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Abstract. In this paper we give a new characterization of generalized Browder’s theorem by consid-
ering equality between the generalized Drazin-meromorphic Weyl spectrum and the generalized Drazin-
meromorphicspectrum. Also, we generalize Cline’s formula to the case of generalized Drazin-meromorphic
invertibility under the assumption that A*B*AF = A**! for some positive integer k.

1. Introduction and Preliminaries

Throughout this paper, let IN and C denote the set of natural numbers and complex numbers, respec-
tively. Let B(X) denote the Banach algebra of all bounded linear operators acting on a complex Banach space
X. For T € B(X), we denote the spectrum of T, null space of T, range of T and adjoint of T by o(T), ker(T),
R(T) and T*, respectively. For a subset A of C the set of accumulation points of A and the set of interior
points of A are denoted by acc(A) and int(A), respectively. Let a(T) = dim ker(T) and f(T) = codim R(T)
be the nullity of T and deficiency of T, respectively. An operator T € B(X) is called a lower semi-Fredholm
operator if B(T) < co. An operator T € B(X) is called an upper semi-Fredholm operator if a(T) < co and R(T)
is closed. The class of all lower semi-Fredholm operators (upper semi-Fredholm operators, respectively)
is denoted by ¢_(X) (¢+(X), respectively). An operator T is called semi-Fredholm if it is upper or lower
semi-Fredholm. For a semi-Fredholm operator T € B(X), the index of T is defined by ind (T):= a(T) — p(T).
The class of all Fredholm operators is defined by ¢(X) := ¢.+(X) N ¢_(X). The class of all lower semi-Weyl
operators (upper semi-Weyl operators, respectively) is defined by W_(X) = {T € ¢_(X) : ind (T) > 0}
(Wi(X) ={T € ¢p+(X) :ind (T) < 0}, respectively). An operator T € B(X) is called Weyl if T € ¢(X) and ind
(T) = 0. The lower semi-Fredholm, upper semi-Fredholm, Fredholm, lower semi-Weyl, upper semi-Weyl and Weyl
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spectra are defined by

01¢(T) := {A € C : A - T is not lower semi-Fredholm},
0uf(T) := {A € C: AI - Tis not upper semi-Fredholm},
0¢(T) :={A € C: Al - Tis not Fredholm},

ow(T) := {A € C: AI - T'is not lower semi-Weyl},

ouw(T) := {A € C : AI — T'is not upper semi-Weyl},
0u(T) :={A € C: AI = T'is not Weyl}, respectively.

point and surjective spectra are defined by

04(T) :={A € C: Al — Tis not bounded below},
0s(T) := {A € C : AI - Tis not surjective}, respectively.

For T € B(X) the ascent denoted by p(T) is the smallest non negative integer p such that kerT? = kerT?*!.
If no such integer exists we set p(T) = co. For T € B(X) the descent denoted by ¢(T) is the smallest non
negative integer g such that R(T7) = R(T*). If no such integer exists we set g(T) = 0. By [1, Theorem 1.20]
if both p(T) and ¢(T) are finite, then p(T) = g(T).

An operator T € B(X) is called Drazin invertible if there exist a positive integer n and S € B(X) such that

ST =TS, T"'S = T" and STS = S.

Also, by [1, Theorem 1.132] T is Drazin invertible if and only if p(T) = g(T) < co. An operator T € B(X) is
called left Drazin invertible if p(T) < co and R(TP*!) is closed. An operator T € B(X) is called right Drazin
invertible if g(T) < oo and R(TY) is closed. An operator T € B(X) is called upper semi-Browder if it is an
upper semi-Fredholm and p(T) < co. An operator T € B(X) is called lower semi-Browder if it is a lower
semi-Fredholm and g(T) < co. We say that an operator T € B(X) is Browder if it is upper semi-Browder and
lower semi-Browder. The lower semi-Browder, upper semi-Browder and Browder spectra are defined by

o(T) : ={A € C: Al — Tis not lower semi-Browder},
ouw(T) : = {A € C: AI - Tis not upper semi-Browder},
0p(T) : = {A € C: AI - T'is not Browder}, respectively.

Clearly, every Browder operator is Drazin invertible.

An operator T € B(X) is said to possess the single-valued extension property (SVEP) at A € C if for every
neighbourhood V of A the only analytic function f : V — X which satisfies the equation (AI — T)f(A) = 0
is the function f = 0. If an operator T has SVEP at every A € C, then T is said to have SVEP. Moreover, the
set of all points A € C such that T does not have SVEP at A is an open set contained in the interior of o(T).
Therefore, if T has SVEP at each point of an open punctured disc D \ {A¢} centered at Ay, T also has SVEP
at /\0.

p(Al = T) < 0o = Thas SVEP at A

and
q(AI = T) < 00 = T has SVEP at A.

An operator T € B(X) is called Riesz if AI — T is Browder for all A € C\ {0}. An operator T € B(X) is called
meromorphic if AI — T is Drazin invertible for all A € C\ {0}. Clearly, every Riesz operator is meromorphic.
A subspace M of X is said to be T-invariant if T(M) c M. For a T-invariant subspace M of X we define
Tm : M — M by Tu(x) = T(x),x € M. We say T is completely reduced by the pair (M, N) (denoted by
(M,N) € Red(T)) if M and N are two closed T-invariant subspaces of X such that X = M & N.

An operator T € B(X) is called semi-regular if R(T) is closed and ker(T) c R(T") for every n € IN. An
operator T € B(X) is called nilpotent if T" = 0 for some n € IN and called quasi-nilpotent if ||T"||% — 0, 1i.e
AI — T is invertible for all A € C \ {0}.
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For T € B(X) and a non negative integer n, define Ty, to be the restriction of T to T"(X). If for some non
negative integer n the range space T"(X) is closed and T}, is Fredholm (a lower semi Fredholm, an upper
semi Fredholm, a lower semi Browder, an upper semi Browder, Browder, respectively) then T is said to be
B-Fredholm (a lower semi B-Fredholm, an upper semi B-Fredholm, a lower semi B-Browder, an upper semi
B-Browder, B-Browder, respectively). For a semi B-Fredholm operator T (see [6]), the index of T is defined
as index of Tp,). The lower semi B-Fredholm, upper semi B-Fredholm, B-Fredholm, lower semi B-Browder, upper
semi B-Browder and B-Browder spectra are defined by

o1s6f(T) := {A € C: Al — T'is not lower semi B-Fredholm},

oustf(T) := {A € C: AI - Tis not upper semi B-Fredholm},
opf(T) := {A € C: A - Tis not B-Fredholm},

o1sp(T) := {A € C : AI — T'is not lower semi B-Browder},

ousth(T) := {A € C : AI = Tis not upper semi B-Browder},
op(T) :== {A € C: Al — Tis not B-Browder}, respectively.

By [1, Theorem 3.47] an operator T € B(X) is upper semi B-Browder (lower semi B-Browder, B-Browder,
respectively) if and only if T'is left Drazin invertible (right Drazin invertible, Drazin invertible, respectively).

An operator T € B(X) is called a lower semi B-Weyl (an upper semi B-Weyl, respectively) if it is a lower
semi B-Fredholm (an upper semi B-Fredholm, respectively) having ind (T) > 0 (ind (T) < 0, respectively).
An operator T € B(X) is called B-Weyl if it is B-Fredholm and ind (T) = 0. The lower semi B-Weyl, upper semi
B-Weyl and B-Weyl spectra are defined by

O1sbw(T) := {A € C : AI — T'is not lower semi B-Weyl},
Ouskw(T) :={A € C : AI = T'is not upper semi B-Weyl},
opw(T) := {A € C: Al - Tis not B-Weyl}, respectively.

It is known that (see [6, Theorem 2.7]) T € B(X) is B-Fredholm (B-Weyl, respectively) if there exists (M, N) €
Red(T) such that Ty is Fredholm (Weyl, respectively) and Ty is nilpotent. Recently, (see [15, 17]) have
generalized the class of B-Fredholm and B-Weyl operators and introduced the concept of pseudo B-Fredholm
and pseudo B-Weyl operators. An operator T € B(X) is said to be pseudo B-Fredholm (pseudo B-Weyl,
respectively) if there exists (M, N) € Red(T) such that Ty is Fredholm (Weyl, respectively) and Ty is quasi-
nilpotent. The pseudo B-Fredholm and pseudo B-Weyl spectra are defined by

opBf(T) := {A € C: AI - T'is not pseudo B-Fredholm},
oppw(T) := {A € C: Al - T'is not pseudo B-Weyl}, respectively.

An operator T is said to admit a generalized kato decomposition (GKD) if there exists a pair (M, N) € Red(T)
such that Ty is semi-regular and Ty is quasi-nilpotent. In the above definition if we assume Ty to be
nilpotent, then T is said to be of Kato Type (see [14]). An operator is said to admit a Kato-Riesz decomposition
(GKRD), if there exists a pair (M, N) € Red(T) such that Ty, is semi-regular and Ty is Riesz.

Recently, Zivkovié-Zlatanovi¢ and Duggal [16] introduced the notion of generalized Kato-meromorphic
decomposition. An operator T € B(X) is said to admit a generalized Kato-meromorphic decomposition (GKMD),
if there exists a pair (M, N) € Red(T) such that Ty is semi-regular and Ty is meromorphic. For T € B(X), the
generalized Kato-meromorphic spectrum is defined by

ogxm(T) := {A € C: Al — T does not admit a GKMD}.

Recall that an operator T € B(X) is said to be Drazin invertible if there exists S € B(X) such that TS = ST,
STS = S and TST — T is nilpotent. This definition is equivalent to the fact that there exists a pair (M, N) €
Red(T) such that T is invertible and T} is nilpotent. Koliha [13] generalized this concept by replacing the
third condition with TST — T is quasi-nilpotent. An operator is said to be generalized Drazin invertible if
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there exist a pair (M, N) € Red(T) such that Ty is invertible and Ty is quasi-nilpotent. The generalized Drazin
spectrum is defined by

o40(T) := {A € C: Al - Tis not generalized Drazin invertible}.

Recently, Zivkovié-Zlatanovié¢ and Cvetkovié¢ [14] introduced the concept of generalized Drazin-Riesz in-
vertible by replacing the third condition with TST — T is Riesz. They proved that an operator T € B(X) is
generalized Drazin-Riesz invertible if and only if there exists a pair (M, N) € Red(T) such that Ty is invert-
ible and Ty is Riesz. An operator T € B(X) is called generalized Drazin-Riesz bounded below (surjective,
respectively) if there exists a pair (M, N) € Red(T) such that Ty is bounded below (surjective, respectively)
and Ty is Riesz. The generalized Drazin-Riesz bounded below, generalized Drazin-Riesz surjective and generalized
Drazin-Riesz invertible spectra are defined by

osorg(T) := {A € C: Al — Tis not generalized Drazin-Riesz bounded below},
osprQ(T) := {A € C : Al — Tis not generalized Drazin-Riesz surjective},

o4pr(T) := {A € C: AI - Tis not generalized Drazin-Riesz invertible}, respectively.

Also, they introduced the notion of operators which are direct sum of a Riesz and a Fredholm (lower
(upper) semi-Fredholm, lower (upper) semi-Weyl, Weyl). An operator is called generalized Drazin-Riesz
Fredholm (generalized Drazin-Riesz lower (upper) semi-Fredholm, generalized Drazin-Riesz lower (upper)
semi-Weyl, generalized Drazin-Riesz Weyl, respectively) if there exists (M, N) € Red(T) such that Ty is
Fredholm (lower (upper) semi-Fredholm, lower (upper) semi-Weyl, Weyl, respectively) and Ty is Riesz.
The generalized Drazin-Riesz lower (upper) semi-Fredholm, generalized Drazin-Riesz Fredholm, generalized Drazin-
Riesz upper(lower) semi-Weyl and generalized Drazin-Riesz Weyl spectra are defined by

ogprp_(T) := {A € C: Al - Tis not generalized Drazin-Riesz lower semi-Fredholm},

ogpre, (T) := {A € C: Al - T'is not generalized Drazin-Riesz upper semi-Fredholm},
ospre(T) := {A € C: Al — T'is not generalized Drazin-Riesz Fredholm},

ogprw_(T) := {A € C : A - Tis not generalized Drazin-Riesz lower semi-Weyl},

ogDRm(T) :={A € C: Al - Tis not generalized Drazin-Riesz upper semi-Weyl},
asorw(T) := {A € C: AI - T'is not generalized Drazin-Riesz Weyl}, respectively.

Also, Zivkovié-Zlatanovi¢ and Duggal [16] introduced the notion of generalized Drazin-meromorphic
invertible by replacing the third condition with TST — T is meromorphic. They proved that the an operator
T € B(X) is generalized Drazin-meromorphic invertible if and only if there exists a pair (M, N) € Red(T)
such that Ty is invertible and Ty is meromorphic. An operator T € B(X) is said to be generalized Drazin-
meromorphic bounded below (surjective, respectively) if there exists a pair (M, N) € Red(T) such that Ty
is bounded below (surjective, respectively) and Ty is meromorphic. The generalized Drazin-meromorphic
bounded below, generalized Drazin-meromorphic surjective and generalized Drazin-meromorphic invertible spectra
are defined by

osomg(T) :={A € C: Al - Tis not generalized Drazin-meromorphic bounded below},
osoma(T) := {A € C: Al - Tis not generalized Drazin-meromorphic surjective},

osoM(T) := {A € C: A - Tis not generalized Drazin-meromorphic invertible}, respectively.

Also, they introduced the notion of operators which are direct sum of a meromorphic and Fredholm
(lower (upper) semi-Fredholm, lower (upper) semi-Weyl, Weyl). An operator is called generalized Drazin-
meromorphic Fredholm (generalized Drazin-meromorphic lower (upper) semi-Fredholm, generalized
Drazin-meromorphic lower (upper) semi-Weyl, generalized Drazin-meromorphic Weyl) if there exists
(M,N) € Red(T) such that Ty is Fredholm (lower (upper) semi-Fredholm, lower (upper) semi-Weyl,
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Weyl) and Ty is meromorphic. The generalized Drazin-meromorphic lower (upper) semi-Fredholm, general-
ized Drazin-meromorphic Fredholm, generalized Drazin-meromorphic lower (upper) semi-Weyl and generalized
Drazin-meromorphic Weyl spectra are defined by

OgDM¢- (T) :={A € C : AI - T'is not generalized Drazin-meromorphic lower semi-Fredholm]},

aspmp, (T) := {A € C : AI - Tis not generalized Drazin-meromorphic upper semi-Fredholmj},
asome(T) := {A € C: AI - T'is not generalized Drazin-meromorphic Fredholm},

agDMw_(T) :={A € C: Al - Tis not generalized Drazin-meromorphic lower semi-Weyl},

agomw, (T) := {A € C: AI - Tis not generalized Drazin-meromorphic upper semi-Weyl},
ogomw(T) := {A € C: AI - Tis not generalized Drazin-meromorphic Weyl}, respectively.

From [14, 16] we have

0406 (T) = 0gDup, (T) U 04psgp_(T),
0gx+(T) C 04pee, (T) C 0w, (T) C g5 (T),
04k+(T) C 0gpegp_(T) C 0ypew_(T) C 0gpea(T),
04k:(T) C 0gpegp(T) C dgpew € 04p+(T),

where * stands for Riesz or meromorphic operators.

Recall that an operator T satisfies Browder’s theorem if 04(T) = 0,(T) and generalized Browder’s
theorem if 04 (T) = 0p(T). Amouch et al. [7] and Karmouni and Tajmouati [12] gave a new characterization
of Browder’s theorem using spectra arised from Fredholm theory and Drazin invertibilty. Motivated by
them, we give a new characterization of operators satisfying generalized Browder’s theorem. We prove
that an operator T satisfies generalized Browder’s theorem if and only if o,ppw(T) = 0,oMm(T). In the last
section, we generalize the Cline’s formula for the case of generalized Drazin-meromorphic invertibility
under the assumption that A*B¥A* = A**! for some positive integer k.

2. Main Results

The following result will be used in the sequel:

Theorem 2.1. [16, Theorem 2.1] Let T € B(X), then T is generalized Drazin-meromorphic upper semi-Weyl (lower
semi-Weyl, upper semi-Fredholm, lower semi-Fredholm, Weyl, respectively) if and only if T admits a GKMD and
0 ¢ accoyspw(T) (accoyspuw(T), accousyr(T), accoysys(T), accop(T), respectively).

The following example shows that the inclusions o,pmw, (T) C 04pmg(T) and oypmw_(T) € 0,pma(T) can be
proper.

Example 2.2. [14, Example 3.3] Let X = ¢o(IN), c(IN), I*(IN) or I’(IN), p = 1. Let U and V be the forward
and the backward unilateral shifts on X, respectively. Let T = U ® V. Then 0,(T) = 0s(T) = D, where
D denotes the closed unit disc. Therefore, 0 € into,(T) and 0 € intos(T). Thus, by [16, Theorems 2.5
and 2.6] 0 € o,pmg(T) and 0 € o,pme(T). Since 0 & o,prw, (T) and we know that opmw, (T) € ogprw, (T),
0¢ O0gDMW, (T) Thus, 0 € GgDMj(T) \ O yDMW, (T) S1m11ar1y, 0e€ UgDMQ(T) \ OgDMW._ (T)

In the following results we obtain necessary and sufficient conditions to get equality.
Proposition 2.3. Let T € B(X), then 0,pm5(T) = 0gpmw, (T) if and only if T has SVEP at every A ¢ ogpmw, (T).

Proof. Suppose that o,pmg(T) = ogpmw,(T). Let A & ospmw,(T), then AI — T is generalized Drazin-
meromorphic bounded below. Therefore, by [16, Theorem 2.5] T has SVEP at A. Conversely, suppose
that T has SVEP at every A ¢ o,pmw, (T). It suffices to show that o,pmg(T) € o,pmw, (T). Let A ¢ oypmw, (T)
which implies that AI — T is generalized Drazin-meromorphic upper semi-Weyl. Therefore, by Theorem
2.1 AI = T admits a GKMD. Thus, there exists (M, N) € Red(AI — T) such that (A — T)y is semi-regular and
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(AI = T)y is meromorphic. Since T has SVEP at every A ¢ o,puw, (T), (Al — T) has SVEP at 0. As SVEP at
a point is inherited by the restrictions on closed invariant subspaces, (AI — T)y has SVEP at 0. Therefore,
by [1, Theorem 2.91] (AI — T)y is bounded below. Thus, by [16, Theorem 2.6] we have Al — T is generalized
Drazin-meromorphic bounded below. Hence, A ¢ o,pmg(T). O

Proposition 2.4. Let T € B(X), then o,pmq(T) = 0,omw_(T) if and only if T* has SVEP at every A & o gppw_(T).

Proof. Suppose that ogom(T) = ogpomw_(T). Let A ¢ ogpmw_(T), then AI — T is generalized Drazin-
meromorphic surjective. Therefore, by [16, Theorem 2.6] T* has SVEP at A. Conversely, suppose that
T* has SVEP at every A ¢ o,pmw_(T). It suffices to show that o,pma(T) C oyomw_(T). Let A ¢ o,omw_(T)
which implies that AI - T is generalized Drazin-meromorphic lower semi-Weyl. Then by Theorem 2.1 AI-T
admits a GKMD and A € accoys,(T). Since T* has SVEP at every A € o,pmw_(T) and o,pmw_(T) C 01(T)
then T* has SVEP at every A ¢ 01y(T) = 040 (T"). Therefore, by [1, Theorem 5.27] we have 04,(T) = 040(T*) =
ouw(T*) = op(T). Thus, by [1, Theorem 5.38] we have ojs(T) = osspp(T). This implies that A ¢ accojspy(T).
Therefore, by [16, Theorem 2.6] Al — T is generalized Drazin-meromorprhic surjective and it follows that
Aé¢ UgDMQ(T)‘ U

Corollary 2.5. Let T € B(X), then 0,0m(T) = 0,0mw(T) if and only if T and T* have SVEP at every A ¢ oyppw(T).

Proof. Suppose that o,pm(T) = o;pmw(T). Let A ¢ 0,omw(T), then AI - T is generalized Drazin-meromorphic
invertible. Therefore, by [16, Theorem 2.4] T and T* have SVEP at A. Conversely, let A ¢ o,ppmw(T) =
agomw, (T) U agpmw_(T). Then by proofs of Proposition 2.3 and Proposition 2.4 we have A ¢ o,ppg(T) U
agpma(T) = ogpm(T). O

Theorem 2.6. Let T € B(X), then following statements are equivalent:
(1) 05om(T) = 0 gpmw(T),
(ii) T or T* have SVEP at every A ¢ o,omw(T).

Proof. Suppose that T has SVEP at every A ¢ o,pmw(T). It suffices to prove that o,pm(T) C ogpmw(T). Let
A ¢ o;pmw(T) then AT = T admits a GKMD and A ¢ accop,(T). Since ogprw(T) C 0p(T), T has SVEP at
every A ¢ opy(T). Therefore, 04, (T) = 0p(T). Thus, A ¢ accow(T) which implies that AI — T is generalized
Drazin-meromorphic invertible.

Now suppose that T* has SVEP at every A ¢ o,prw(T). Since 0y(T) = opp(T") and 0p(T) = 040(T7) We
have o,0m(T) = 0,0Mw(T). The converse is an immediate consequence of Corollary 2.5. [

Recall that an operator T € B(X) is said satisfy generalized a-Browder’s theorem if 6,5p,(T) = 0yspe(T). An
operator T € B(X) satisfies a-Browder’s theorem if 0,4(T) = 0uw(T). By [4, Theorem 2.2] we know that
a-Browder’s theorem is equivalent to generalized a-Browder’s theorem.

Theorem 2.7. Let T € B(X), then the following holds:
(i) generalized a-Browder’s theorem holds for T if and only if 6,0mg(T) = 0 4omw, (T),
(i1) generalized a-Browder’s theorem holds for T if and only if o,ppm(T) = ogpmw_(T),
(iii) generalized Browder’s theorem holds for T if and only if 6,0m(T) = 0 ,pmw(T).

Proof. (i) Suppose that generalized a-Browder’s theorem holds for T which implies that 0,5p(T) = uspw(T)-
It suffices to prove that o,pmg(T) C ospmw,(T). Let A ¢ o,pmw, (T), then AI — T is generalized Drazin-
meromorphic upper semi-Weyl. By Theorem 2.1 it follows that AI — T admits a GKMD and A ¢ accosp(T).
This gives A ¢ accoyspy(T). Therefore, by [16, Theorem 2.5] AI — T is generalized Drazin-meromorphic
bounded below which gives A ¢ o,pmg(T). Conversely, suppose that o,ppmg(T) = ospmw,(T). Using
Proposition 2.3 we deduce that T has SVEP at every A ¢ o,puw, (T). Since ggpmw, (T) C 0uw(T), T has
SVEP at every A ¢ 0,,(T). By [1, Theorem 5.27] T satisfies a-Browder’s theorem. Therefore, generalized
a-Browder’s theorem holds for T.

(if) Suppose that generalized a-Browder’s theorem holds for T* which implies that o (T) = 0lspw(T).
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It suffices to prove that o,prmq(T) C ogpmw_(T). Let A & o,pmw_(T), then AI — T is generalized Drazin-
meromorphic lower semi-Weyl. By Theorem 2.1 it follows that Al — T admits a GKMD and A ¢ accoysp,(T).
This gives A ¢ accoip(T). Therefore, by [16, Theorem 2.6] AI — T is generalized Drazin-meromorphic
surjective which gives A ¢ o,pmq(T). Conversely, suppose that o,pma(T) = 0gpmw_(T). Using Proposition
2.4 we deduce that T* has SVEP at every A ¢ o,pmw_(T). Since o;pmw_(T) C 01,(T), T* has SVEP at every
A ¢ 01(T) = 0,(T*). Therefore, generalized a-Browder’s theorem holds for T*.

(iif) Suppose that generalized Browder’s theorem holds for T which implies that o4,(T) = 04, (T). It suffices to
prove that o,pm(T) C o;pmw(T). Let A ¢ o,ppmw(T), then AI-T is generalized Drazin-meromorphic Weyl. By
Theorem 2.1 it follows that AI =T admits a GKMD and A ¢ accop,(T). This gives A € accopy(T). Therefore, by
[16, Theorem 2.4] AI-T is generalized Drazin-meromorphic invertible which gives A ¢ o,pm(T). Conversely,
suppose that o,pm(T) = o;pmw(T). Using Corollary 2.5 we deduce that T and T* have SVEP at every
A ¢ oypmw(T). Since 0,pmw(T) C 0p(T), T and T have SVEP at every A € oy, (T). Therefore, by [1, Theorem
5.14] generalized Browder’s theorem holds for T. [

Using Theorem 2.7, [2, Theorem 2.3], [4, Theorem 2.1], [5, Proposition 2.2] and [12, Theorem 2.6] we have
the following theorem:

Theorem 2.8. Let T € B(X), then the following statements are equivalent:
(i) Browder’s theorem holds for T,
(ii) Browder’s theorem holds for T*,
(1ii) T has SVEP at every A ¢ 04,(T),
(iv) T* has SVEP at every A ¢ o,(T),
(v) T has SVEP at every A & op,(T),
(vi) generalized Browder’s theorem holds for T,
(vii) T or T* has SVEP at every A ¢ o,0rw(T),
(viii) ogpr(T) = oyprw(T),
(ix) T or T* has SVEP at every A ¢ o ,ppmw(T),
(x) ogpm(T) = ogpmw(T),
(XI) UgD(T) = GpBW(T)-

Using [4, Theorem 2.2] and [12, Theorem 2.7] a similar result for a-Browder’s theorem can be stated as
follows:

Theorem 2.9. Let T € B(X), then the following statements are equivalent:
(i) a-Browder’s theorem holds for T,
(ii) generalized a-Browder’s theorem holds for T,
(iii) T has SVEP at every A & oyprw, (T),
(iv) ogprg(T) = ogprw, (T),
(v) T has SVEP at every A & ogpmw, (T),
(vi) 0gpmg (T) = agpmw, (T).

Lemma 2.10. Let T € B(X), then
(i) ouf(T) =ou(T) & Ousbf(T) = oustn(T),
(ii) 016(T) = op(T) & 015p£(T) = o156 (T).

Proof. (i) Let 0,¢(T) = 0,5(T). It suffices to show that 0,54(T) C 0uspf(T). Let Ao & 0uspr(T). Then Aol — T is
upper semi B-Fredholm. Therefore, by [1, Theorem 1.117] there exists an open disc ID centered at Ay such
that AI — T is upper semi-Fredholm for all A € D \ {Ao}. Since 0,,(T) = 0,4(T), Al - T is upper semi-Browder
forall A € D\ {A¢}. Therefore, p(AI = T) < oo for all A € D\ {A¢}. Thus, T has SVEP at every A € D \ {A}
which gives T has SVEP at Ag. Thus, by [3, Theorem 2.5] it follows that A ¢ o,s(T). Conversely, let
Oustr(T) = ouspf(T). It suffices to show that 0,4(T) C 0,¢(T). Let A ¢ 0,¢(T). Then A & 0,5¢(T) = Tustw(T).
Therefore, p(AI — T) < co which implies that A & 0,,,(T).
(ii) Using a similar argument as above we can get the desired result. [
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Remark 2.11. From [16, Example 3.7] it is seen that the inclusions o,pm¢, (T) € 0ypmg(T), oypme_(T) C
asome(T) and o;pme(T) C 0,pm(T) can be proper. In the following theorems we give necessary and sufficient
conditions to get equality.

Theorem 2.12. Let T € B(X), then the following statements are equivalent:
() Gushf(T) = ouson(T),
(i1) T has SVEP at every A ¢ o,sp5(T),
(iii) T has SVEP at every A & agpme, (T),
(iv) 04omg(T) = dgpme, (T).

Proof. (i) & (ii) Suppose that 6,5 ¢(T) = 0ustp(T). Let A ¢ 0,5¢(T), then A € 0,55(T) which gives p(AI-T) < oo.
Therefore, T has SVEP at A. Now suppose that T has SVEP at every A € 0,4(T). It suffices to prove that
Oustr(T) C 0uspf(T). Let A ¢ 0,5p¢(T), then AI — T is upper semi B-Fredholm operator. Since T has SVEP at A
then by [3, Theorem 2.5] it follows that A & 0,56(T).

(iii) © (iv) Suppose that T has SVEP at every A € o,pm¢, (T) which implies that AI - T is generalized Drazin-
meromorphic upper semi-Fredholm. It suffices to show that o,pm7(T) C 0ypme, (T). Let A ¢ o,pm0, (T),
then by Theorem 2.1 there exists (M, N) € Red(AI — T) such that (A — T)u is semi-regular and (Al — T)y is
meromorphic. Since T has SVEP at A, (AI — T)y has SVEP at 0. Therefore, by [1, Theorem 2.91] (AI — T)y is
bounded below. Thus, A ¢ o,pmg(T). Conversely, suppose that o,pr57(T) = 05pme, (T). Let A & oypre. (T),
then AI — T is generalized Drazin-meromorphic bounded below. Therefore, by [16, Theorem 2.5] it follows
that T has SVEP at A.

(i) & (iv) Suppose that 6,5, (T) = ouses(T)- It suffices to prove that o,pmg(T) C 0pMm0, (T)- Let A € 0,0mp., (T),
then AI - T is generalized Drazin-meromorphic upper semi-Fredholm. By Theorem 2.1 it follows that AI - T
admits a GKMD and A ¢ acco,sf(T). This gives A ¢ acco,qu(T). Therefore, by [16, Theorem 2.5] AI — T
is generalized Drazin-meromorphic bounded below which gives A ¢ o,ppm7(T). Conversely, suppose that
04oMg(T) = 0gpme, (T). Then by (iv) = (iii) T has SVEP at every A ¢ aypme, (T). Since 0,pme, (T) C 0uf(T), T
has SVEP at every A ¢ 0,¢(T). Therefore, by [12, Theorem 2.8] we have 0,¢(T) = 0,,(T). Thus, by Lemma
2.10 Gusbf(T) = ouspp(T). O

Theorem 2.13. Let T € B(X), then the following statements are equivalent:
(i) 0156 (T) = a1s(T),
(ii) T* has SVEP at every A ¢ osp¢(T),
(iit) T* has SVEP at every A ¢ o,pmg_(T),
(iv) agpma(T) = agpme (7).

Proof. (i) & (ii) Suppose that 015 ¢(T) = o1s6(T). Let A € 01p¢(T), then A ¢ 0145(T) which gives g(AI = T) < oo.
Therefore, T* has SVEP at A. Now suppose that T* has SVEP at every A ¢ o5¢(T). It suffices to prove that
01500(T) C 015¢(T). Let A € o1p(T), then AI - T is lower semi B-Fredholm operator. Since T* has SVEP at A
then by [3, Theorem 2.5] we have A € o55(T).

(iii) & (iv) Suppose that T* has SVEP at every A ¢ o,pme_(T) which implies that AI — T is generalized
Drazin-meromorphic lower semi-Fredholm. It suffices to show that 6,pmq(T) C 0,pmp_(T). By Theorem 2.1
it follows that AI — T admits a GKMD and A ¢ accos¢(T). Since ogpmy_(T) C 01¢(T), T* has SVEP at every
A ¢ 01¢(T). Therefore, by [12, Theorem 2.9] we have 01¢(T) = o5(T). Thus, by Lemma 2.10 0y5¢(T) = 0155(T)
which implies that A ¢ accosu(T). Hence, A € 0,pma(T). Conversely, suppose that o,pma(T) = 0gpme_(T).
Let A ¢ o,pmp_(T), then AI — T is generalized Drazin-meromorphic surjective. Therefore by [16, Theorem
2.6] it follows that T* has SVEP at A.

(i) © (iv) Suppose that oy5¢(T) = o15(T)- It suffices to prove that o,pma(T) C ogpme_(T). Let A ¢ o,0mp_(T),
then AI — T is generalized Drazin-meromorphic lower semi-Fredholm. By Theorem 2.1 it follows that
Al = T admits a GKMD and A ¢ accoysf(T). This gives A ¢ accoypy(T). Therefore, by [16, Theorem 2.6]
Al - T is generalized Drazin-meromorphic surjective which gives A ¢ o,pmq(T). Conversely, suppose that
osom(T) = 0,pmp_(T). Then by (iv) = (iii) T* has SVEP at every A & agpme_(T). Since o,pme_(T) C 014(T) ,
T* has SVEP at every A ¢ 0¢(T). This gives oysp¢(T) = o1sp(T). O



A. Gupta, A. Kumar / Filomat 33:19 (2019), 6335-6345 6343

Using [12, Corollary 2.10] and Theorems 2.12, 2.13 we have the following result:

Corollary 2.14. Let T € B(X), then the following statements are equivalent:
(i) o4(T) = 0y(T),
(i1) T and T* have SVEP at every A & o¢(T),
(lll) be(T) = O'bb(T),
(iv) T and T* have SVEP at every A & op¢(T),
(v) UgD(T) = prf(T)/
(vi) T and T* have SVEP at every A & oppf(T),
(Ulll) UgDR(T) = UgDRq)(T)/
(viii) T and T* have SVEP at every A & o4pre(T),
(ix) ogpm(T) = agpme(T),
(x) T and T* have SVEP at every A ¢ ypme(T).

3. Cline’s Formula for the generalized Drazin-meromorphic invertibility

Let R be a ring with identity. Drazin[9] introduced the concept of Drazin inverses in a ring. An element
a € R is said to be Drazin invertible if there exist an element b € R and r € IN such that

ab=ba, bab="b,a"'b =a’.

If such b exists then it is unique and is called Drazin inverse of a and denoted by aP. For a,b € R, Cline [8]
proved that if ab is Drazin invertible, then ba is Drazin invertible and (ba)® = b((ab)”)?a. Recently, Gupta
and Kumar [10] generalized Cline’s formula for Drazin inverses in a ring with identity to the case when
a*b*a* = a1 for some k € N and obtained the following result:

Theorem 3.1. ([10, Theorem 2.20]) Let R be a ring with identity and suppose that a“b*a* = a**! for some k € IN.
Then a is Drazin invertible if and only if b*a* is Drazin invertible. Moreover, (b*a*)P = b*(aP)2a* and aP =
ak(bkak)D)kH_

Recently, Karmouni and Tajmouati [11] investigated for bounded linear operators A, B, C satisfying the
operator equation ABA = ACA and obtained that AC is generalized Drazin-Riesz invertible if and only if
BA is generalized Drazin-Riesz invertible. Also, they generalized Cline’s formula to the case of generalized
Drazin-Riesz invertibility. In this section, we establish Cline’s formula for the generalized Drazin-Riesz
invertibility for bounded linear operators A and B under the condition A¥B*AF = A¥*1. By [10, Theorem 2.1,
Theorem 2.2, Proposition 2.4 and Lemma 2.1] and a result [1, Corollary 3.99] we can deduce the following
result:

Proposition 3.2. Let A, B € B(X) satisfies A\BXA* = A for some k € IN, then A is meromorphic if and only if
B¥A¥ is meromorphic.

Theorem 3.3. Suppose that A,B € B(X) and AXB¥A* = A1 for some k € IN. Then A is generalized Drazin-
meromorphic invertible if and only if B*A¥ is generalized Drazin-meromorphic invertible.

Proof. Suppose that A is generalized Drazin-meromorphic invertible, then there exists T € B(X) such that
TA=AT, TAT=T and ATA - A is meromorphic.
Let S = B*T?A*. Then
(B A¥)S = (BXANY(BFT2AK) = BX(AFBXANT? = BFARIT? = BrAkT

and
S(B*A¥) = (B'T*A")(B*A*) = BT?A**! = BYA'T.
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Therefore, S(B*A¥) = (B*A¥)S. Consider
S(B*A"S = BFT2AK(BXAMBFT2 A% = (B¥T2AY)(BXAFT) = BFT? AT = BFT?AF = 6.
Let Q = I — AT, then Q is a bounded projection commuting with A. Therefore, Q" = Q for all n € IN. We
observe that
(QA)kBk(QA)k QkAkBkaAk QkAk+1 Qk Qk+1Ak+1 (QA)k+1
and
BkAk _ (BkAk)ZS — BkAk (BkAk)ZBkTZAK BkAk Bk(AkBkAk)BkTZAk
= B*AF — BFAM2T2 = BK( — A’T?)AF = B*(1 — AT)A*
_ BkQAk BkaAk Bk(QA)k
Since QA is meromorphic and(QA)*BK(QA)F = (QA)H1, by Proposition 3.2 BFAK — (BFAF)?S is meromorphic.
Conversely, suppose that B*A¥ is generalized Drazin-meromorphic invertible. Then there exists T’ € B(X)

such that
T'B*A* = B*AFT’, T'B*A*T" =T’ and BYAFT'B*A* - B*A* is meromorphic.

Let S’ = A*T"**!. Then
S'A = AFT LA = AR 2B AR A = ART/R2BR AR — ART/R2(BRARY2 — AkTrk
and
AS! = ARk gk
Consider
AS' = (AFT/F1 A)ARTR*1 = (ART/RY AR/ — Akgh I BRAZKTrRe] _ gkprkel gk kst
= Gkl _ pkrk+l _ gr
We claim that for all 7 € IN we have
(A - A%8")" = (A" — A™1S).
We prove it by induction. Evidently, the result is true for n = 1. Assume it to be true for n = p. Consider
(A—A28'YH = (A - A%S')(A — A%S'Y
= (A - A’S')(AF - AP
— AP+l _ pAP+2gr _ AP+2gr | pAP+3g72
— APHL _ P29y
Also,
BK(A — A25')t = BK(AK — AF*157) = BEAK — BFAK-1425" = BkAK — BEak-1 kA1
= BFAK — BEAZITR1 2 ghak _ (BR ARy TRl Z BRAK _ (K ARG
Now consider
(A— A’S')'BNA - A%S')F = (A - A'S")BHAF - A1S)
= AFBRAK — ARG/ Bk AK _ AKBEAKBE ARG 1 AKHL(BkAK)2 672
= AR ARG = (A — A2k

Since BX(A — A2S")f = B*AK — (B*AF)2T” is meromorphic, by Proposition 3.2 it follows that A — A2S’ is
meromorphic. [
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