we define A(x, y) =
∑

k≥0 Ak(x)yk. Thus, by (7), we
obtain

∂2

∂x2 Q̃′′(x, y) − y
∂2

∂x∂y
Q̃′′(x, y) + 2

∂
∂x

Q̃′′(x, y) = ey(ex
−1)
− 1 − (ex

− 1)y + y + xy

with Q̃′′(0, y) = 0 and ∂
∂x Q̃′′(0, y) = 0. Thus,

∂
∂x

Q̃′′(x, y) = (x + 1)y −
1 + yex

2
−

y2

2
eyex

(Ei(1, yex) − Ei(1, y)) +
1 − y

2
ey(ex

−1),

where

Ei(1, y) − Ei(1, yex) = −x −
∑
j≥1

(−1) j e jx
− 1

j · j!
y j.

By (6), we have

d
dx

Q̃′′k(x) − kQ̃′′k(x) =
d

dx
Q̃′k(x) − kQ̃′k(x) − Q̃′k−1(x)
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with Q̃′′0(x) = Q̃′0(x) = 0, Q̃′′1(x) = x2/2 and Q̃′1(x) = ex
− 1 − x. Thus, by multiplying by yk and summing

over k ≥ 2, we obtain

∂
∂x

Q̃′′(x, y) − y
∂
∂y

Q̃′′(x, y) =
∂
∂x

Q̃′(x, y) − y
∂
∂y

Q̃′(x, y) − yQ̃′(x, y) −
1
2

x2y.

Hence,

Q̃′(x, y) =

∫ x

0
((

yext2

2
+ et ∂

∂x
Q̃′′(x, y) |(x,y)=(t,yex−t) −yex ∂

∂y
Q̃′′(x, y) |(x,y)=(t,yex−t))ey(ex−t

−1)−tdt.

By (5), we have

d
dx

Q̃′k(x) =
d
dx

Q̃k(x) − kQ̃k(x) − Q̃k−1(x)

with Q̃′0(x) = Q̃0(x) = 0. Thus, by multiplying by yk and summing over k ≥ 2, we obtain

∂
∂x

Q̃′(x, y) =
∂
∂x

Q̃(x, y) − y
∂
∂y

Q̃(x, y) − yQ̃(x, y).

Hence,

Q̃(x, y) =

∫ x

0
ey(ex−t

−1) ∂
∂x

Q̃′(x, y) |(x,y)=(t,yex−t) dt,

which leads to the desired result.

3.1. Another recurrence for the number of visible levels in set partitions

A different combinatorial approach can be taken to obtain the following result. First recall that the n-th
Bell Number, denoted B(n), is the number of ways to partition the set [n] into nonempty subsets.

Proposition 3.4. Let V(n) be the number of visible levels found in all set partitions of [n]. Then

V(n) =

n−1∑
k=0

(
n − 1

k

)
V(k) +

n−1∑
k=0

B(k)
n−1−k∑

j=0

(
k
j

)(
n − k − 1

j

)
(n − k − j − 1)

where B(k) is the k-th Bell number.

Proof. Consider the word representing the set partition π of [n]. The visible levels involving integers other
than 1 can be found by considering the word obtained when all of the 1s are removed from π. This resulting
word π′ also represents a set partition. Further, as the 1s do not interfere with visible levels of greater
entries, π′ has exactly the same visible levels involving entries greater than 1 as π does. Thus there are∑n−1

k=0
(n−1

k
)
V(k) visible levels in set partitions of [n] that do not involve the 1 entries.

Note that each visible level (1, 1) ofπmust have the 1s in consecutive positions in the word representation.
Consider set partitions of [n] with exactly k entries larger than 1. There are B(k) such partitions. Let j be the
number of entries of value 1 that have an entry other than 1 to their left. There are

(k
j
)

ways to intersperse
these entries with the larger entries. Finally the (n − k − j − 1) 1s that do have a 1 to their left can be placed
in

(n−k−1
j

)
ways. Such a word representation will have exactly n − k − j − 1 visible levels of 1s. Hence there

are
∑n−1

k=0 B(k)
∑n−1−k

j=0
(k

j
)(n−k−1

j
)
(n − k − j − 1) visible levels (1, 1) in all set partitions of [n].

Now define the exponential generating function E(x) =
∑

n≥0 V(n) xn

n! .
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Theorem 3.5. The exponential generating function E(x) = Q̃(x, 1) is given by

E(x) = eex
−1

∫ x

0

(
rer
− e1−er

∫ r

0
teet+2t−1dt

)
dr.

Proof. By Proposition 3.4 and the identity

n−k−1∑
j=0

(
k
j

)(
n − k − 1

j

)
(n − k − j − 1) = (n − k − 1)

(
n − 2

k

)
,

we have that

V(n) =

n−1∑
k=0

(
n − 1

k

)
V(k) +

n−2∑
k=0

(n − k − 1)
(
n − 2

k

)
B(k).

Hence,
V(n)

(n − 1)!
=

n−1∑
k=0

1
(n − 1 − k)!

V(k)
k!

+

n−2∑
k=0

1
(n − 2 − k)!

B(k)
k!
−

1
n − 1

n−2∑
k=0

k
(n − 2 − k)!

B(k)
k!
.

By multiplying the last recurrence by xn−1 and summing over all n ≥ 1, we obtain

d
dx

E(x) = exE(x) + xeex+x−1
−

∫ x

0
teet+2t−1dt.

Hence, we have

E(x) = eex
−1

∫ x

0

(
rer
− e1−er

∫ r

0
teet+2t−1dt

)
dr,

as required.

4. Conclusion

In this paper we provided the ordinary generating function for the number of visible levels over
compositions of n and the exponential generating function for the number of visible levels over set partitions
of [n]. As natural next step, we plan to extend the study of visible levels to visible descents as follows: Given
the bargraph σ = σ1 · · · σm, we say (i, j) is a visible descent if i < j and σk < σ j < σi for all k = i+1, i+2, . . . , j−1.

For example, Figure 1 presents the bargraph σ = 1223434124 with three visible descents, namely (σ5, σ6),
(σ7, σ8), and (σ7, σ9), which are shown by the three arcs. Thus, as next step, we plan to study the ordinary
generating function for the number of visible descents over compositions of n and the exponential generating
function for the number of visible descents over set partitions of [n].
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