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Abstract. Let R be a prime ring of characteristic different from 2 and F a b-generalized derivation on R.
Let U be Utumi quotient ring of R with extended centroid C and f (x1, . . . , xn) be a multilinear polynomial
over C which is not central valued on R. Suppose that d is a non zero derivation on R such that

d([F( f (r)), f (r)]) ∈ C

for all r = (r1, . . . , rn) ∈ Rn; then one of the following holds:

(1) there exist a ∈ U, λ ∈ C such that F(x) = ax + λx + xa for all x ∈ R and f (x1, . . . , xn)2 is central valued on R,

(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R.

1. Introduction

Throughout the paper R denotes an associative ring with center Z(R). The Utumi quotient ring of a
prime ring R is denoted by U. The definition and axiomatic formulation of Utumi quotient ring U can
be found in [11] and [5]. We notice that U is a prime ring with unity and the center of U is called the
extended centroid of R, denoted by C. For x, y ∈ R, the commutator of x and y is equal to xy − yx and
it is denoted by [x, y]. Sometimes commutator of x and y is called Lie product of x and y. Let S ⊆ R. A
function f on R is called a centralizing (or commuting) function on S if [ f (s), s] ∈ Z(R) (or [ f (s), s] = 0) for all
s ∈ S. In this direction, Divinsky [17] studied the commuting automorphism on rings. More precisely, he
proved that a simple artinian ring is commutative if it has a commuting automorphism different from the
identity mapping. Further, Posner [9] studied the centralizing derivations on prime rings. More precisely,
he proved that there does not exist any non zero centralizing derivation on non commutative prime ring.
This was the starting point for the research by several authors. By a derivation of R, we mean an additive
mapping d on R such that d(xy) = d(x)y + xd(y) for all x, y ∈ R. Let a ∈ R, define a mapping f on R such that
f (x) = [a, x] for all x ∈ R. Here, we notice that f is a derivation on R. This kind of derivations is called an
inner derivation induced by an element a. A derivation is called outer if it not inner.

Brešar [13] extended the Posner’s [9] result by taking two derivations and proved that if d and δ are two
derivations of R with at least one derivation is non zero, such that d(x)x− xδ(x) ∈ Z(R) for all x ∈ R, then R is
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commutative. Latter on, many mathematicians extended these results on some appropriate subsets of prime
ring R. A natural question will arise that what will happen if we replace x with multilinear polynomial in
Posner’s theorem [9] as well as Brešar’s theorem [13]. The definition of multilinear polynomials is given
below.

LetZ〈X〉 be the free algebra on X overZ, where X = {x1, x2, . . .} is a countable set. Let f = f (x1, . . . , xn) ∈
Z〈X〉 be a polynomial such that at least one of its monomials of highest degree has a coefficient equal to 1.
Let R be a nonempty subset of a ring A. We say that f is a polynomial identity on R if f (r1, . . . , rn) = 0 for
all r1, . . . , rn ∈ R.

Definition 1.1. A polynomial f = f (x1, . . . , xn) ∈ Z〈X〉 is said to be multilinear if every xi, 1 ≤ i ≤ n, appears
exactly once in each of the monomials of f .

The answer of above question was given by Lee and Shiue [21] and they proved that if R is a prime ring,
f (x1, . . . , xn) a polynomial over C which is not central valued on R, d and 1 are two derivations of R such
that

d( f (x1, . . . , xn)) f (x1 . . . , xn) − f (x1, . . . , xn)1( f (x1 . . . , xn)) ∈ C

for all x1, . . . , xn ∈ R, then either d = 0 = 1 or d = −11 and f (x1, . . . , xn)2 is central valued on R, except when
char(R) = 2 and dimC (RC) = 4.

It is natural to ask that what will happen if the derivations are replaced by generalized derivations. The
notion of generalized derivation introduced by Brešar in [12] which is a generalization of derivation. The
definition of generalized derivation is given below.

Definition 1.2. Let R be a ring and F be an additive mapping on R. Then mapping F on R is said to be a generalized
derivation if there exists a derivation d on R such that F(xy) = F(x)y + xd(y) for all x, y ∈ R.

Here, we notice that every derivation is a generalized derivation but converse is not true in general. The
following example confirms our claim. Simplest example is an identity function on R. Here, we shall give
non trivial example.

Example 1.3. LetZ be the set of integers. Suppose R =

{(
x y
0 z

)
|x, y, z ∈ Z

}
. Define d : R −→ R as d

(
x y
0 z

)
=(

0 y
0 0

)
. Then d is a derivation on R. Define a mapping F on R such that F

(
x y
0 z

)
=

(
0 y
0 z

)
. Then F is a

generalized derivation associated with a non zero derivation d on R. Here, we see that F is not a derivation on R.

Note that if R is a prime or a semiprime ring then the derivation d is uniquely determined by F and d is
called the associated derivation of F.

Next, Argac and De Filippis [16] gave the partial generalization of Posner’s theorem [9] that is they
proved for commuting case only. More precisely, they describe the structure of additive mapping satisfying
the identity F(x)x − xG(x) = 0 for all x ∈ f (R), where f is a multinear polynomial over extended centroid
C of Utumi ring of quotient U and G, G are two generalized derivations on prime ring R. In 2018, Tiwari
[18] studied the commuting generalized derivations on prime ring, which is generalization of the work of
Argac and De Filippis [16].

In 2016, Dhara et. al. in [1], generalize the Posner’s [9] result. More precisely, they proved the following.
Let R be a non commutative prime ring of characteristic different from 2 with Utumi quotient ring U
and extended centroid C, f (x1, . . . , xn) a multilinear polynomial over C which is not central valued on R.
Suppose that F and G are two generalized derivations of R and d is a non zero derivation on R such that
d{F(u)u − uG(u)} = 0 for all u ∈ f (R) = { f (r1, . . . , rn) | ri ∈ R}, then one of the following holds:

(i) there exist λ ∈ C and a, b, q, c ∈ U such that F(x) = (a + λ)x + xb, G(x) = bx + xq, d(x) = [c, x] for all x ∈ R
with [c, a − q] = 0 and f (x1, . . . , xn)2 is central valued on R,

(ii) there exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R,
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(iii) there exist λ ∈ C, a, b, c ∈ U such that F(x) = x(λ + a) − bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R
with b + αc ∈ C for some α ∈ C,

(iv) R satisfies S4 and there exist a, b ∈ U, λ ∈ C such that F(x) = x(λ + a) − xb and G(x) = ax + xb for all
x ∈ R,

(v) there exist a, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb − δ(x), G(x) = bx + δ(x) and
d(x) = [c, x] for all x ∈ R with [c, a] = 0 and f (x1, . . . , xn)2 is central valued on R.

More recently, in 2018, Dhara [3], studied the identity F(u)G(u) = H(u2) for all u = f (r1, . . . , rn) ∈ f (R), where
F, G and H are three generalized derivations on prime ring R and gave the complete description of these
additive mappings.

2. b-generalized derivation

One more generalization of derivation and generalized derivations is b-generalized derivation. The
definition of b-generalized derivation is given below. Let R be a semiprime ring and Q be its Martindale
ring of quotient. Let b ∈ Q.

Definition 2.1. A mapping F : R → Q is called a b-generalized derivation of R if F(x + y) = F(x) + F(y) and
F(xy) = F(x)y + bxd(y) for all x, y ∈ R, where d : R→ Q is an additive map.

Note that, in [14] Košan and Lee, proved that if R is a prime ring and b , 0, then the associated map d
must be a derivation of R. Here, we see that a 1-generalized derivation is a generalized derivation. For
some a, b, c ∈ Q, define a map F : R → Q such that F(x) = ax + bxc for all x ∈ R. This is a b-generalized
derivation which is called an inner b-generalized derivation. A b-generalized derivation is also an extension
of generalized α-derivation, provided associated automorphism is an inner. We will see the below.

Let α is an automorphism on R. Then α is said to be an inner automorphism of R, if there exists an
invertible element p ∈ Q such that α(x) = pxp−1 for all x ∈ R otherwise it is called outer automorphism.
Before going to define generalized α-derivation, first we shall define α-derivation. An additive mapping
on R is said to an α-derivation on R if d(xy) = d(x)y + α(x)d(y) for all x, y ∈ R, where α is called associated
automorphism on R. An additive mapping F on R is called generalized α-derivation if there exists an
α-derivation on R such that F(xy) = F(x)y + α(x)d(y) for all x, y ∈ R. Let 1 be an identity mapping on R.
Then generalized 1-derivation becomes a generalized derivation on R.

Let α is an inner automorphism on R that is there exists invertible element p ∈ Q such that α(x) = pxp−1

for all x ∈ R. Now by definition of generalized α-derivation, we have F(xy) = F(x)y+α(x)d(y) for all x, y ∈ R.
If d is an inner α-derivation, then we know that d(x) = ax − α(x)a = ax − pxp−1a. Thus we have F(xy) =
F(x)y+pxp−1(ay−pyp−1a), which implies that F(xy) = F(x)y+pxp−1ay−pxp−1pyp−1a = F(x)y+px{p−1ay−yp−1a}.
This gives that F(xy) = F(x)y + pxd(y), where d(y) = [p−1a, y] for all y ∈ R that is d is an inner derivation
induced by p−1a. This implies that it is a p-generalized derivation on R. Thus, if α is an inner automorphism
on R, then every generalized α-derivation on R is a b-generalized derivation.

Recently, Liu [7] generalized the result of Posner’s [9] by considering generalized b-derivation with
engel conditions on prime ring R.

More recently, Dhara [2] studied the centralizing b-generalized derivations on prime ring with multiliear
polynomial over C. More precisely, prove the following.

Let R be a prime ring of characteristic different from 2 and F be a b-generalized derivation on R. Let U
be Utumi quotient ring of R with extended centroid C and f (x1, . . . , xn) be a multilinear polynomial over C
which is not central valued on R. Suppose that d is a non zero derivation on R such that

d([F( f (r)), f (r)]) = 0

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exist a ∈ U, λ ∈ C such that F(x) = ax + λx + xa for all x ∈ R and f (x1, . . . , xn)2 is central valued
on R,
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(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R.

It is natural to ask what will be the structure of these additive mappings when identity studied by Dhara
[2] is in the center. Our main motive is to give the answer of this question. The statement of our main
theorem is the following.

Main Theorem: Let R be a prime ring of characteristic different from 2 and F be a b-generalized
derivation on R. Let U be Utumi quotient ring of R with extended centroid C and f (x1, . . . , xn) be a
multilinear polynomial over C which is not central valued on R. Suppose that d is a non zero derivation on
R such that

d([F( f (r)), f (r)]) ∈ Z(R)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exist a ∈ U, λ ∈ C such that F(x) = ax + λx + xa for all x ∈ R and f (x1, . . . , xn)2 is central valued
on R,

(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R.

The following corollaries are particular cases of our Main Theorem.

Corollary 2.2. [23, Theorem] Let K be a commutative ring with unity, R be a prime algebra over K and let f (x1, . . . , xn)
be a multilinear polynomial over K, not central valued on R. Suppose that d is a non zero derivation and F is a non
zero generalized derivation of R such that

d([F( f (r)), f (r)]) = 0

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exist a ∈ U, λ ∈ C such that F(x) = ax + λx + xa for all x ∈ R and f (x1, . . . , xn)2 is central valued on R,

(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R.

Similarly, we have the following corollary.

Corollary 2.3. Let K be a commutative ring with unity, R be a prime algebra over K and let f (x1, . . . , xn) be a
multilinear polynomial over K, not central valued on R. Suppose that d is a non zero derivation and F is a non zero
generalized derivation of R such that

[F( f (r)), f (r)] ∈ Z(R)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exist a ∈ U, λ ∈ C such that F(x) = ax + λx + xa for all x ∈ R and f (x1, . . . , xn)2 is central valued on R,

(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R.

As an application of above theorem, we have the following corollary which is a generalization of particular
result of Filippis [24].

Corollary 2.4. Let R be a non commutative prime ring of characteristic different from 2, Q be its maximal right ring
of quotients and C be its extended centroid. Suppose that f (x1, . . . , xn) be a non central multilinear polynomial over
C, F a b-generalized derivation of R and d is a non zero derivation of R such that

[F( f (r)), f (r)] ∈ Z(R)

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exist a ∈ U, λ ∈ C such that F(x) = ax + λx + xa for all x ∈ R and f (x1, . . . , xn)2 is central valued on R,

(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R.

If we take F = d, a derivation, then we get a famous Posner’s theorem [9]. That is we have following.

Corollary 2.5. [9, Theorem 2] Let R be a prime ring and d is a derivation on R such that [d(x), x] ∈ Z(R) for all
x ∈ R, then either d = 0 or R is commutative.
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3. Preliminaries and Notations

We will use the following notation:

f (x1, . . . , xn) =
∑
σ∈Sn

γσxσ(1)xσ(2) . . . xσ(n),

where γσ ∈ C and Sn is the symmetric group of degree n.
Further, we will frequently use some important theory of generalized polynomial identities and differ-

ential identities. We recall some of the remarks.

Remark 3.1. If I is a two-sided ideal of R, then R, I and U satisfy the same differential identities ([20]).

Remark 3.2. If I is a two-sided ideal of R, then R, I and U satisfies the same generalized polynomial identities with
coefficients in U ([5]).

Remark 3.3. (Kharchenko [25, Theorem 2] Let R be a prime ring, d a nonzero derivation on R and I a nonzero ideal
of R. If I satisfies the differential identity

f (r1, . . . , rn, d(r1), . . . , d(rn)) = 0

for any r1, . . . , rn ∈ I, then either

(i) I satisfies the generalized polynomial identity

f (r1, . . . , rn, x1, . . . , xn) = 0

or

(ii) d is Q-inner i.e., for some q ∈ Q, d(x) = [q, x] and I satisfies the generalized polynomial identity

f (r1, . . . , rn, [q, r1], . . . , [q, rn]) = 0.

Lemma 3.4. [4, Theorem 1] Let R be a prime ring, d and δ two non zero derivations of R and ρ a right ideal of R
such that δd([ρ, ρ]) = 0 and [ρ, ρ]ρ = 0. Then either δ = αd for some α ∈ C and d2 = 0, or there exist p, q ∈ Q such
that δ = ad(q), d = ad(p) with pρ = 0 = qρ and pq = 0, except when char(R) = 2 and ρC = eRC for some idempotent
e in the socle of RC such that dimCeRCe = 4.

Lemma 3.5. [4, Theorem 2] If R is a prime ring, d and δ are two non zero derivations of R, and ρ a right ideal of R
such that 0 , δd([ρ, ρ]) ⊆ Z(R) and [ρ, ρ]ρ = 0. Then char(R) = 2 and dimCRC = 4.

The following Lemma is a particular case of Lemma 3.4 and Lemma 3.5.

Lemma 3.6. Let R be a non commutative prime ring with characteristic different from 2 and I a non zero ideal of R.
Suppose that d and δ are two derivations on R such that d(δ[x, y]) ∈ Z(R) for all x, y ∈ I, then either d = 0 or δ = 0.

4. F is an inner b-generalized derivation and d is an inner derivation

In this section, we study the situation when F is b-inner generalized derivation and d is an inner
derivation of R. Let F(x) = ax + bxu and d(x) = [P, x] for all x ∈ R, for some a, b,u,P ∈ U. Then we prove the
following proposition:

Proposition 4.1. Let R be a prime ring of characteristic different from 2, U be Utumi ring of quotient of R, C extended
centroid of R, F be an inner b-generalized derivation and d be a non zero inner derivation, defined as F(x) = ax + bxu
and d(x) = [P, x] for all x ∈ R and for some a, b,u,P ∈ U. Let f (x1, . . . , xn) be a non central multilinear polynomial
over C. If

d([F( f (r)), f (r)]) ∈ C

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:
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(1) there exist a ∈ U, λ ∈ C such that F(x) = ax + λx + xa for all x ∈ R and f (x1, . . . , xn)2 is central valued on R,

(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R.

For proof of this proposition, we need the following.

Lemma 4.2. [23, Lemma 1] Let C be an infinite field and m ≥ 2. If A1, . . . ,Ak are non scalar matrices in Mm(C) then
there exists some invertible matrix P ∈Mm(C) such that each matrix PA1P−1, . . . ,PAkP−1 has all non zero entries.

Proposition 4.3. Let R = Mk(C) be the ring of all k × k matrices over the infinite field C, where k ≥ 2 with
characteristic different from 2. Let a, b,u,P, a′, b′, c′ ∈ R such that

a′x2 + b′xux − Pxax − Pxbxu − ax2P − bxuxP + xaxP + xbxc′ ∈ Z(R)

for all x ∈ f (R), where f (R) denotes the set of all evaluations of the polynomial f (x1, . . . , xn) in R, then either b or u
or P is central.

Proof. By our assumption, a′ f (r)2 +b′ f (r)u f (r)−P f (r)a f (r)−P f (r)b f (r)u−a f (r)2P−b f (r)u f (r)P+ f (r)a f (r)P+
f (r)b f (r)c′ ∈ Z(R) for all r = (r1, . . . , rn), where r1, · · · , rn ∈ R. Hence it commutes with f (r) for all r =
(r1, . . . , rn), where r1, · · · , rn ∈ R. Thus R satisfies the generalized polynomial identity[

a′ f (r1, . . . , rn)2 + b′ f (r1, . . . , rn)u f (r1, . . . , rn) − P f (r1, . . . , rn)a f (r1, . . . , rn)

−P f (r1, . . . , rn)b f (r1, . . . , rn)u − a f (r1, . . . , rn)2P − b f (r1, . . . , rn)u f (r1, . . . , rn)P

+ f (r1, . . . , rn)a f (r1, . . . , rn)P + f (r1, . . . , rn)b f (r1, . . . , rn)c′, f (r1, . . . , rn)
]

= 0. (1)

We shall prove this result by contradiction. Suppose that b < Z(R), u < C and P < Z(R). Then by Lemma 4.2
there exists a C-automorphism φ of Mm(C) such that φ(b), φ(u) and φ(P) have all non zero entries. Clearly
φ(b), φ(u), φ(P), φ(a), φ(a′), φ(b′) and φ(c′) must satisfy the condition (1).

Here ei j denotes the matrix whose (i, j)-entry is 1 and rest entries are zero. Since f (x1, . . . , xn) is not
central, by [20] (see also [22]), there exist s1, . . . , sn ∈ Mm(C) and 0 , γ ∈ C such that f (s1, . . . , sn) = γei j,
with i , j. Moreover, since the set { f (r1, . . . , rn) : r1, . . . , rn ∈ Mm(C)} is invariant under the action of all
C-automorphisms of Mm(C), then for any i , j there exist r1, . . . , rn ∈ Mm(C) such that f (r1, . . . , rn) = ei j.
Hence by (1) we have[

φ(a′)e2
i j + φ(b′)ei jφ(u)ei j − φ(P)ei jφ(a)ei j − φ(P)ei jφ(b)ei jφ(u) − φ(a)e2

i jφ(P)

−φ(b)ei jφ(u)ei jφ(P) + ei jφ(a)ei jφ(P) + ei jφ(b)ei jφ(c′), ei j

]
= 0.

It implies that[
φ(b′)ei jφ(u)ei j − φ(P)ei jφ(a)ei j − φ(P)ei jφ(b)ei jφ(u)

−φ(b)ei jφ(u)ei jφ(P) + ei jφ(a)ei jφ(P) + ei jφ(b)ei jφ(c′), ei j

]
= 0. (2)

Left multiplying by ei j in (2), we obtain

−ei jφ(P)ei jφ(b)ei jφ(u)ei j − ei jφ(b)ei jφ(u)ei jφ(P)ei j = 0.

Thus we have 2φ(P) jiφ(b) jiφ(u) jiei j = 0. Since char(R) , 2, it implies that φ(P) jiφ(b) jiφ(u) jiei j = 0. It gives
that either φ(P) ji = 0 or φ(u) ji = 0 or φ(b) ji = 0, a contradiction, since φ(b), φ(u) and φ(P) have all non zero
entries. Thus we conclude that either φ(b) or φ(u) or φ(P) is central. Since φ is an automorphism, hence it
gives that either b or u or P is central.
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Proposition 4.4. Let R = Mm(C), m ≥ 2, be the ring of all matrices over the field C with characteristic different from
2 and f (x1, . . . , xn) a non central multilinear polynomial over C. Let a, b,u,P, a′, b′, c′ ∈ R such that

a′x2 + b′xux − Pxax − Pxbxu − ax2P − bxuxP + xaxP + xbxc′ ∈ Z(R)

for all x ∈ f (R), where f (R) denotes the set of all evaluations of the polynomial f (x1, . . . , xn) in R, then either b or u
or P is central.

Proof. The conclusions follow from Proposition 4.3 in the case of infinite field C. Now we assume that C
is a finite field. Suppose that K is an infinite extension of the field of C. Let R = Mm(K) � R ⊗C K. Notice
that the multilinear polynomial f (x1, . . . , xn) is central valued on R if and only if it is central valued on R.
Suppose that the generalized polynomial Q(r1, . . . , rn+1) such that

Q(r1, . . . , rn+1) =
[
a′ f (r1, . . . , rn)2 + b′ f (r1, . . . , rn)u f (r1, . . . , rn) − P f (r1, . . . , rn)a f (r1, . . . , rn)

−P f (r1, . . . , rn)b f (r1, . . . , rn)u − a f (r1, . . . , rn)2P − b f (r1, . . . , rn)u f (r1, . . . , rn)P

+ f (r1, . . . , rn)a f (r1, . . . , rn)P + f (r1, . . . , rn)b f (r1, . . . , rn)c′, rn+1

]
(3)

is a generalized polynomial identity for R.
Moreover, it is a multihomogeneous of multidegree (2, . . . , 2) in the indeterminates r1, . . . , rn+1. Hence the

complete linearization of Q(r1, . . . , rn+1) is a multilinear generalized polynomial Θ(r1, . . . , rn+1, x1, . . . , xn+1)
in 2n + 2 indeterminates, moreover

Θ(r1, . . . , rn+1, r1, . . . , rn+1) = 22n+2Q(r1, . . . , rn+1).

It is clear that the multilinear polynomial Θ(r1, . . . , rn+1, x1, . . . , xn+1) is a generalized polynomial identity
for both R and R. By assumption char(R) , 2 we obtain Q(r1, . . . , rn+1) = 0 for all r1, . . . , rn+1 ∈ R and then
conclusion follows from Proposition 4.3.

Lemma 4.5. Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid
C and f (x1, . . . , xn) a multilinear polynomial over C, which is not central valued on R. Let a, b,u,P, a′, b′, c′ ∈ R such
that

a′x2 + b′xux − Pxax − Pxbxu − ax2P − bxuxP + xaxP + xbxc′ ∈ Z(R)

for all x ∈ f (R), where f (R) denotes the set of all evaluations of the polynomial f (x1, . . . , xn) in R, then either b or u
or P is central.

Proof. We shall prove this by contradiction. Suppose that none of b, u and P is not in C, that is b < C, u < C
and P < C. By hypothesis, we have

h(x1, . . . , xn) =
[
a′ f (x1, . . . , xn)2 + b′ f (x1, . . . , xn)u f (x1, . . . , xn) − P f (x1, . . . , xn)a f (x1, . . . , xn)

− P f (x1, . . . , xn)b f (x1, . . . , xn)u − a f (x1, . . . , xn)2P − b f (x1, . . . , xn)u f (x1, . . . , xn)P

+ f (x1, . . . , xn)a f (x1, . . . , xn)P + f (x1, . . . , xn)b f (x1, . . . , xn)c′, f (x1, . . . , xn)
]

(4)

for all x1, . . . , xn ∈ R. Since R and U satisfy same generalized polynomial identity (GPI) (see [5]), U satisfies
h(x1, . . . , xn) = 0T. Suppose that h(x1, . . . , xn) is a trivial GPI for U. Let T = U ∗C C{x1, . . . , xn}, the free product
of U and C{x1, . . . , xn}, the free C-algebra in non commuting indeterminates x1, . . . , xn. Then, h(x1, . . . , xn) is
zero element in T = U ∗C C{x1, . . . , xn}. Since neither b nor u nor P is central, hence the term[

− P f (x1, . . . , xn)b f (x1, . . . , xn)u − b f (x1, . . . , xn)u f (x1, . . . , xn)P, f (x1, . . . , xn)
]

appears non trivially in h(x1, . . . , xn). Thus U satisfies

P f (x1, . . . , xn)b f (x1, . . . , xn)u f (x1, . . . , xn) + b f (x1, . . . , xn)u f (x1, . . . , xn)P f (x1, . . . , xn)
− f (x1, . . . , xn)P f (x1, . . . , xn)b f (x1, . . . , xn)u − f (x1, . . . , xn)b f (x1, . . . , xn)u f (x1, . . . , xn)P = 0T.
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Since P < C, hence it implies that

P f (x1, . . . , xn)b f (x1, . . . , xn)u f (x1, . . . , xn) = 0.

This gives a contradiction that is we have either P ∈ C or u ∈ C or b ∈ C.

Next, suppose that h(x1, . . . , xn) is a non trivial GPI for U. In case C is infinite, we have h(x1, . . . , xn) = 0
for all x1, . . . , xn ∈ U ⊗C C, where C is the algebraic closure of C. Since both U and U ⊗C C are prime and
centrally closed [19, Theorems 2.5 and 3.5], we may replace R by U or U⊗C C according to C finite or infinite.
Then R is centrally closed over C and h(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ R. By Martindale’s theorem [26], R
is then a primitive ring with non zero socle and with C as its associated division ring. Then, by Jacobson’s
theorem [15, p.75], R is isomorphic to a dense ring of linear transformations of a vector space V over C.

Assume first that V is finite dimensional over C, that is, dimC V = m. By density of R, we have R � Mm(C).
Since f (r1, . . . , rn) is not central valued on R, R must be non commutative and so m ≥ 2. In this case, by
Proposition 4.4, we get that either P ∈ C or b ∈ C or u ∈ C, a contradiction.

Next we suppose that V is infinite dimensional over C. By Martindale’s theorem [26, Theorem 3], for
any e2 = e ∈ soc(R) we have eRe � Mt(C) with t = dimC Ve. Since we have assumed that neither P nor b nor
u in the center. Then there exist h1, h2, h3 ∈ soc(R) such that [P, h1] , 0, [b, h2] , 0 and [u, h3] , 0. By Litoff’s
Theorem [8], there exists an idempotent e ∈ soc(R) such that Ph1, h1P, bh2, h2b,uh3, h3u, h1, h2, h3 ∈ eRe. Since
R satisfies generalized identity

e
{[

a′ f (ex1e, . . . , exne)2 + b′ f (ex1e, . . . , exne)u f (ex1e, . . . , exne) − P f (ex1e, . . . , exne)a f (ex1e, . . . , exne)

−P f (ex1e, . . . , exne)b f (ex1e, . . . , exne)u − a f (ex1e, . . . , exne)2P − b f (ex1e, . . . , exne)u f (ex1e, . . . , exne)P

+ f (ex1e, . . . , exne)a f (ex1e, . . . , exne)P + f (ex1e, . . . , exne)b f (ex1e, . . . , exne)c′, f (ex1e, . . . , exne)
]}

e.

That is

e
{
a′ f (ex1e, . . . , exne)3 + b′ f (ex1e, . . . , exne)u f (ex1e, . . . , exne)2

− P f (ex1e, . . . , exne)a f (ex1e, . . . , exne)2

−P f (ex1e, . . . , exne)b f (ex1e, . . . , exne)u f (ex1e, . . . , exne) − a f (ex1e, . . . , exne)2P f (ex1e, . . . , exne)
−b f (ex1e, . . . , exne)u f (ex1e, . . . , exne)P f (ex1e, . . . , exne) + f (ex1e, . . . , exne)a f (ex1e, . . . , exne)P f (ex1e, . . . , exne)

+ f (ex1e, . . . , exne)b f (ex1e, . . . , exne)c′ f (ex1e, . . . , exne) − f (ex1e, . . . , exne)a′ f (ex1e, . . . , exne)2

− f (ex1e, . . . , exne)b′ f (ex1e, . . . , exne)u f (ex1e, . . . , exne) + f (ex1e, . . . , exne)P f (ex1e, . . . , exne)a f (ex1e, . . . , exne)
+ f (ex1e, . . . , exne)P f (ex1e, . . . , exne)b f (ex1e, . . . , exne)u + f (ex1e, . . . , exne)a f (ex1e, . . . , exne)2P
+ f (ex1e, . . . , exne)b f (ex1e, . . . , exne)u f (ex1e, . . . , exne)P − f (ex1e, . . . , exne)2a f (ex1e, . . . , exne)P

− f (ex1e, . . . , exne)2b f (ex1e, . . . , exne)c′
}
e.

The subring eRe satisfies

ea′e f (x1, . . . , xn)3 + eb′e f (x1, . . . , xn)eue f (x1, . . . , xn)2
− ePe f (x1, . . . , xn)eae f (x1, . . . , xn)2

−ePe f (x1, . . . , xn)ebe f (x1, . . . , xn)eue f (x1, . . . , xn) − eae f (x1, . . . , xn)2ePe f (x1, . . . , xn)
−ebe f (x1, . . . , xn)eue f (x1, . . . , xn)ePe f (x1, . . . , xn) + f (x1, . . . , xn)eae f (x1, . . . , xn)ePe f (x1, . . . , xn)

+ f (x1, . . . , xn)ebe f (x1, . . . , xn)ec′e f (x1, . . . , xn) − f (x1, . . . , xn)ea′e f (x1, . . . , xn)2

− f (x1, . . . , xn)eb′e f (x1, . . . , xn)eue f (x1, . . . , xn) + f (x1, . . . , xn)ePe f (x1, . . . , xn)eae f (x1, . . . , xn)
+ f (x1, . . . , xn)ePe f (x1, . . . , xn)ebe f (x1, . . . , xn)eue + f (x1, . . . , xn)eae f (x1, . . . , xn)2ePe
+ f (x1, . . . , xn)ebe f (x1, . . . , xn)eue f (x1, . . . , xn)ePe − f (x1, . . . , xn)2eae f (x1, . . . , xn)ePe

− f (x1, . . . , xn)2ebe f (x1, . . . , xn)ec′e.
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This can be re-written as[
ea′e f (x1, . . . , xn)2 + eb′e f (x1, . . . , xn)eue f (x1, . . . , xn) − ePe f (x1, . . . , xn)eae f (x1, . . . , xn)

−ePe f (x1, . . . , xn)ebe f (x1, . . . , xn)eue − eae f (x1, . . . , xn)2ePe − ebe f (x1, . . . , xn)eue f (x1, . . . , xn)ePe

+ f (x1, . . . , xn)eae f (x1, . . . , xn)ePe + f (x1, . . . , xn)ebe f (x1, . . . , xn)ec′e, f (x1, . . . , xn)
]
.

Then by the above finite dimensional case, either ePe or ebe or eue is central element of eRe. Thus either Ph1 =
(ePe)h1 = h1ePe = h1P or bh2 = (ebe)h2 = h2(ebe) = h2b or uh3 = (eue)h3 = h3(eue) = h3u, a contradiction.

Lemma 4.6. Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended
centroid C and f (x1, . . . , xn) a multilinear polynomial over C, which is not central valued on R. Suppose that for some
a, b,u, c,P, a′ ∈ R

a′x2 + Pxux − Px2c − ax2P − xuxP + x2b ∈ Z(R)

for all x ∈ f (R), where f (R) denotes the set of all evaluations of the polynomial f (x1, . . . , xn) in R, then either P or u
is central.

Proof. Suppose that P < C and u < C. By hypothesis, we have

h(x1, . . . , xn) =
[
a′ f (x1, . . . , xn)2 + P f (x1, . . . , xn)u f (x1, . . . , xn)

− P f (x1, . . . , xn)2c − a f (x1, . . . , xn)2P

− f (x1, . . . , xn)u f (x1, . . . , xn)P + f (x1, . . . , xn)2b, f (x1, . . . , xn)
]

(5)

for all x1, . . . , xn ∈ R. Since R and U satisfy same generalized polynomial identity (GPI) (see [5]), U satisfies
h(x1, . . . , xn) = 0T. Suppose that h(x1, . . . , xn) is a trivial GPI for U. Let T = U ∗C C{x1, . . . , xn}, the free product
of U and C{x1, . . . , xn}, the free C-algebra in non commuting indeterminates x1, . . . , xn. Then, h(x1, . . . , xn) is
zero element in T = U ∗C C{x1, . . . , xn}. Since neither P nor u is central, hence the term[

P f (x1, . . . , xn)u f (x1, . . . , xn) − f (x1, . . . , xn)u f (x1, . . . , xn)P, f (x1, . . . , xn)
]

appears non trivially in h(x1, . . . , xn). Thus U satisfies

P f (x1, . . . , xn)u f (x1, . . . , xn)2
− f (x1, . . . , xn)u f (x1, . . . , xn)P f (x1, . . . , xn)

− f (x1, . . . , xn)P f (x1, . . . , xn)u f (x1, . . . , xn) + f (x1, . . . , xn)2u f (x1, . . . , xn)P = 0T.

Since P < C, u < C hence it implies that P f (x1, . . . , xn)u f (x1, . . . , xn)2 = 0 is a trivial GPI for U. This gives
P = 0 or u = 0, a contradiction.

Next, suppose that h(x1, . . . , xn) is a non trivial GPI for U. In case C is infinite, we have h(x1, . . . , xn) = 0
for all x1, . . . , xn ∈ U ⊗C C, where C is the algebraic closure of C. Since both U and U ⊗C C are prime and
centrally closed [19, Theorems 2.5 and 3.5], we may replace R by U or U⊗C C according to C finite or infinite.
Then R is centrally closed over C and h(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ R. By Martindale’s theorem [26], R
is then a primitive ring with non zero socle and with C as its associated division ring. Then, by Jacobson’s
theorem [15, p.75], R is isomorphic to a dense ring of linear transformations of a vector space V over C.
Then we the following cases.

Case-I: If V is finite dimensional over C, that is, dimC V = m. By density of R, we have R � Mm(C). Since
f (r1, . . . , rn) is not central valued on R, R must be non commutative and so m ≥ 2. We have the following
subcases.

Subcase-I: Let C be an infinite field. By Lemma 4.2 there exists a C-automorphism φ of Mm(C) such
that φ(P) and φ(u) have all non zero entries. Clearly φ(P), φ(u), φ(a′), φ(c), φ(a) and φ(b) must satisfy the
condition (5).

Here ei j denotes the matrix whose (i, j)-entry is 1 and rest entries are zero. Since f (x1, . . . , xn) is not
central, by [20] (see also [22]), there exist s1, . . . , sn ∈ Mm(C) and 0 , γ ∈ C such that f (s1, . . . , sn) = γei j,
with i , j. Moreover, since the set { f (r1, . . . , rn) : r1, . . . , rn ∈ Mm(C)} is invariant under the action of all
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C-automorphisms of Mm(C), then for any i , j there exist r1, . . . , rn ∈ Mm(C) such that f (r1, . . . , rn) = ei j.
Hence by (5) we have[

φ(a′)e2
i j + φ(P)ei jφ(u)ei j − φ(P)e2

i jφ(c) − φ(a)e2
i jφ(P) − ei jφ(u)ei jφ(P) + e2

i jφ(b), ei j

]
= 0.

It implies that
[
φ(P)ei jφ(u)ei j − ei jφ(u)ei jφ(P), ei j

]
= 0. This gives that −ei jφ(u)ei jφ(P)ei j − ei jφ(P)ei jφ(u)ei j = 0.

Thus we have 2φ(P) jiφ(u) jiei j = 0. Since char(R) , 2, it implies that φ(P) jiφ(u) jiei j = 0. It gives that either
φ(P) ji = 0 or φ(u) ji = 0, a contradiction, since φ(u) and φ(P) have all non zero entries. Thus we conclude
that either φ(u) or φ(P) is central. Since φ is an automorphism, hence it gives that either u or P is central, a
contradiction.

Subcase-II: Let C be a finite field. Suppose that K is an infinite extension of the field of C. Let
R = Mm(K) � R ⊗C K. Notice that the multilinear polynomial f (x1, . . . , xn) is central valued on R if and only
if it is central valued on R. Suppose that the generalized polynomial Q(r1, . . . , rn+1) such that

Q(r1, . . . , rn+1) =
[
a′ f (r1, . . . , rn)2 + P f (r1, . . . , rn)u f (r1, . . . , rn) − P f (r1, . . . , rn)2c

−a f (r1, . . . , rn)2P − f (r1, . . . , rn)u f (r1, . . . , rn)P + f (r1, . . . , rn)2b, rn+1

]
(6)

is a generalized polynomial identity for R.
Moreover, it is a multihomogeneous of multidegree (2, . . . , 2) in the indeterminates r1, . . . , rn+1. Hence the

complete linearization of Q(r1, . . . , rn+1) is a multilinear generalized polynomial Θ(r1, . . . , rn+1, x1, . . . , xn+1)
in 2n + 2 indeterminates, moreover

Θ(r1, . . . , rn+1, r1, . . . , rn+1) = 22n+2Q(r1, . . . , rn+1).

It is clear that the multilinear polynomial Θ(r1, . . . , rn+1, x1, . . . , xn+1) is a generalized polynomial identity
for both R and R. By assumption char(R) , 2 we obtain Q(r1, . . . , rn+1) = 0 for all r1, . . . , rn+1 ∈ R and then
conclusion follows from Subcase-I.

Case-II: Next we suppose that V is infinite dimensional over C. By Martindale’s theorem [26, Theorem
3], for any e2 = e ∈ soc(R) we have eRe � Mt(C) with t = dimC Ve. Since we have assumed that neither P nor
u in the center. Then there exist h1, h2 ∈ soc(R) such that [P, h1] , 0 and [u, h2] , 0. By Litoff’s Theorem [8],
there exists an idempotent e ∈ soc(R) such that Ph1, h1P,uh2, h2u, h1, h2 ∈ eRe. Since R satisfies generalized
identity

e
{[

a′ f (ex1e, . . . , exne)2 + P f (ex1e, . . . , exne)u f (ex1e, . . . , exne) − P f (ex1e, . . . , exne)2c − a f (ex1e, . . . , exne)2P

− f (ex1e, . . . , exne)u f (ex1e, . . . , exne)P + f (ex1e, . . . , exne)2b, f (ex1e, . . . , exne)
]}

e.

That is

e
{
a′ f (ex1e, . . . , exne)3 + P f (ex1e, . . . , exne)u f (ex1e, . . . , exne)2

− P f (ex1e, . . . , exne)2c f (ex1e, . . . , exne)

−a f (ex1e, . . . , exne)2P f (ex1e, . . . , exne) − f (ex1e, . . . , exne)u f (ex1e, . . . , exne)P f (ex1e, . . . , exne)
+ f (ex1e, . . . , exne)2b f (ex1e, . . . , exne) − f (ex1e, . . . , exne)a′ f (ex1e, . . . , exne)2

− f (ex1e, . . . , exne)P f (ex1e, . . . , exne)u f (ex1e, . . . , exne) + f (ex1e, . . . , exne)P f (ex1e, . . . , exne)2c

+ f (ex1e, . . . , exne)a f (ex1e, . . . , exne)2P + f (ex1e, . . . , exne)2u f (ex1e, . . . , exne)P − f (ex1e, . . . , exne)3b
}
e.

the subring eRe satisfies

ea′e f (x1, . . . , xn)3 + ePe f (x1, . . . , xn)eue f (x1, . . . , xn)2
− ePe f (x1, . . . , xn)2ece f (x1, . . . , xn)

−eae f (x1, . . . , xn)2ePe f (x1, . . . , xn) − f (x1, . . . , xn)eue f (x1, . . . , xn)ePe f (x1, . . . , xn)
+ f (x1, . . . , xn)2ebe f (x1, . . . , xn) − f (x1, . . . , xn)ea′e f (x1, . . . , xn)2

− f (x1, . . . , xn)ePe f (x1, . . . , xn)eue f (x1, . . . , xn) + f (x1, . . . , xn)ePe f (x1, . . . , xn)2ece
+ f (x1, . . . , xn)eae f (x1, . . . , xn)2ePe + f (x1, . . . , xn)2eue f (x1, . . . , xn)ePe − f (x1, . . . , xn)3ebe.
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This can be re-written as[
ea′e f (x1, . . . , xn)2 + ePe f (x1, . . . , xn)eue f (x1, . . . , xn) − ePe f (x1, . . . , xn)2ece − eae f (x1, . . . , xn)2ePe

− f (x1, . . . , xn)eue f (x1, . . . , xn)ePe + f (x1, . . . , xn)2ebe, f (x1, . . . , xn)
]
.

Then by the above finite dimensional case, either ePe or eue is central element of eRe. Thus either Ph1 =
(ePe)h1 = h1ePe = h1P or uh2 = (eue)h2 = h2(eue) = h2u, a contradiction.

Lemma 4.7. Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid
C and f (x1, . . . , xn) a multilinear polynomial over C, which is not central valued on R. Suppose that for some a,P ∈ R[

P, a f (r)2
− f (r)a f (r)

]
∈ Z(R)

that is
Pa f (r)2

− P f (r)a f (r) − a f (r)2P + f (r)a f (r)P ∈ Z(R),

where f (R) denotes the set of all evaluations of the polynomial f (x1, . . . , xn) in R, then either P or a is central.

Proof. Substitute a′ = Pa, u = −a, c = 0 and b = 0 in Lemma 4.6, we get the result.

Now we are in a position to prove Proposition 4.1.

Proof of Proposition 4.1: From Lemma 4.5, we get either P ∈ C or b ∈ C or u ∈ C. Since d , 0 so P can
not be central. Hence, we have either b ∈ C or u ∈ C. Now we shall study following two cases.

Case-I: If b ∈ C, then F(x) = ax + xbu for all x ∈ R. Thus our hypothesis reduces to[
P, a f (r)2 + f (r)(bu − a) f (r) − f (r)2bu

]
∈ Z(R) (7)

for all r = (r1, . . . , rn) ∈ Rn. Since [P, a f (r)2 + f (r)(bu − a) f (r) − f (r)2bu] ∈ Z(R), hence it commutes with f (r)
for all r = (r1, . . . , rn) ∈ Rn. Thus it implies that[

Pa f (r)2 + P f (r)(bu − a) f (r) − P f (r)2bu − a f (r)2P − f (r)(bu − a) f (r)P + f (r)2buP, f (r)
]

= 0 (8)

for all r = (r1, . . . , rn) ∈ Rn. By Lemma 4.6, we have either P ∈ C or bu − a ∈ C. Since d , 0, hence P can not
be central. Thus we have bu − a ∈ C. In this case, we have F(x) = ax + xbu = ax + x(λ + a) = ax + λx + xa for
some λ ∈ C, for all x ∈ R. Thus our hypothesis gives that[

P, bu f (r)2
− f (r)2bu

]
∈ Z(R) (9)

for all r = (r1, . . . , rn) ∈ Rn. If f (x1, . . . , xn)2 is central valued on R, then we find our conclusion (1). Now
assume that f (x1, . . . , xn)2 is not central valued on R. Then R must be non commutative. Let S be the additive
subgroup of R generated by the set S1 = { f (x1, . . . , xn)2

|x1, . . . , xn ∈ R}. Then S1 , {0}, since f (x1, . . . , xn)2 is
non central valued on R. Thus we have[

P, bux − xbu
]
∈ Z(R) (10)

for all x ∈ S. By [6], either S ⊆ Z(R) or char (R) = 2 and R satisfies s4, except when S contains a non central
Lie ideal L of R. Since f (x1, . . . , xn)2 is not central valued on R, the first case can not occur. Since char (R) , 2,
second case also can not occur. Thus S contains a non central Lie ideal L of R. By [10, Lemma 1], there exists
a non central two sided ideal I of R such that [I,R] ⊆ L. In particular, (10) reduces to[

P, bu[x, y] − [x, y]bu
]
∈ Z(R) (11)
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for all x, y ∈ I, non zero ideal of R. That is[
P,

[
bu, [x, y]

]]
∈ Z(R) (12)

for all x, y ∈ I. If we assume d(x) = [P, x] and δ(x) = [bu, x] for all x ∈ I, then equation (12) can be rewritten as

d
(
δ([x, y])

)
∈ Z(R)

for all x, y ∈ I. By Lemma 3.6, we have δ = 0. That is bu ∈ C. Since bu − a ∈ C and bu ∈ C, it implies that
a ∈ C. Hence F(x) = ax + λx + xa = (2a + λ)x, where 2a + λ ∈ C, which is our conclusion (2).

Case-II: If u ∈ C, then F(x) = (a + bu)x for all x ∈ R. Thus by our hypothesis, we have[
P, (a + bu) f (r)2

− f (r)(a + bu) f (r)
]
∈ Z(R) (13)

for all r = (r1, . . . , rn) ∈ Rn. By Lemma 4.7, we get a + bu ∈ C, which is our conclusion (2).

5. Proof of the Main Theorem

We can write F(x) = ax + bδ(x) for all x ∈ R and for some a, b ∈ U, where δ is a derivation on R. If d and δ
both are an inner derivations on R, then by Proposition 4.1, we get our conclusions. Now we assume that
both are not an inner derivations. Now we shall study the following cases.

Case-I: Let d is an inner and δ is outer. From given hypothesis we get[
P,

[
a f (x1, . . . , xn) + bδ( f (x1, . . . , xn)), f (x1, . . . , xn)

]]
∈ C. (14)

Substituting the value of δ( f (x1, . . . , xn)) with f δ(x1, . . . , xn) +
∑

i

f (x1, . . . , δ(xi), . . . , xn) in equation (14), we

get [
P,

[
a f (x1, . . . , xn) + b f δ(x1, . . . , xn) + b

∑
i

f (x1, . . . , δ(xi), . . . , xn), f (x1, . . . , xn)
]]
∈ C. (15)

Since δ is outer, by using Kharchenko’s theorem (see remark 3.3) in above expression, we get[
P,

[
a f (x1, . . . , xn) + b f δ(x1, . . . , xn) + b

∑
i

f (x1, . . . , yi, . . . , xn), f (x1, . . . , xn)
]]
∈ C. (16)

In particular U satisfies the blended component[
P,

[
b
∑

i

f (x1, . . . , yi, . . . , xn), f (x1, . . . , xn)
]]
∈ C. (17)

In (17) replace y1 = x1 and yi = 0 for all i > 1, we get[
P,

[
b f (x1, . . . , xn), f (x1, . . . , xn)

]]
∈ C.

This expression is same as equation (13), hence we get our conclusion (2).

Case-II: Now we assume that d is outer derivation and δ is an inner derivation, say δ(x) = qx − xq, for
some q ∈ U. Then our hypothesis becomes

d
([

(a + bq) f (x1, . . . , xn) − b f (x1, . . . , xn)q, f (x1, . . . , xn)
])
∈ C.
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We can replace d( f (x1, . . . , xn)) with f d(x1, . . . , xn) +
∑
i

f (x1, . . . , d(xi), . . . , xn) in above equation, we get that U

satisfies [
d(a + bq) f (x1, . . . , xn) + (a + bq) f d(x1, . . . , xn) + (a + bq)

∑
i

f (x1, . . . , d(xi), . . . , xn) − d(b) f (x1, . . . , xn)q

−b f d(x1, . . . , xn)q − b
∑

i

f (x1, . . . , d(xi), . . . , xn)q − b f (x1, . . . , xn)d(q), f (x1, . . . , xn)
]

+
[
(a + bq) f (x1, . . . , xn) − b f (x1, . . . , xn)q, f d(x1, . . . , xn) +

∑
i

f (x1, . . . , d(xi), . . . , xn)
]
∈ C.

Since d is outer derivation, by using Kharchenko’s theorem (see remark 3.3) in above expression, we get[
d(a + bq) f (x1, . . . , xn) + (a + bq) f d(x1, . . . , xn) + (a + bq)

∑
i

f (x1, . . . , yi, . . . , xn) − d(b) f (x1, . . . , xn)q

−b f d(x1, . . . , xn)q − b
∑

i

f (x1, . . . , yi, . . . , xn)q − b f (x1, . . . , xn)d(q), f (x1, . . . , xn)
]

+
[
(a + bq) f (x1, . . . , xn) − b f (x1, . . . , xn)q, f d(x1, . . . , xn) +

∑
i

f (x1, . . . , yi, . . . , xn)
]
∈ C,

where d(xi) = yi and x1, · · · , xn ∈ R. Since R and U satisfies same GPI (see remark-3.2), hence U satisfies the
blended component[

(a + bq)
∑

i

f (x1, . . . , yi, . . . , xn) − b
∑

i

f (x1, . . . , yi, . . . , xn)q, f (x1, . . . , xn)
]

+
[
(a + bq) f (x1, . . . , xn) − b f (x1, . . . , xn)q,

∑
i

f (x1, . . . , yi, . . . , xn)
]
∈ C.

Replace y1 = x1 and yi = 0 for all i ≥ 2 in (18) we get

2
[
(a + bq) f (x1, . . . , xn) − b f (x1, . . . , xn)q, f (x1, . . . , xn)

]
∈ C.

Since char(R) , 2, it gives that[
(a + bq) f (x1, . . . , xn) − b f (x1, . . . , xn)q, f (x1, . . . , xn)

]
∈ C.

This is a particular case of Proposition 4.1 and thus result follows from Proposition 4.1.

Case-III: Now we suppose that none of d and δ are an inner derivations. That is we consider, in this
case d and δ both are outer derivations. Now we have the following two subcases.

d and δ be C-linearly independent modulo Din

In this case from our hypothesis, U satisfies

d
([

a f (x1, . . . , xn) + bδ( f (x1, . . . , xn)), f (x1, . . . , xn)
])
∈ C. (18)

By applying Kharchenko’s theorem (see remark-3.2) to (18), we can replace δ( f (x1, . . . , xn)) with f δ(x1, . . . , xn)+∑
i

f (x1, . . . , yi, . . . , xn), where yi = δ(xi) and then U satisfies

d
([

a f (x1, . . . , xn) + b f δ(x1, . . . , xn) + b
∑

i

f (x1, . . . , yi, . . . , xn), f (x1, . . . , xn)
])
∈ C.
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Then U satisfies the blended components of the above expression as

d
([

b
∑

i

f (x1, . . . , yi, . . . , xn), f (x1, . . . , xn)
])
∈ C.

Substitute y1 = x1 and yi = 0 for all i ≥ 2 we get

d
([

b f (x1, . . . , xn), f (x1, . . . , xn)
])
∈ C. (19)

Again applying Kharchenko’s theorem (see remark-3.2) to (19), we can replace d( f (x1, . . . , xn)) with
f d(x1, . . . , xn) +

∑
i

f (x1, . . . , zi, . . . , xn), where zi = d(xi) and then U satisfies

[
d(b) f (x1, . . . , xn) + b f d(x1, . . . , xn) + b

∑
i

f (x1, . . . , zi, . . . , xn), f (x1, . . . , xn)
]

+
[
b f (x1, . . . , xn), f d(x1, . . . , xn) +

∑
i

f (x1, . . . , zi, . . . , xn)
]
∈ C.

In particular U satisfies the blended component[
b
∑

i

f (x1, . . . , zi, . . . , xn), f (x1, . . . , xn)
]

+
[
b f (x1, . . . , xn),

∑
i

f (x1, . . . , zi, . . . , xn)
]
∈ C.

For z1 = x1 and zi = 0 for all i ≥ 2 and using char(R) , 2 in above expression we get[
b f (x1, . . . , xn), f (x1, . . . , xn)

]
∈ C. (20)

This equation (20) is a particular case of Proposition 4.1 and thus result follows from Proposition 4.1.

d and δ be C-linearly dependent modulo Din

Since d and δ be C-linearly dependent modulo Din, hence for some λ, µ ∈ C, p ∈ U such that
λd(x) + µδ(x) = px − xp for all x ∈ R.

If λ = 0, then µ can not be zero. Thus it implies that d is an inner derivation, a contradiction.

If µ = 0, then λ can not be zero. Thus it implies that δ is an inner derivation, a contradiction.

Suppose λ , 0 and µ , 0 and we can write d(x) = βδ(x) + qx− xq, where β = −λ−1µ, q = λ−1p. Now from
our hypothesis we have

βδ
([

a f (x1, . . . , xn) + bδ( f (x1, . . . , xn)), f (x1, . . . , xn)
])

+ q
[
a f (x1, . . . , xn) + bδ( f (x1, . . . , xn)), f (x1, . . . , xn)

]
−

[
a f (x1, . . . , xn) + bδ( f (x1, . . . , xn)), f (x1, . . . , xn)

]
q ∈ C,

which can be written as

β
([
δ(a) f (x1, . . . , xn) + aδ( f (x1, . . . , xn)) + δ(b)δ( f (x1, . . . , xn)) + bδ2( f (x1, . . . , xn)), f (x1, . . . , xn)

])
+β

([
a f (x1, . . . , xn) + bδ( f (x1, . . . , xn)), δ( f (x1, . . . , xn))

])
+ q

[
a f (x1, . . . , xn) + bδ( f (x1, . . . , xn)), f (x1, . . . , xn)

]
−

[
a f (x1, . . . , xn) + bδ( f (x1, . . . , xn)), f (x1, . . . , xn)

]
q ∈ C.
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Substituting the value of δ( f (x1, . . . , xn)) with f δ(x1, . . . , xn) +
∑
i

f (x1, . . . , yi, . . . , xn) and δ2( f (x1, . . . , xn)) with

f δ2
(x1, . . . , xn)+2

∑
i

f δ(x1, . . . , yi, . . . , xn)+
∑
i

f (x1, . . . , zi, . . . , xn)+
∑
i, j

f (x1, . . . , yi, . . . , y j, . . . , xn), where yi = δ(xi)

and δ2(xi) = zi then U satisfies

β
[
δ(a) f (x1, . . . , xn) + a f δ(x1, . . . , xn) + a

∑
i

f (x1, . . . , yi, . . . , xn) + δ(b) f δ(x1, . . . , xn)

+δ(b)
∑

i

f (x1, . . . , yi, . . . , xn) + b f δ
2
(x1, . . . , xn) + 2b

∑
i

f δ(x1, . . . , yi, . . . , xn)

+b
∑

i

f (x1, . . . , zi, . . . , xn) + b
∑
i, j

f (x1, . . . , yi, . . . , y j, . . . , xn), f (x1, . . . , xn)
]

+ β
[
a f (x1, . . . , xn)

+b f δ(x1, . . . , xn) + b
∑

i

f (x1, . . . , yi, . . . , xn), f δ(x1, . . . , xn) +
∑

i

f (x1, . . . , yi, . . . , xn)
]

+q
[
a f (x1, . . . , xn) + b f δ(x1, . . . , xn) + b

∑
i

f (x1, . . . , yi, . . . , xn), f (x1, . . . , xn)
]
−

[
a f (x1, . . . , xn)

+b f δ(x1, . . . , xn) + b
∑

i

f (x1, . . . , yi, . . . , xn), f (x1, . . . , xn)
]
q ∈ C.

Then U satisfies the blended component

β
[
b
∑

i

f (x1, . . . , zi, . . . , xn), f (x1, . . . , xn)
]
∈ C.

Since 0 , β ∈ C, from above we get[
b
∑

i

f (x1, . . . , zi, . . . , xn), f (x1, . . . , xn)
]
∈ C. (21)

In particular for z1 = x1 and zi = 0 for all i ≥ 2 and then U satisfies[
b f (x1, . . . , xn), f (x1, . . . , xn)

]
∈ C (22)

for all x1, · · · , xn ∈ R. Equation (22) is same as equation (20). Hence we get our conclusions.
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