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Abstract. In this paper, the notion ofW-property for subsets of X × X♦ is introduced and investigated,
where X is an Hadamard space and X♦ is its linear dual space. It is shown that an Hadamard space X is flat if
and only if X×X♦ hasW-property. Moreover, the notion of monotone relation from an Hadamard space to
its linear dual space is introduced. A characterization result for monotone relations withW-property (and
hence in flat Hadamard spaces) is given. Finally, a type of Debrunner-Flor Lemma concerning extension of
monotone relations in Hadamard spaces is proved.

1. Introduction and Preliminaries

Let (X, d) be a metric space. We say that a mapping c : [0, 1] → X is a geodesic path from x ∈ X to y ∈ X
if c(0) = x, c(1) = y and d(c(t), c(s)) = |t − s|d(x, y), for each t, s ∈ [0, 1]. The image of c is said to be a geodesic
segment joining x and y. A metric space (X, d) is called a geodesic space if there is a geodesic path between
every two points of X. Also, a geodesic space X is called uniquely geodesic space if for each x, y ∈ X there
exists a unique geodesic path from x to y. From now on, in a uniquely geodesic space, we denote the set
c([0, 1]) by [x, y] and for each z ∈ [x, y], we write z = (1 − t)x ⊕ ty, where t ∈ [0, 1]. In this case, we say that
z is a convex combination of x and y. Hence, [x, y] = {(1 − t)x ⊕ ty : t ∈ [0, 1]}. More details can be found in
[3, 5].

Definition 1.1. [9, Definition 2.2] Let (X, d) be a geodesic space, v1, v2, v3, . . . , vn be n points in X and
{λ1, λ2, λ3, . . . , λn} ⊆ (0, 1) be such that

∑n
i=1 λi = 1. We define convex combination of {v1, v2, v3, . . . , vn}

inductively as following:

⊕
n
i=1λivi := (1 − λn)

(
λ1

1 − λn
v1 ⊕

λ2

1 − λn
v2 ⊕ · · · ⊕

λn−1

1 − λn
vn

)
⊕ λnvn. (1)

Note that for every x ∈ X, we have d
(
x,⊕n

i=1λivi

)
≤

∑n
i=1 λid(x, vi).

According to [3, Definition 1.2.1], a geodesic space (X, d) is a CAT(0) space, if the following condition,
so-called CN-inequality, holds:

d(z, (1 − λ)x ⊕ λy)2
≤ (1 − λ)d(z, x)2 + λd(z, y)2

− λ(1 − λ)d(x, y)2 for all x, y, z ∈ X, λ ∈ [0, 1]. (2)
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One can show that (for instance see [3, Theorem 1.3.3]) CAT(0) spaces are uniquely geodesic spaces. An
Hadamard space is a complete CAT(0) space.

Let X be an Hadamard space. For each x, y ∈ X, the ordered pair (x, y) is called a bound vector and is
denoted by −→xy. Indeed, X2 = {−→xy : x, y ∈ X}. For each x ∈ X, we apply 0x := −→xx as zero bound vector at x and
−
−→xy as the bound vector −→yx. The bound vectors −→xy and −→uz are called admissible if y = u. Therefore the sum

of two admissible bound vectors −→xy and −→yz is defined by −→xy +−→yz = −→xz. Ahmadi Kakavandi and Amini in [2]
have introduced the dual space of an Hadamard space, by using the concept of quasilinearization of abstract
metric spaces presented by Berg and Nikolaev in [4]. The quasilinearization map is defined as following:

〈·, ·〉 : X2
× X2

→ R (3)

〈
−→
ab,
−→
cd〉 :=

1
2

{
d(a, d)2 + d(b, c)2

− d(a, c)2
− d(b, d)2

}
; a, b, c, d ∈ X.

Let x, y ∈ X, we define the mapping ϕ−→xy : X→ R by ϕ−→xy(z) = 1
2 (d(x, z)2

− d(y, z)2); for each z ∈ X. We will see
that ϕ−→xy possess attractive properties that simplify some calculations. We observe that (3) can be rewritten
as following:

〈
−→
ab,
−→
cd〉 = ϕ−→

cd
(b) − ϕ−→

cd
(a) = ϕ−→

ab
(d) − ϕ−→

ab
(c).

The metric space (X, d) satisfies the Cauchy-Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d) for all a, b, c, d ∈ X.

This inequality characterizes CAT(0) spaces. Indeed, it follows from [4, Corollary 3] that a geodesic space
(X, d) is a CAT(0) space if and only if it satisfies in the Cauchy-Schwarz inequality. For an Hadamard space
(X, d), consider the mapping

Ψ : R × X2
→ C(X,R)

(t, a, b) 7→ Ψ(t, a, b)x = t〈
−→
ab,−→ax〉; a, b, x ∈ X, t ∈ R,

where C(X,R) denotes the space of all continuous real-valued functions on X. It follows from Cauchy-
Schwarz inequality that Ψ(t, a, b) is a Lipschitz function with Lipschitz semi-norm

L(Ψ(t, a, b)) = |t|d(a, b), for all a, b ∈ X, and all t ∈ R, (4)

where the Lipschitz semi-norm for any function ϕ : (X, d)→ R is defined by

L(ϕ) = sup
{ϕ(x) − ϕ(y)

d(x, y)
: x, y ∈ X, x , y

}
.

A pseudometric D on R × X2 induced by the Lipschitz semi-norm (4), is defined by

D((t, a, b), (s, c, d)) = L(Ψ(t, a, b) −Ψ(s, c, d)); a, b, c, d ∈ X, t, s ∈ R.

For an Hadamard space (X, d), the pseudometric space (R × X2,D) can be considered as a subspace of the
pseudometric space of all real-valued Lipschitz functions Lip(X,R). Note that, in view of [2, Lemma 2.1],
D((t, a, b), (s, c, d)) = 0 if and only if t〈

−→
ab,−→xy〉 = s〈

−→
cd,−→xy〉 for all x, y ∈ X. Thus, D induces an equivalence

relation on R × X2, where the equivalence class of (t, a, b) ∈ R × X2 is

[t
−→
ab] = {s

−→
cd : s ∈ R, c, d ∈ X,D((t, a, b), (s, c, d)) = 0}.

The dual space of an Hadamard space (X, d), denoted by X∗, is the set of all equivalence classes [t
−→
ab] where

(t, a, b) ∈ R × X2, with the metric D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)). Clearly, the definition of equivalence
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classes implies that [−→aa] = [
−→
bb] for all a, b ∈ X. The zero element of X∗ is 0 := [t−→aa], where a ∈ X and t ∈ R

are arbitrary. It is easy to see that the evaluation 〈0, ·〉 vanishes for any bound vectors in X2. Note that in
general X∗ acts on X2 by

〈x∗,−→xy〉 = t〈
−→
ab,−→xy〉, where x∗ = [t

−→
ab] ∈ X∗ and −→xy ∈ X2.

The following notation will be used throughout this paper.

〈 n∑
i=1

αix∗i ,
−→xy

〉
:=

n∑
i=1

αi〈x∗i ,
−→xy〉, αi ∈ R, x∗i ∈ X∗, n ∈N, x, y ∈ X.

For an Hadamard space (X, d), Chaipunya and Kumam in [7], defined the linear dual space of X by

X♦ =
{ n∑

i=1

αix∗i : αi ∈ R, x∗i ∈ X∗, n ∈N
}
.

Therefore, X♦ = span X∗. It is easy to see that X♦ is a normed space with the norm ‖x♦‖♦ = L(x♦) for all x♦ ∈ X♦.
Indeed:

Lemma 1.2. [14, Proposition 3.5] Let X be an Hadamard space with linear dual space X♦. Then

‖x♦‖♦ := sup
{∣∣∣〈x♦,−→ab〉 − 〈x♦,

−→
cd〉

∣∣∣
d(a, b) + d(c, d)

: a, b, c, d ∈ X, (a, c) , (b, d)
}
,

is a norm on X♦. In particular, ‖[t
−→
ab]‖♦ = |t|d(a, b).

2. Flat Hadamard Spaces andW-property

Let M be a relation from X to X♦; i.e., M ⊆ X × X♦. The domain and range of M are defined, respectively,
by

Dom(M) :=
{
x ∈ X : ∃ x♦ ∈ X♦ such that (x, x♦) ∈M

}
,

and

Range(M) :=
{
x♦ ∈ X♦ : ∃ x ∈ X such that (x, x♦) ∈M

}
.

Definition 2.1. Let X be an Hadamard space with linear dual space X♦. We say that M ⊆ X × X♦ satisfies
W-property if there exists p ∈ X such that the following holds:〈

x♦,
−−−−−−−−−−−−−−−→
p((1 − λ)x1 ⊕ λx2)

〉
≤ (1 − λ)〈x♦,−−→px1〉 + λ〈x♦,

−−→px2〉, ∀λ ∈ [0, 1], ∀x♦ ∈ Range(M), ∀x1, x2 ∈ Dom(M).

Proposition 2.2. Let X be an Hadamard space with linear dual space X♦ and let M ⊆ X × X♦. Then the following
statements are equivalent:

(i) M ⊆ X × X♦ satisfies theW-property for some p ∈ X.

(ii) M ⊆ X × X♦ satisfies theW-property for any q ∈ X.

(iii) For any q ∈ X,

〈
x♦,
−−−−−−−−→
q(⊕n

i=1λixi)
〉
≤

n∑
i=1

λi〈x♦,
−→qxi〉, for all x♦ ∈ Range(M), {xi}

n
i=1 ⊆ Dom(M), {λi}

n
i=1 ⊆ [0, 1]. (Wn(q))
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(iv) For some p ∈ X, (Wn(p)) holds.

Proof.

(i)⇒ (ii): Let q ∈ X be any arbitrary element of X, λ ∈ [0, 1], x♦ ∈ Range(M), and x1, x2 ∈ Dom(M). Then〈
x♦,
−−−−−−−−−−−−−−−→
q((1 − λ)x1 ⊕ λx2)

〉
=

〈
x♦,−→qp +

−−−−−−−−−−−−−−−→
p((1 − λ)x1 ⊕ λx2)

〉
= 〈x♦,−→qp〉 +

〈
x♦,
−−−−−−−−−−−−−−−→
p((1 − λ)x1 ⊕ λx2)

〉
≤ (1 − λ)(〈x♦,−→qp〉 + 〈x♦,−−→px1〉) + λ(〈x♦,−→qp〉 + 〈x♦,−−→px2〉)

= (1 − λ)〈x♦,−→qp + −−→px1〉 + λ〈x♦,
−→qp + −−→px2〉

= (1 − λ)〈x♦,−−→qx1〉 + λ〈x♦,
−−→qx2〉,

as required.

(ii)⇒ (iii): We proceed by induction on n. By Definition 2.1 the claim is true for n = 2. Now assume that
(Wn−1(q)) is true. In view of equation (1),

〈
x♦,
−−−−−−−−→
q(⊕n

i=1λixi)
〉

=
〈
x♦,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

q((1 − λn)
( λ1

1 − λn
x1 ⊕

λ2

1 − λn
x2 ⊕ · · · ⊕

λn−1

1 − λn
xn−1

)
⊕ λnxn)

〉
≤ (1 − λn)

〈
x♦,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

q
( λ1

1 − λn
x1 ⊕

λ2

1 − λn
x2 ⊕ · · · ⊕

λn−1

1 − λn
xn−1

)〉
+ λn〈x♦,

−−→qxn〉

≤ (1 − λn)
n∑

i=1

λi

1 − λn
〈x♦,−→qxi〉 + λn〈x♦,

−−→qxn〉

=

n−1∑
i=1

λi〈x♦,
−→qxi〉 + λn〈x♦,

−−→qxn〉

=

n∑
i=1

λi〈x♦,
−→qxi〉.

(iii)⇒ (iv): Clear.

(iv)⇒ (i): Take n = 2 in (Wn(p)).

We are done.

Remark 2.3. It should be noticed that Proposition 2.2 implies thatW-property is independent of the choice of the
element p ∈ X.

Definition 2.4. [11, Definition 3.1] An Hadamard space (X, d) is said to be flat if equality holds in the
CN-inequality, i.e., for each x, y ∈ X and λ ∈ [0, 1], the following holds:

d(z, (1 − λ)x ⊕ λy)2 = (1 − λ)d(z, x)2 + λd(z, y)2
− λ(1 − λ)d(x, y)2, for all z ∈ X.

Proposition 2.5. Let X be an Hadamard space. The following statements are equivalent:

(i) X is a flat Hadamard space.

(ii) 〈
−−−−−−−−−−−−−−→
x((1 − λ)x ⊕ λy),

−→
ab〉 = λ〈−→xy,

−→
ab〉, for all a, b, x, y ∈ X and all λ ∈ [0, 1].

(iii) X × X♦ hasW-property.
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(iv) Any subset of X × X♦ hasW-property.

(v) For each p, z ∈ X, the mapping ϕ−→pz is convex.

(vi) For each p, z ∈ X, the mapping ϕ−→pz is affine, in the sense that:

ϕ−→pz((1 − λ)x ⊕ λy) = (1 − λ)ϕ−→pz(x) + λϕ−→pz(y), ∀ x, y ∈ X,∀λ ∈ [0, 1].

Proof.

(i)⇔ (ii): [11, Theorem 3.2].

(ii)⇒ (iii): Let x, y ∈ X, λ ∈ [0, 1] and (x, x♦) ∈ X × X♦. Then x♦ =
∑n

i=1 αi[ti
−−→
aibi] ∈ X♦, and hence by using (ii)

we get:

〈
x♦,
−−−−−−−−−−−−−−→

p
(
(1 − λ)x ⊕ λy

)〉
=

n∑
i=1

αiti

〈−−→
aibi,
−→px +

−−−−−−−−−−−−−−→

x
(
(1 − λ)x ⊕ λy

)〉
=

n∑
i=1

αiti

(〈−−→
aibi,
−→px

〉
+

〈−−→
aibi,
−−−−−−−−−−−−−−→

x
(
(1 − λ)x ⊕ λy

)〉)
=

n∑
i=1

αiti

(〈−−→
aibi,
−→px

〉
+ λ

〈−−→
aibi,
−→xy

〉)
=

n∑
i=1

αiti

(〈−−→
aibi,
−→px

〉
+ λ

〈−−→
aibi,
−→py − −→px

〉)
=

n∑
i=1

αiti

(
(1 − λ)

〈−−→
aibi,
−→px

〉
+ λ

〈−−→
aibi,
−→py

〉)
= (1 − λ)

n∑
i=1

αiti

〈−−→
aibi,
−→px

〉
+ λ

n∑
i=1

αiti

〈−−→
aibi,
−→py

〉
= (1 − λ)

〈 n∑
i=1

αi[ti
−−→
aibi],

−→px
〉

+ λ
〈 n∑

i=1

αi[ti
−−→
aibi],

−→py
〉

= (1 − λ)〈x♦,−→px〉 + λ〈x♦,−→py〉.

Therefore X × X♦ hasW-property.

(iii)⇔ (iv): Straightforward.

(iv)⇒ (v): Let x, y ∈ X and λ ∈ [0, 1], then

(1 − λ)ϕ−→pz(x) + λϕ−→pz(y) − ϕ−→pz((1 − λ)x ⊕ λy) = λ(ϕ−→pz(y) − ϕ−→pz(x)) + ϕ−→pz(x) − ϕ−→pz((1 − λ)x ⊕ λy)

= λ〈−→pz,−→xy〉 + 〈−→pz,
−−−−−−−−−−−−−−→
((1 − λ)x ⊕ λy)x〉

= λ〈−→pz,−→py − −→px〉 + 〈−→pz,−→px −
−−−−−−−−−−−−−−→
p((1 − λ)x ⊕ λy)〉

= λ〈−→pz,−→py〉 + (1 − λ)〈−→pz,−→px〉 − 〈−→pz,
−−−−−−−−−−−−−−→
p((1 − λ)x ⊕ λy)〉

≥ 0.

Therefore, ϕ−→pz is convex.

(v)⇒ (vi): It is easy.
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(vi)⇒ (iii): Let x, y, p ∈ X, λ ∈ [0, 1] and x♦ =
∑n

i=1 αi[ti
−−→pizi] ∈ X♦ be given. Then

〈
x♦,
−−−−−−−−−−−−−−→

p
(
(1 − λ)x ⊕ λy

)〉
=

〈 n∑
i=1

αix∗i ,
−−−−−−−−−−−−−−→

p
(
(1 − λ)x ⊕ λy

)〉
=

n∑
i=1

αiti

〈
−−→pizi,
−−−−−−−−−−−−−−→

p
(
(1 − λ)x ⊕ λy

)〉
=

n∑
i=1

αiti

(
ϕ−−→pizi

((1 − λ)x ⊕ λy) − ϕ−−→pizi
(p)

)
=

n∑
i=1

αiti

(
(1 − λ)ϕ−−→pizi

(x) + λϕ−−→pizi
(y) − ϕ−−→pizi

(p)
)

=

n∑
i=1

αiti

(
(1 − λ)(ϕ−−→pizi

(x) − ϕ−−→pizi
(p)) + λ(ϕ−−→pizi

(y) − ϕ−−→pizi
(p))

)
=

n∑
i=1

αiti

(
(1 − λ)

〈
−−→pizi,
−→px

〉
+ λ

〈
−−→pizi,
−→py

〉)
= (1 − λ)

n∑
i=1

αiti

〈
−−→pizi,
−→px

〉
+ λ

n∑
i=1

αiti

〈
−−→pizi,
−→py

〉
= (1 − λ)

〈 n∑
i=1

αi[ti
−−→pizi],

−→px
〉

+ λ
〈 n∑

i=1

αi[ti
−−→pizi],

−→py
〉

= (1 − λ)〈x♦,−→px〉 + λ〈x♦,−→py〉;

i.e., X × X♦ hasW-property.

(iii)⇒ (ii): For a, b, x, y ∈ X and λ ∈ [0, 1], we have:

λ〈
−→
ab,−→xy〉 − 〈

−→
ab,
−−−−−−−−−−−−−−→
x((1 − λ)x ⊕ λy)〉 = λ

(
〈
−→
ab,−→py − −→px〉

)
− 〈
−→
ab,
−−−−−−−−−−−−−−→
p((1 − λ)x ⊕ λy) − −→px〉

= λ
(
〈
−→
ab,−→py〉 − 〈

−→
ab,−→px〉

)
− 〈
−→
ab,
−−−−−−−−−−−−−−→
p((1 − λ)x ⊕ λy)〉 + 〈

−→
ab,−→px〉

= (1 − λ)〈
−→
ab,−→px〉 + λ〈

−→
ab,−→py〉 − 〈

−→
ab,
−−−−−−−−−−−−−−→
p((1 − λ)x ⊕ λy)〉

= (1 − λ)〈x♦,−→px〉 + λ〈x♦,−→py〉〉 − 〈x♦,
−−−−−−−−−−−−−−→
p((1 − λ)x ⊕ λy),

where x♦ = [
−→
ab] ∈ X♦. Since X × X♦ hasW-property, one can deduce that:

λ〈
−→
ab,−→xy〉 ≥ 〈

−→
ab,
−−−−−−−−−−−−−−→
x((1 − λ)x ⊕ λy)〉. (5)

Hence, by interchanging the role of a and b in (5), we obtain:

〈
−→
ab,
−−−−−−−−−−−−−−→
x((1 − λ)x ⊕ λy)〉 ≥ λ〈

−→
ab,−→xy〉. (6)

Finally, (5) and (6) yield:

〈
−→
ab,
−−−−−−−−−−−−−−−→
p((1 − λ)x ⊕ λxy)〉 = λ

(
〈
−→
ab,−→xy〉

)
.

We are done.

The next example shows that there exists a relation M ⊆ X ×X♦ in the non-flat Hadamard spaces which
doesn’t have theW-property.
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Example 2.6. Consider the following equivalence relation onN × [0, 1]:

(n, t) ∼ (m, s)⇔ t = s = 0 or (n, t) = (m, s).

Set X := N×[0,1]
∼

and let d : X × X→ R be defined by

d([(n, t)], [(m, s)]) =

|t − s| n = m,
t + s n , m.

The geodesic joining x = [(n, t)] to y = [(m, s)] is defined as follows:

(1 − λ)x ⊕ λy :=

[(n, (1 − λ)t − λs)] 0 ≤ λ ≤ t
t+s ,

[(m, (λ − 1)t + λs)] t
t+s ≤ λ ≤ 1,

whenever x , y and vacuously (1 − λ)x ⊕ λx := x. It is known that (see [1, Example 4.7]) (X, d) is an R-tree space.
It follows from [3, Example 1.2.10], that any R-tree space is an Hadamard space. Let x = [(2, 1

2 )], y = [(1, 1
2 )],

a = [(3, 1
3 )], b = [(2, 1

2 )] and λ = 1
5 . Then 4

5 x ⊕ 1
5 y = [(2, 3

10 )] and

〈−−−−−−−−−→
x(

4
5

x ⊕
1
5

y),
−→
ab

〉
=
−1
6
,
−1
10

=
1
5

〈
−→xy,
−→
ab

〉
.

Now, Proposition 2.5(ii) implies that (X, d) is not a flat Hadamard space. For each n ∈ N, set xn := [(n, 1
2 )] and

yn := [(n, 1
n )]. Now, we define

M :=
{
(xn, [
−−−−−→yn+1yn]) : n ∈N

}
⊆ X × X♦.

Take p = [(1, 1)] ∈ X, [−−−→y5y4] ∈ Range(M) and λ = 1
3 . Clearly, x̃ := (1−λ)x1 ⊕λx3 = [(1, 1

6 )] and
〈
[−−−→y5y4],

−→
px̃

〉
= 1

24 ,
while,

2
3
〈[−−−→y5y4],−−→px1〉 +

1
3
〈[−−−→y5y4],−−→px3〉 =

1
40
.

Therefore, M doesn’t have theW-property.

3. Monotone Relations

Ahmadi Kakavandi and Amini [2] introduced the notion of monotone operators in Hadamard spaces.
In [10], Khatibzadeh and Ranjbar, investigated some properties of monotone operators and their resolvents
and also proximal point algorithm in Hadamard spaces. Chaipunya and Kumam [7] studied the general
proximal point method for finding a zero point of a maximal monotone set-valued vector field defined on
Hadamard spaces. They proved the relation between the maximality and Minty’s surjectivity condition.
Zamani Eskandani and Raeisi [14], by using products of finitely many resolvents of monotone operators,
proposed an iterative algorithm for finding a common zero of a finite family of monotone operators and
a common fixed point of an infinitely countable family of non-expansive mappings in Hadamard spaces.
In this section, we will characterize the notation of monotone relations in Hadamard spaces based on
characterization of monotone sets in Banach spaces [8, 12, 13].

Definition 3.1. Let X be an Hadamard space with linear dual space X♦. The set M ⊆ X × X♦ is called
monotone if 〈x♦ − y♦,−→yx〉 ≥ 0, for all (x, x♦),(y, y♦) in M.



A. Moslemipour et al. / Filomat 33:19 (2019), 6347–6358 6354

Example 3.2. Let xn, yn and M be the same as in Example 2.6. Let (u,u♦), (v, v♦) ∈ M. There exists m,n ∈ N such
that u = xn, u♦ := [−−−−−→yn+1yn], v = xm and v♦ := [−−−−−→ym+1ym]. Then

〈u♦ − v♦,−→vu〉 = 〈u♦,−→vu〉 − 〈v♦,−→vu〉 =
〈[−−−−−−−−−−−−−−−−−−−−→[

(n + 1,
1

n + 1
)
][

(n,
1
n

)
]]
,

−−−−−−−−−−−−−→[
(m,

1
2

)
][

(n,
1
2

)
]〉

−

〈[−−−−−−−−−−−−−−−−−−−−−−→[
(m + 1,

1
m + 1

)
][

(m,
1
m

)
]]
,

−−−−−−−−−−−−−→[
(m,

1
2

)
][

(n,
1
2

)
]〉

=


0, n = m,

1
m+1 + 1

n + 1
m , n = m + 1,

1
n+1 + 1

n + 1
m , n = m − 1,

1
n + 1

m , n < {m − 1,m,m + 1}.

Therefore, 〈u♦ − v♦,−→vu〉 ≥ 0 which shows that, M is a monotone relation.

In the sequel, we need the following notations. Let X be an Hadamard space and Y ⊆ X. Put

ςY :=
{
η : Y→ [0,+∞[

∣∣∣ supp η is finite and
∑
x∈Y

η(x) = 1
}

where supp η = {y ∈ Y : η(y) , 0}. Clearly, for each ∅ , A ⊂ Y, ςA = {η ∈ ςY : supp η ⊆ A}. It is obvious that
ςA is a convex subset ofRY. Moreover, if ∅ , A ⊆ B, then ςA ⊆ ςB. Suppose u ∈ Y be fixed. Define δu ∈ ςY by

δu(x) =

{
1 x = u,
0 x , u.

Let M ⊆ X × X♦ and η ∈ ςA. Then suppη = {λ1, . . . , λn} where λi = η(xi, x♦i ), for each 1 ≤ i ≤ n. Let p ∈ X be
fixed. Define α : ςX×X♦ → X (resp. β : ςX×X♦ → X♦ and θp : ςX×X♦ → R) by

α(η) =

n⊕
i=1

λixi,
(
resp. β(η) =

n∑
i=1

λix♦i and θp(η) =

n∑
i=1

λi〈x♦i ,
−→pxi〉

)
.

Proposition 3.3. Let X be an Hadamard space, M ⊆ X × X♦ and p ∈ X. Set

Θp,M :=
{
η ∈ ςM : θp(η) ≥ 〈β(η),

−−−−→
pα(η)〉

}
. (7)

Then Θp,M = Θq,M for any q ∈ X.

Proof. It is enough to show that Θp,M ⊆ Θq,M. Let η ∈ Θp,M be such that suppη = {λ1, . . . , λn} where
λi = η(xi, x♦i ), for each 1 ≤ i ≤ n. Then

θq(η) =

n∑
i=1

λi〈x♦i ,
−→qxi〉 =

n∑
i=1

λi〈x♦i ,
−→qp〉 +

n∑
i=1

λi〈x♦i ,
−→pxi〉

= 〈

n∑
i=1

λix♦i ,
−→qp〉 + θp(η) = 〈β(η),−→qp〉 + θp(η)

≥ 〈β(η),−→qp〉 + 〈β(η),
−−−−→
pα(η)〉

= 〈β(η),
−−−−→
qα(η)〉.

Therefore, η ∈ Θq,M, i.e., Θp,M ⊆ Θq,M.
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According to Proposition 3.3, for each M ⊆ X × X♦, the set Θp,M is independent of the choice of the element
p ∈ X and hence we denote the set Θp,M by ΘM.

Theorem 3.4. Let X be an Hadamard space and M ⊆ X ×X♦ satisfies theW-property. Then M is a monotone set if
and only if ΘM = ςM.

Proof. Let M be a monotone set. In view of (7), it is enough to show that ςM ⊆ ΘM. Let η ∈ ςM be such that
suppη = {λ1, . . . , λn}where λi = η(xi, x♦i ), for each 1 ≤ i ≤ n. By using Proposition 2.2, we obtain:

θp(η) − 〈β(η),
−−−−→
pα(η)〉 =

n∑
i=1

λi〈x♦i ,
−→pxi〉 −

〈 n∑
j=1

λ jx♦j,
−−−−−−−−−→

p
(
⊕

n
i=1λixi

)〉
=

n∑
i=1

λi〈x♦i ,
−→pxi〉 −

n∑
j=1

λ j

〈
x♦j,
−−−−−−−−−→

p
(
⊕

n
i=1λixi

)〉
≥

n∑
i=1

λi〈x♦i ,
−→pxi〉 −

n∑
j=1

n∑
i=1

λiλ j〈x♦j,
−→pxi〉

=

n∑
j=1

n∑
i=1

λiλ j〈x♦i ,
−→pxi〉 −

n∑
j=1

n∑
i=1

λiλ j〈x♦j,
−→pxi〉

=

n∑
j=1

n∑
i=1

λiλ j〈x♦i − x♦j,
−→pxi〉

=

n∑
j=1

n∑
i=1

λiλ j〈x♦j − x♦i ,
−→px j〉

=
1
2

n∑
i=1

n∑
j=1

λiλ j〈x♦i − x♦j,
−→pxi −

−→px j〉

=
1
2

n∑
i=1

n∑
j=1

λiλ j〈x♦i − x♦j,
−−→x jxi〉 ≥ 0.

Then ςM ⊆ ΘM and hence ςM = ΘM. For the converse, let (x, x♦), (y, y♦) ∈M and set η := 1
2δ(x,x♦) +

1
2δ(y,y♦) ∈ ςM.

By usingW-property, we get:

1
4
〈x♦ − y♦,−→yx〉 =

1
4
〈x♦ − y♦,−→px − −→py〉

=
1
4

(〈x♦ − y♦,−→px〉 − 〈x♦ − y♦,−→py〉)

=
1
4
〈x♦,−→px〉 +

1
4
〈y♦,−→py〉 −

1
4
〈y♦,−→px〉 −

1
4
〈x♦,−→py〉

=
1
2
〈x♦,−→px〉 +

1
2
〈y♦,−→py〉 −

1
4
〈x♦,−→px〉 −

1
4
〈x♦,−→py〉 −

1
4
〈y♦,−→px〉 −

1
4
〈y♦,−→py〉

≥
1
2
〈x♦,−→px〉 +

1
2

〈
y♦,−→py

〉
−

〈1
2

x♦ +
1
2

y♦,
−−−−−−−−−→

p(
1
2

x ⊕
1
2

y)
〉

=
1
2
〈x♦,−→px〉 +

1
2
〈y♦,−→py〉 −

1
2

〈
x♦,
−−−−−−−−−→

p(
1
2

x ⊕
1
2

y)
〉
−

1
2

〈
y♦,
−−−−−−−−−→

p(
1
2

x ⊕
1
2

y)
〉

= θp(η) − 〈β(η),
−−−−→
pα(η)〉 ≥ 0.

Therefore, M is monotone.
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Corollary 3.5. Let X be a flat Hadamard space and M ⊆ X ×X♦. Then M is a monotone set if and only if ΘM = ςM.

Proof. Since X is flat, Proposition 2.5 implies that M ⊆ X×X♦ satisfies theW-property. Then the conclusion
follows immediately from Theorem 3.4.

A fundamental result concerning monotone operators is the extension theorem of Debrunner-Flor (for
a proof see [6, Theorem 4.3.1] or [15, Proposition 2.17]). In the sequel, we prove a type of this result for
monotone relations from an Hadamard space to its linear dual space. First, we recall some notions and
results.

Definition 3.6. [2, Definition 2.4] Let {xn} be a sequence in an Hadamard space X. The sequence {xn} is said
to be weakly convergent to x ∈ X, denoted by xn

w
−→ x, if limn→∞〈

−−→xxn,
−→xy〉 = 0, for all y ∈ X.

One can easily see that convergence in the metric implies weak convergence.

Lemma 3.7. [14, Proposition 3.6] Let {xn} be a bounded sequence in an Hadamard space (X, d) with linear dual

space X♦ and let {x♦n} be a sequence in X♦. If {xn} is weakly convergent to x and x♦n
‖·‖♦
−−→ x♦, then 〈x♦n,

−−→xnz〉 → 〈x♦,−→xz〉,
for all z ∈ X.

Theorem 3.8. Let X be an Hadamard space and M ⊆ X × X♦ be a monotone relation satisfies theW-property. Let
C ⊆ X♦ be a compact and convex set, and ϕ : C → X be a continuous function. Then there exists z♦ ∈ C such that
{(ϕ(z♦), z♦)} ∪M is monotone.

Proof. Let x ∈ X, u♦, v♦ ∈ X♦ be arbitrary and fixed element. Consider the function τ : C→ R defined by

τ(x♦) = 〈x♦ − v♦,
−−−−−→
xϕ(u♦)〉, x♦ ∈ C.

Let {x♦n} ⊆ C be such that x♦n
‖·‖♦
−−→ x♦, for some x♦ ∈ C. By Lemma 3.7,

〈x♦n − v♦,
−−−−−→
xϕ(u♦)〉 → 〈x♦ − v♦,

−−−−−→
xϕ(u♦)〉.

Thus τ(x♦n)→ τ(x♦). Hence τ is continuous. For every (y, y♦) ∈M, set

U(y, y♦) := {u♦ ∈ C : 〈u♦ − y♦,
−−−−−→
yϕ(u♦)〉 < 0}.

Continuity of τ implies that U(y, y♦) is an open subset of C. Suppose that the conclusion fails. Then for each
u♦ ∈ C there exists (y, y♦) ∈M such that u♦ ∈ U(y, y♦). This means that the family of open sets {U(y, y♦)}(y,y♦)∈M
is an open cover of C. Using the compactness of C, we obtain that C =

⋃n
i=1 U(yi, y♦i ). In addition, [15,

Page 756] implies that there exists a partition of unity associated with this finite subcover. Hence, there are
continuous functions ψi : X♦ → R (1 ≤ i ≤ n) satisfying

(i)
∑n

i=1 ψi(x♦) = 1, for all x♦ ∈ C.
(ii) ψi(x♦) ≥ 0, for all x♦ ∈ C and all i ∈ {1, . . . ,n}.

(iii) {x♦ ∈ C : ψi(x♦) > 0} ⊆ Ui := U(yi, y♦i ) for all i ∈ {1, . . . ,n}.

Set K := co({y♦1, . . . , y
♦
n}) ⊆ C and define

ι :K→ K

u♦ 7→
n∑

i=1

ψi(u♦)y♦i .

Let {u♦m} ⊆ K be such that u♦m → u♦,∥∥∥∥ι(u♦m) − ι(u♦)
∥∥∥∥
♦

=
∥∥∥∥ n∑

i=1

ψi(u♦m)y♦i −
n∑

i=1

ψi(u♦)y♦i
∥∥∥∥
♦
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=
∥∥∥∥ n∑

i=1

(ψi(u♦m) − ψi(u♦))y♦i
∥∥∥∥
♦

≤

n∑
i=1

∥∥∥(ψi(u♦m) − ψi(u♦))y♦i
∥∥∥
♦

≤

n∑
i=1

∣∣∣ψi(u♦m) − ψi(u♦)
∣∣∣‖y♦i ‖♦.

By continuity of ψi (1 ≤ i ≤ n), letting m → +∞, then ψi(u♦m) → ψi(u♦) and this implies that ι(u♦m) → ι(u♦)
and so ι is continuous. One can identify K with a finite-dimensional convex and compact set. By using
Brouwer fixed point theorem [15, Proposition 2.6], there exists w♦

∈ K such that ι(w♦) = w♦. Moreover, by
using Proposition 2.2 we get:

0 =
〈
ι(w♦) − w♦,

−−−−−−−−−−−−−−−−→
ϕ(w♦)(⊕ jψ j(w♦)y j)

〉
=

〈∑
i

ψi(w♦)(y♦i − w♦),
−−−−−−−−−−−−−−−−→
ϕ(w♦)(⊕ jψ j(w♦)y j)

〉
=

〈∑
i

ψi(w♦)(y♦i − w♦),
−−−−−−−−−−−→
p(⊕ jψ j(w♦)y j)

〉
−

〈∑
i

ψi(w♦)(y♦i − w♦),
−−−−−→
pϕ(w♦)

〉
(p ∈ X)

≤

∑
j

ψ j(w♦)
〈∑

i

ψi(w♦)(y♦i − w♦),−−→py j

〉
−

〈∑
i

ψi(w♦)(y♦i − w♦),
−−−−−→
pϕ(w♦)

〉
=

∑
j

ψ j(w♦)
〈∑

i

ψi(w♦)(y♦i − w♦),−−→py j

〉
−

∑
j

ψ j(w♦)
〈∑

i

ψi(w♦)(y♦i − w♦),
−−−−−→
pϕ(w♦)

〉
=

∑
j

ψ j(w♦)
〈∑

i

ψi(w♦)(y♦i − w♦),−−→py j −
−−−−−→
pϕ(w♦)

〉
=

∑
j

ψ j(w♦)
〈∑

i

ψi(w♦)(y♦i − w♦),
−−−−−−→
ϕ(w♦)y j

〉
=

∑
j

ψ j(w♦)
∑

i

ψi(w♦)
〈
y♦i − w♦,

−−−−−−→
ϕ(w♦)y j

〉
=

∑
j

∑
i

ψ j(w♦)ψi(w♦)
〈
y♦i − w♦,

−−−−−−→
ϕ(w♦)y j

〉
=

∑
i, j

ψi(w♦)ψ j(w♦)
〈
y♦i − w♦,

−−−−−−→
ϕ(w♦)y j

〉
. (8)

Set ai j = 〈y♦i − w♦,
−−−−−−→
ϕ(w♦)y j〉. It follows from monotonicity of M that

aii + a j j − ai j − a ji = 〈y♦i − w♦,
−−−−−−→
ϕ(w♦)yi〉 + 〈y♦j − w♦,

−−−−−−→
ϕ(w♦)y j〉

− 〈y♦i − w♦,
−−−−−−→
ϕ(w♦)y j〉 − 〈y♦j − w♦,

−−−−−−→
ϕ(w♦)yi〉

= 〈y♦i − y♦j ,
−−−−−−→
ϕ(w♦)yi −

−−−−−−→
ϕ(w♦)y j〉

= 〈y♦i − y♦j ,
−−→y jyi〉 ≥ 0;

i.e.,

aii + a j j ≥ ai j + a ji. (9)
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Applying (8) and (9), we obtain:

0 ≤
n∑
i, j

ψi(w♦)ψ j(w♦)ai j

=

n∑
i< j

ψi(w♦)ψ j(w♦)ai j +

n∑
i=1

ψi(w♦)2aii +

n∑
i> j

ψi(w♦)ψ j(w♦)ai j

=

n∑
i=1

ψi(w♦)2aii +

n∑
i< j

ψi(w♦)ψ j(w♦)(ai j + a ji) (10)

≤

n∑
i=1

ψi(w♦)2aii +

n∑
i< j

ψi(w♦)ψ j(w♦)(aii + a j j). (11)

Set I(w♦) :=
{
i ∈ {1, . . . ,n} : w♦

∈ Ui

}
. Applying property (iii) of the partition of unity in (11) we get:

0 ≤
∑

i∈I(w♦)

ψi(w♦)2aii +
∑
i< j

i, j∈I(w♦)

ψi(w♦)ψ j(w♦)(aii + a j j). (12)

By using property (iii) of the partition of unity and the definition of Ui, one deduce that all terms in the
right-hand side of (12) are nonpositive. So all of ψi(w♦)’s must be vanish, which contradicts with (i).

Corollary 3.9. Let X be a flat Hadamard space and M ⊆ X × X♦ be a monotone set. Let C ⊆ X♦ be a compact and
convex set, and ϕ : C→ X be a continuous function. Then there exists z♦ ∈ C such that {(ϕ(z♦), z♦)}∪M is monotone.

Proof. Since X is flat, it follows from Proposition 2.5 that M ⊆ X×X♦ hasW-property. The inclusion follows
from Theorem 3.8.
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