C-parallel and C-proper Slant Curves of S-manifolds

Şaban Güvençç, Cihan Özgür ${ }^{\text {a }}$
${ }^{a}$ Balikesir University, Faculty of Arts and Sciences, Department of Mathematics, 10145, Balikesir, Turkey

Abstract

In the present paper, we define and study C-parallel and C-proper slant curves of S-manifolds. We prove that a slant curve γ in an S-manifold of order $r \geq 3$, under certain conditions, is C-parallel or C-parallel in the normal bundle if and only if it is a non-Legendre slant helix or Legendre helix, respectively. Moreover, under certain conditions, we show that γ is C-proper or C-proper in the normal bundle if and only if it is a non-Legendre slant curve or Legendre curve, respectively. We also give two examples of such curves in $\mathbb{R}^{2 m+s}(-3 s)$.

1. Introduction

Let M^{m} be an integral submanifold of a Sasakian manifold $\left(N^{2 n+1}, \varphi, \xi, \eta, g\right)$. Then M is called integral C-parallel if $\nabla^{\perp} B$ is parallel to the characteristic vector field ξ, where B is the second fundamental form of M and $\nabla^{\perp} B$ is given by

$$
\left(\nabla^{\perp} B\right)(X, Y, Z)=\nabla_{X}^{\perp} B(Y, Z)-B\left(\nabla_{X} Y, Z\right)-B\left(Y, \nabla_{X} Z\right),
$$

where X, Y, Z are vector fields on M, ∇^{\perp} and ∇ are the normal connection and the Levi-Civita connection on M, respectively [8]. Now, let γ be a curve in an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$. Lee, Suh and Lee introduced the notions of C-parallel and C-proper curves along slant curves of Sasakian 3-manifolds in the tangent and normal bundles [12]. A curve γ in an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ is said to be C-parallel if $\nabla_{T} H=\lambda \xi, C$-proper if $\Delta H=\lambda \xi, C$-parallel in the normal bundle if $\nabla_{T}^{\perp} H=\lambda \xi, C$-proper in the normal bundle if $\Delta^{\perp} H=\lambda \xi$, where T is the unit tangent vector field of γ, H is the mean curvature vector field, Δ is the Laplacian, λ is a non-zero differentiable function along the curve γ, ∇^{\perp} and Δ^{\perp} denote the normal connection and Laplacian in the normal bundle, respectively [12]. For a submanifold M of an arbitrary Riemannian manifold \widetilde{M}, if $\Delta H=\lambda H$, then M is called submanifold with a proper mean curvature vector field H [6]. If $\Delta^{\perp} H=\lambda H$, then M is said to be submanifold with a proper mean curvature vector field H in the normal bundle [1].

Let $\gamma(s)$ be a Frenet curve parametrized by the arc-length parameter s in an almost contact metric manifold M. The function $\theta(s)$ defined by $\cos [\theta(s)]=g(T(s), \xi)$ is called the contact angle function. A curve γ is called a slant curve if its contact angle is a constant [7]. If a slant curve is with contact angle $\frac{\pi}{2}$, then it is called a Legendre curve [4].

[^0]Lee, Suh and Lee studied C-parallel and C-proper slant curves of Sasakian 3-manifolds in [12]. As a generalization of this paper, in [9], the present authors studied C-parallel and C-proper slant curves in transSasakian manifolds. In [14], the second author investigated C-parallel Legendre curves of non-Sasakian contact metric manifolds. In the present paper, our aim is to consider C-parallel and C-proper slant curves of S-manifolds.

The paper is organized as follows: In Section 2, we give a brief introduction about S-manifolds. Furthermore, we define the notions of C-parallel and C-proper curves in S-manifolds both in tangent and normal bundles. In Section 3, we consider C-parallel slant curves in S-manifolds in tangent and normal bundles, respectively. In Section 4, we study C-proper slant curves in S-manifolds in tangent and normal bundles, respectively. In the last section, we present two examples of these kinds of curves in $\mathbb{R}^{2 m+s}(-3 s)$.

2. Preliminaries

Let (M, g) be a $(2 m+s)$-dimensional Riemann manifold. M is called a framed metric manifold [17] with a framed metric structure $\left(\varphi, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$, if this structure satisfies the following equations:

$$
\begin{align*}
& \varphi^{2}=-I+\sum_{\alpha=1}^{s} \eta^{\alpha} \otimes \xi_{\alpha}, \quad \eta^{\alpha}\left(\xi_{\beta}\right)=\delta_{\beta^{\prime}}^{\alpha} \quad \varphi\left(\xi_{\alpha}\right)=0, \quad \eta^{\alpha} \circ \varphi=0 \tag{1}\\
& g(\varphi X, \varphi Y)=g(X, Y)-\sum_{\alpha=1}^{s} \eta^{\alpha}(X) \eta^{\alpha}(Y) \tag{2}\\
& d \eta^{\alpha}(X, Y)=g(X, \varphi Y)=-d \eta^{\alpha}(Y, X), \quad \eta^{\alpha}(X)=g(X, \xi), \tag{3}
\end{align*}
$$

where, φ is a $(1,1)$ tensor field of rank $2 m ; \xi_{1}, \ldots, \xi_{s}$ are vector fields; $\eta^{1}, \ldots, \eta^{s}$ are 1-forms and g is a Riemannian metric on $M ; X, Y \in T M$ and $\alpha, \beta \in\{1, \ldots, s\}$. $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is also called a framed φ-manifold [13] or an almost r-contact metric manifold [16]. $\left(\varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is said to be an S-structure, if the Nijenhuis tensor of φ is equal to $-2 d \eta^{\alpha} \otimes \xi_{\alpha}$, where $\alpha \in\{1, \ldots, s\}[3,5]$.

When $s=1$, a framed metric structure turns into an almost contact metric structure and an S-structure turns into a Sasakian structure. For an S-structure, the following equations are satisfied [3, 5]:

$$
\begin{align*}
& \left(\nabla_{X} \varphi\right) Y=\sum_{\alpha=1}^{s}\left\{g(\varphi X, \varphi Y) \xi_{\alpha}+\eta^{\alpha}(Y) \varphi^{2} X\right\} \tag{4}\\
& \nabla_{X} \xi_{\alpha}=-\varphi X, \alpha \in\{1, \ldots, s\} \tag{5}
\end{align*}
$$

If M is Sasakian ($s=1$), (5) can be directly calculated from (4).
Firstly, we give the following definition:
Definition 2.1. Let $\gamma: I \rightarrow\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be a unit speed curve in an S-manifold. Then γ is called
i) C-parallel (in the tangent bundle) if

$$
\nabla_{T} H=\lambda \sum_{\alpha=1}^{s} \xi_{\alpha}
$$

ii) C-parallel in the normal bundle if

$$
\nabla_{T}^{\perp} H=\lambda \sum_{\alpha=1}^{s} \xi_{\alpha}
$$

iii) C-proper (in the tangent bundle) if

$$
\Delta H=\lambda \sum_{\alpha=1}^{s} \xi_{\alpha}
$$

iv) C-proper in the normal bundle if

$$
\Delta^{\perp} H=\lambda \sum_{\alpha=1}^{s} \xi_{\alpha}
$$

where H is the mean curvature field of γ, λ is a real-valued non-zero differentiable function, ∇ is the Levi-Civita connection, ∇^{\perp} is the Levi-Civita connection in the normal bundle, Δ is the Laplacian and Δ^{\perp} is the Laplacian in the normal bundle.

Let $\gamma: I \rightarrow M$ be a curve parametrized by arc length in an n-dimensional Riemannian manifold (M, g). Denote by the Frenet frame and curvatures of γ by $\left\{E_{1}, E_{2}, \ldots, E_{r}\right\}$ and $\kappa_{1}, \ldots, \kappa_{r-1}$, respectively. We know that (see [1])

$$
\begin{aligned}
\nabla_{T} H= & -\kappa_{1}^{2} E_{1}+\kappa_{1}^{\prime} E_{2}+\kappa_{1} \kappa_{2} E_{3}, \\
\nabla_{T}^{\perp} H= & \kappa_{1}^{\prime} E_{2}+\kappa_{1} \kappa_{2} E_{3} \\
\Delta H= & -\nabla_{T} \nabla_{T} \nabla_{T} T \\
= & 3 \kappa_{1} \kappa_{1}^{\prime} E_{1}+\left(\kappa_{1}^{3}+\kappa_{1} \kappa_{2}^{2}-\kappa_{1}^{\prime \prime}\right) E_{2} \\
& -\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}-\kappa_{1} \kappa_{2} \kappa_{3} E_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta^{\perp} H= & -\nabla_{T}^{\perp} \nabla_{T}^{\perp} \nabla_{T}^{\perp} T \\
= & \left(\kappa_{1} \kappa_{2}^{2}-\kappa_{1}^{\prime \prime}\right) E_{2}-\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3} \\
& -\kappa_{1} \kappa_{2} \kappa_{3} E_{4} .
\end{aligned}
$$

So we can directly state the following Proposition:
Proposition 2.2. Let $\gamma: I \rightarrow\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be a unit speed curve in an S-manifold. Then i) γ is C-parallel (in the tangent bundle) if and only if

$$
\begin{equation*}
-\kappa_{1}^{2} E_{1}+\kappa_{1}^{\prime} E_{2}+\kappa_{1} \kappa_{2} E_{3}=\lambda \sum_{\alpha=1}^{s} \xi_{\alpha} \tag{6}
\end{equation*}
$$

ii) γ is C-parallel in the normal bundle if and only if

$$
\begin{equation*}
\kappa_{1}^{\prime} E_{2}+\kappa_{1} \kappa_{2} E_{3}=\lambda \sum_{\alpha=1}^{s} \xi_{\alpha \prime} \tag{7}
\end{equation*}
$$

iii) γ is C-proper (in the tangent bundle) if and only if

$$
\begin{equation*}
3 \kappa_{1} \kappa_{1}^{\prime} E_{1}+\left(\kappa_{1}^{3}+\kappa_{1} \kappa_{2}^{2}-\kappa_{1}^{\prime \prime}\right) E_{2}-\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}-\kappa_{1} \kappa_{2} \kappa_{3} E_{4}=\lambda \sum_{\alpha=1}^{s} \xi_{\alpha} \tag{8}
\end{equation*}
$$

iv) γ is C-proper in the normal bundle if and only if

$$
\begin{equation*}
\left(\kappa_{1} \kappa_{2}^{2}-\kappa_{1}^{\prime \prime}\right) E_{2}-\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}-\kappa_{1} \kappa_{2} \kappa_{3} E_{4}=\lambda \sum_{\alpha=1}^{s} \xi_{\alpha} . \tag{9}
\end{equation*}
$$

Now, our aim is to apply Proposition 2.2 to slant curves in S-manifolds.
Let $\gamma: I \rightarrow\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be a slant curve. Then, if we differentiate

$$
\eta^{\alpha}(T)=\cos \theta
$$

we get

$$
\eta^{\alpha}\left(E_{2}\right)=0
$$

where θ denotes the constant contact angle satisfying

$$
\frac{-1}{\sqrt{s}} \leq \cos \theta \leq \frac{1}{\sqrt{s}}
$$

The equality case is only valid for geodesics corresponding to the integral curves of

$$
T=\frac{ \pm 1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha}
$$

(see [10]).

3. C-parallel Slant Curves of S-manifolds

Our first Theorem below is a result of Proposition 2.2 i).
Theorem 3.1. Let $\gamma: I \rightarrow M^{2 m+s}$ be a unit-speed slant curve. Then γ is C-parallel (in the tangent bundle) if and only if it is a non-Legendre slant helix of order $r \geq 3$ satisfying

$$
\begin{aligned}
& \sum_{\alpha=1}^{s} \xi_{\alpha} \in s p\left\{T, E_{3}\right\}, \\
& \varphi T \in s p\left\{E_{2}, E_{4}\right\} \\
& \kappa_{2}=\frac{-\kappa_{1} \sqrt{1-s \cos ^{2} \theta}}{\sqrt{s} \cos \theta}, \kappa_{2} \neq 0 \\
& \lambda=\frac{-\kappa_{1}^{2}}{s \cos \theta}=\text { constant }
\end{aligned}
$$

and moreover if $\kappa_{3}=0$, then

$$
\begin{align*}
& \kappa_{1}=-s \cos \theta \sqrt{1-s \cos ^{2} \theta} \tag{10}\\
& \kappa_{2}=\sqrt{s}\left(1-s \cos ^{2} \theta\right) \tag{11}
\end{align*}
$$

Proof. Let us assume that γ is C-parallel (in the tangent bundle). Then, if we take the inner product of equation (6) with E_{2}, we find $\kappa_{1}^{\prime}=0$, that is, $\kappa_{1}=$ constant. Now, taking the inner product of equation (6) with T, we have

$$
\lambda s \cos \theta=-\kappa_{1}^{2}
$$

Here, $\theta \neq \frac{\pi}{2}$ since $\kappa_{1} \neq 0$. Hence, γ is non-Legendre slant. So, we get

$$
\lambda=\frac{-\kappa_{1}^{2}}{s \cos \theta}=\text { constant }
$$

Equation (6) can be rewritten as

$$
\sum_{\alpha=1}^{s} \xi_{\alpha}=\frac{-\kappa_{1}^{2}}{\lambda} T+\frac{\kappa_{1} \kappa_{2}}{\lambda} E_{3}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{\alpha=1}^{s} \xi_{\alpha}=s \cos \theta T-\frac{\kappa_{2} s \cos \theta}{\kappa_{1}} E_{3} . \tag{12}
\end{equation*}
$$

If we calculate the norm of both sides, we obtain

$$
\begin{equation*}
\kappa_{2}=\frac{-\kappa_{1} \sqrt{1-s \cos ^{2} \theta}}{\sqrt{s} \cos \theta} \tag{13}
\end{equation*}
$$

If we assume $\kappa_{2}=0$, then $\sum_{\alpha=1}^{s} \xi_{\alpha}$ is parallel to T. Hence $\kappa_{1}=0$ or $\theta=\frac{\pi}{2}$, both of which is a contradiction. So, we have $\kappa_{2} \neq 0$ and $r \geq 3$. If we write equation (13) in (12), we get

$$
\sum_{\alpha=1}^{s} \xi_{\alpha}=s \cos \theta T+\sqrt{s} \sqrt{1-s \cos ^{2} \theta} E_{3}
$$

If we differentiate this last equation along the curve γ, we find

$$
\begin{equation*}
\varphi T=\frac{-\kappa_{1}}{s \cos \theta} E_{2}-\frac{\kappa_{3} \sqrt{1-s \cos ^{2} \theta}}{\sqrt{s}} E_{4} . \tag{14}
\end{equation*}
$$

If we calculate $g(\varphi T, \varphi T)$, we have

$$
s \cos \theta\left(1-s \cos ^{2} \theta\right)\left(s \cos \theta-\kappa_{3}^{2}\right)=\kappa_{1}^{2}
$$

which gives us $\kappa_{3}=$ constant. In particular, if $\kappa_{3}=0$, then we find equations (10) and (11). If $\kappa_{3} \neq 0$, we differentiate equation (14) along the curve γ and find that $\kappa_{4}=$ constant. If we continue differentiating and calculating the norm of both sides, we easily obtain $\kappa_{i}=$ constant for all $i=\overline{1, r}$, that is, γ is a slant helix of order r. Thus, we have just proved the necessity.

To prove sufficiency, if γ satisfies the equations given in the Theorem, then it is easy to show that equation (6) is satisfied. So, γ is C-parallel (in the tangent bundle).

For C-parallel slant curves in the normal bundle, we have the following Theorem:
Theorem 3.2. Let $\gamma: I \rightarrow M^{2 m+s}$ be a unit-speed slant curve. Then γ is C-parallel in the normal bundle if and only if it is a Legendre helix of order $r \geq 3$ satisfying

$$
\begin{aligned}
& \sum_{\alpha=1}^{s} \xi_{\alpha}=\sqrt{s} E_{3}, \\
& \varphi T=\frac{\kappa_{2}}{\sqrt{s}} E_{2}-\frac{\kappa_{3}}{\sqrt{s}} E_{4}, \\
& \kappa_{2} \neq 0, \lambda=\frac{\kappa_{1} \kappa_{2}}{\sqrt{s}}
\end{aligned}
$$

and moreover if $\kappa_{3}=0$, then

$$
\kappa_{2}=\sqrt{s}, \varphi T=E_{2} .
$$

Proof. Let us assume that γ is C-parallel in the normal bundle. Then, if we take the inner product of equation (7) with T, we have $\eta^{\alpha}(T)=0$, so γ is Legendre. Next, we take the inner product with E_{2} and find $\kappa_{1}=$ constant. Thus, equation (7) becomes

$$
\kappa_{1} \kappa_{2} E_{3}=\lambda \sum_{\alpha=1}^{s} \xi_{\alpha}
$$

which gives us

$$
\begin{align*}
& E_{3}=\frac{1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha} \tag{15}\\
& \kappa_{2} \neq 0, \lambda=\frac{\kappa_{1} \kappa_{2}}{\sqrt{s}} .
\end{align*}
$$

If we differentiate equation (15), we get

$$
\begin{equation*}
\varphi T=\frac{\kappa_{2}}{\sqrt{s}} E_{2}-\frac{\kappa_{3}}{\sqrt{s}} E_{4} \tag{16}
\end{equation*}
$$

If we differentiate this last equation, we obtain

$$
\begin{align*}
\nabla_{T} \varphi T & =\sum_{\alpha=1}^{s} \xi_{\alpha}+\kappa_{1} \varphi E_{2} \tag{17}\\
& =\frac{\kappa_{2}^{\prime}}{\sqrt{s}} E_{2}+\frac{\kappa_{2}}{\sqrt{s}}\left(-\kappa_{1} T+\kappa_{2} E_{3}\right)-\frac{\kappa_{3}^{\prime}}{\sqrt{s}} E_{4}-\frac{\kappa_{3}}{\sqrt{s}}\left(-\kappa_{3} E_{3}+\kappa_{4} E_{5}\right)
\end{align*}
$$

If we take the inner product of both sides with E_{2}, we find $\kappa_{2}=$ constant. Then, the norm of equation (16) gives us $\kappa_{3}=$ constant. In particular, if $\kappa_{3}=0$, from equation (16), we have

$$
\kappa_{2}=\sqrt{s}, \varphi T=E_{2}
$$

Otherwise, from the norm of both sides in (17), we also have $\kappa_{4}=$ constant. If we continue differentiating equation (17), we find that γ is a helix of order r.

Conversely, let γ be a Legendre helix of order $r \geq 3$ satisfying the stated equations. Then, it is easy to show that equation (7) is verified. Thus, γ is C-parallel in the normal bundle.

4. C-proper Slant Curves of S-manifolds

For C-proper slant curves in the tangent bundle, we can state the following Theorem:
Theorem 4.1. Let $\gamma: I \rightarrow M^{2 m+s}$ be a unit-speed slant curve. Then γ is C-proper (in the tangent bundle) if and only if it is a non-Legendre slant curve satisfying

$$
\begin{align*}
& \sum_{\alpha=1}^{s} \xi_{\alpha} \in s p\left\{T, E_{3}, E_{4}\right\} \\
& \varphi T \in \operatorname{sp}\left\{E_{2}, E_{3}, E_{4}, E_{5}\right\} \\
& \kappa_{1} \neq \text { constant }, \kappa_{2} \neq 0 \\
& \lambda=\frac{3 \kappa_{1} \kappa_{1}^{\prime}}{s \cos \theta^{\prime}} \tag{18}
\end{align*}
$$

$$
\begin{align*}
& \kappa_{1}^{2}+\kappa_{2}^{2}=\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}} \tag{19}\\
& \lambda s \eta^{\alpha}\left(E_{3}\right)=-\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right), \tag{20}\\
& \lambda s \eta^{\alpha}\left(E_{4}\right)=-\kappa_{1} \kappa_{2} \kappa_{3} \tag{21}\\
& \eta^{\alpha}\left(E_{3}\right)^{2}+\eta^{\alpha}\left(E_{4}\right)^{2}=\frac{1-s \cos ^{2} \theta}{s} \tag{22}
\end{align*}
$$

and moreover if $\kappa_{3}=0$, then

$$
\begin{align*}
& \varphi T=\sqrt{1-s \cos ^{2} \theta} E_{2} \tag{23}\\
& E_{3}=\frac{1}{\sqrt{s} \sqrt{1-s \cos ^{2} \theta}}\left(-s \cos \theta T+\sum_{\alpha=1}^{s} \xi_{\alpha}\right) \tag{24}\\
& \kappa_{2}=\sqrt{s}\left(1+\frac{\kappa_{1} \cos \theta}{\sqrt{1-s \cos ^{2} \theta}}\right) \tag{25}
\end{align*}
$$

Proof. Let γ be C-proper (in the tangent bundle). If we take the inner product of equation (8) with T, we find

$$
\lambda s \cos \theta=3 \kappa_{1} \kappa_{1}^{\prime}
$$

Let us assume that γ is Legendre. Then we have $\kappa_{1}^{\prime}=0$, that is, $\kappa_{1}=$ constant. If we take the inner product of equation (8) with E_{2}, we get

$$
0=\kappa_{1}^{3}+\kappa_{1} \kappa_{2}^{2}-\kappa_{1}^{\prime \prime}=\kappa_{1}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)
$$

which gives us $\kappa_{1}=0$. Then equation (8) becomes

$$
\lambda \sum_{\alpha=1}^{s} \xi_{\alpha}=0
$$

which is a contradiction. Thus, γ is non-Legendre slant and $\kappa_{1} \neq$ constant. We find equations (18), (19), (20) and (21) taking the inner product with T, E_{2}, E_{3} and E_{4}, respectively. Then, we write these equations in (8) and calculate the norm of both sides to obtain equation (22). Now, let us assume $\kappa_{2}=0$. Then, from equation (8), we have

$$
\lambda \sum_{\alpha=1}^{s} \xi_{\alpha}=3 \kappa_{1} \kappa_{1}^{\prime} T
$$

which is only possible when

$$
T=\frac{1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha}
$$

If we calculate $\nabla_{T} T$, we find $\kappa_{1}=0$, which is a contradiction. Hence, $\kappa_{2} \neq 0$. Differentiating equation (8), we can easily see that

$$
\varphi T \in \operatorname{sp}\left\{E_{2}, E_{3}, E_{4}, E_{5}\right\} .
$$

In particular, if $\kappa_{3}=0$, we obtain equations (23), (24) and (25). See our paper [10], Case III, equation (4.9), which is also valid when κ_{1} and κ_{2} are not constants.

Conversely, if γ is a non-Legendre slant curve satisfying the stated equations, then Proposition 2.2 iii) is valid. So, γ is C-proper (in the tangent bundle).

Finally, we give the following Theorem for C-proper slant curves in the normal bundle:
Theorem 4.2. Let $\gamma: I \rightarrow M^{2 m+s}$ be a unit-speed slant curve. Then γ is C-proper in the normal bundle if and only if it is a Legendre curve satisfying

$$
\begin{aligned}
& \sum_{\alpha=1}^{s} \xi_{\alpha} \in s p\left\{E_{3}, E_{4}\right\}, \\
& \varphi T \in s p\left\{E_{2}, E_{3}, E_{4}, E_{5}\right\} \\
& \kappa_{1} \neq \text { constant }, \kappa_{2} \neq 0, \\
& \kappa_{1} \kappa_{2}^{2}-\kappa_{1}^{\prime \prime}=0, \\
& \lambda s \eta^{\alpha}\left(E_{3}\right)=-\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right), \\
& \lambda s \eta^{\alpha}\left(E_{4}\right)=-\kappa_{1} \kappa_{2} \kappa_{3}, \\
& \eta^{\alpha}\left(E_{3}\right)^{2}+\eta^{\alpha}\left(E_{4}\right)^{2}=\frac{1}{s}
\end{aligned}
$$

and moreover if $\kappa_{3}=0$, then

$$
\begin{aligned}
& \sum_{\alpha=1}^{s} \xi_{\alpha}=\sqrt{s} E_{3} \\
& \kappa_{2}=\sqrt{s}, \varphi T=E_{2}
\end{aligned}
$$

Proof. The proof is similar to the proof of Theorem 4.1. For the case $\kappa_{3}=0$, we refer to [15].

5. Examples

In this section, we give the following two examples in the well-known S-manifold $\mathbb{R}^{2 m+s}(-3 s)$. For more information on $\mathbb{R}^{2 m+s}(-3 s)$, see [11].

Example 5.1. Let us consider $\mathbb{R}^{2 m+s}(-3 s)$ with $m=2$ and $s=2$. The curve $\gamma: I \rightarrow \mathbb{R}^{6}(-6)$ given by

$$
\gamma(t)=(\sin t, 2+\sin t,-\cos t, 3-\cos t,-2 t-\sin t \cos t, 1-2 t-\sin t \cos t)
$$

is a unit-speed non-Legendre slant helix with

$$
\kappa_{1}=\kappa_{2}=\frac{1}{\sqrt{2}}, \theta=\frac{2 \pi}{3} .
$$

It has the Frenet frame field

$$
\left\{T, \sqrt{2} \varphi T,\left(T+\sum_{\alpha=1}^{2} \xi_{\alpha}\right)\right\}
$$

and it is C-parallel (in the tangent bundle) with $\lambda=\frac{1}{2}$.

Example 5.2. Let us consider $\mathbb{R}^{2 m+s}(-3 s)$ with $m=1$ and $s=4$. We define real valued functions on an open interval I as

$$
\begin{aligned}
& \gamma_{1}(t)=2 \int_{0}^{t} \cos \left(e^{2 u}\right) d u, \gamma_{2}(t)=-2 \int_{0}^{t} \sin \left(e^{2 u}\right) d u \\
& \gamma_{3}(t)=\ldots=\gamma_{6}(t)=-4 \int_{0}^{t} \cos \left(e^{2 u}\right)\left(\int_{0}^{u} \sin \left(e^{2 v}\right) d v\right) d u
\end{aligned}
$$

The curve $\gamma: I \rightarrow \mathbb{R}^{6}(-12), \gamma(t)=\left(\gamma_{1}(t), \ldots, \gamma_{6}(t)\right)$ is a unit-speed Legendre curve with

$$
\begin{aligned}
& \kappa_{1}=2 e^{2 t}, \kappa_{2}=2, r=3 \\
& \varphi T=E_{2}, E_{3}=\frac{1}{2} \sum_{\alpha=1}^{4} \xi_{\alpha}
\end{aligned}
$$

and it is C-proper in the normal bundle with $\lambda=-8 e^{2 t}$.
Acknowledgements. This work is supported by Balikesir University Research Project Grant no. BAP 2018/016.

References

[1] J. Arroyo, M. Barros, O. J. Garay, A characterisation of helices and Cornu spirals in real space forms, Bull. Austral. Math. Soc. 56 (1997) 37-49.
[2] C. Baikoussis, D. E. Blair, On Legendre curves in contact 3-manifolds, Geom. Dedicata 49 (1994) 135-142.
[3] D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geometry 4 (1970) 155-167.
[4] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, 2002.
[5] J. L. Cabrerizo, L. M. Fernandez, M. Fernandez, The curvature of submanifolds of an S-space form, Acta Math. Hungar. 62 (1993) 373-383.
[6] B. Y. Chen, Null 2-type surfaces in Euclidean space, Algebra, analysis and geometry (Taipei, 1988) 1-18, World Sci. Publ., Teaneck, NJ, 1989.
[7] J. T. Cho, J. Inoguchi, J. E. Lee, On slant curves in Sasakian 3-manifolds, Bull. Austral. Math. Soc. 74 (2006) 359-367.
[8] D. Fetcu, C. Oniciuc, Biharmonic integral C-parallel submanifolds in 7-dimensional Sasakian space forms, Tohoku Math. J. 64 (2012) 195-222.
[9] Ş. Güvenç, C. Özgür, On slant curves in trans-Sasakian manifolds, Rev. Un. Mat. Argentina 55 (2014) 81-100.
[10] Ş. Güvenç, C. Özgür, On slant curves in S-manifolds, Commun. Korean Math. Soc. 33 (2018) 293-303.
[11] I. Hasegawa, Y. Okuyama, T. Abe, On p-th Sasakian manifolds, J. Hokkaido Univ. Ed. Sect. II A 37 (1986) 1-16 .
[12] J. E. Lee, Y. J. Suh, H. Lee, C-parallel mean curvature vector fields along slant curves in Sasakian 3-manifolds, Kyungpook Math. J. 52 (2012) 49-59.
[13] H. Nakagawa, On framed f-manifolds, Kodai Math. Sem. Rep. 18 (1966) 293-306.
[14] C. Özgür, On C-parallel Legendre curves in non-Sasakian contact metric manifolds, Filomat 14 (2019), 4481-4492.
[15] C. Özgür, Ş. Güvenç, On biharmonic Legendre curves in S-space forms, Turkish J. Math. 38 (2014) 454-461.
[16] J. Vanzura, Almost r-contact structures, Ann. Scuola Norm. Sup. Pisa 26 (1972) 97-115.
[17] K. Yano, M. Kon, Structures on Manifolds, World Scientific Publishing Co., Series in Pure Mathematics, Singapore, 1984.

[^0]: 2010 Mathematics Subject Classification. Primary 53C25; Secondary 53C40, 53A04.
 Keywords. C-parallel curve, C-proper curve, slant curve, S-manifold.
 Received: 01 May 2019; Accepted: 14 November 2019
 Communicated by Mića Stanković
 Email addresses: sguvenc@balikesir.edu.tr (Şaban Güvenç), cozgur@balikesir.edu.tr (Cihan Özgür)

