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Abstract. In this paper, we introduce and investigate the weighted pseudo Drazin inverse of elements
in associative rings and Banach algebras. Some equivalent conditions for the existence of the w-pseudo
Drazin inverse of a + b are given. Using the Pierce decomposition, the representations for the w-pseudo
Drazin inverse are given in Banach algebras.

1. Introduction

Throughout this paper, R denotes an associative ring with identity 1. An involution ∗ : R → R is an
anti-isomorphism which satisfies

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗,

for all a, b ∈ R. LetJ(R) andU(R) be, respectively, the Jacobson radical and the group of units in R. Recall
that ([10, Lemma 4.1])

J(R) = {a ∈ R : 1 − ba ( or 1 − ab) is left invertible for any b ∈ R}. (1.1)

Let
√
J(R) denote the root of J(R), which is defined by√

J(R) = {a ∈ R : ak
∈ J(R) for some k ≥ 1}.

For any element a ∈ R, let comm(a) and comm2(a) be the commutant and the double commutant (or bi-
commutant) of a, which are respectively defined by

comm(a) = {x ∈ R : ax = xa},
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comm2(a) = {x ∈ R : xy = yx for all y ∈ comm(a)}.

An element a ∈ R is quasinilpotent if, for every x ∈ comm(a), 1 + xa ∈ U(R) ([7]). Let Rqnil and Rnil be the set
of all quasinilpotent elements and the set of all nilpotent elements of R respectively.

An element a ∈ R is said to be Drazin invertible if there exists b ∈ R such that

b ∈ comm(a), bab = b and akba = ak, (1.2)

for some nonnegative integer k [6]. If such b exists then it is unique and will be denoted by b = ad and
is called the Drazin inverse of a. If k = 1 in (1.2) we say that a is group invertible. The set of all Drazin
invertible elements in R will be denoted by Rd.

The concept of the Drazin inverse was firstly generalized by Koliha for bounded linear operators on
Banach spaces and for elements in Banach algebras [8] and then by Koliha and Patrı́cio [9] for elements in
a ring. Many properties of such generalized inverses can be found in, for example, [2, 3, 5, 15]. An element
a ∈ R is said to be generalized Drazin invertible if there exists b ∈ R such that

b ∈ comm2(a), b = ab2 and a − a2b ∈ Rqnil. (1.3)

If such b exists it is unique and denoted by b = a1d and called the generalized Drazin inverse of a. The set of
all generalized Drazin invertible elements in R will be denoted by R1d.

Following Wang and Chen [12], an element a ∈ R is pseudo Drazin invertible if there exists b ∈ R such that

b ∈ comm2(a), b = ab2 and ak
− ak+1b ∈ J(R), for some k ≥ 1. (1.4)

If such b exists it is unique and denoted by b = apd. The least positive integer k for which (1.4) hold is called
the pseudo Drazin index of a and denoted by i(a). The set of all pseudo Drazin invertible elements in R is
denoted by Rpd. Then Rd

⊆ R
pd
⊆ R

1d and the inclusions may be strict. If A is a Banach algebra, then we
replace the double commutator for the commutator in (1.4).

An element a in R is pseudo Drazin invertible if and only if a is pseudopolar : a is pseudopolar if there
exists e ∈ R such that

e2 = e ∈ comm2(a), a + e ∈ U(R) and ake ∈ J(R) for some k ≥ 1.

The idempotent e is unique and will be denoted au. In this case, au = 1 − aapd, [12].

For w ∈ R, let Rw be the ring R equipped with the w-product

a ? b := awb for all a, b ∈ R.

If w ∈ U(R), then 1w = w−1 is the unit of the ring Rw. For any positive integer n we write a?n = a? · · ·? a (n
factors).

Let w ∈ U(R). An element a ∈ R is said to be weighted Drazin invertible or w-Drazin invertible if a is
Drazin invertible in Rw. The w-Drazin inverse ad,w of a is defined as the Drazin inverse of a in the ring
Rw. The concept of the weighted Drazin inverse was introduced by Cline and Greville [1] for rectangular
matrices. In [4], Dajić and Koliha defined and studied the weighted generalized Drazin inverse for bounded
linear operators on Banach spaces. In a recent paper [11], Mosić and Djordjević investigated the weighted
generalized Drazin inverse for elements in a ring.

The main purpose of this paper is to introduce and to investigate the weighted pseudo Drazin inverse
of elements in a ring. In the second section we characterize the weighted pseudo Drazin inverse by means
of the weight. Section 3 is devoted to weighted pseudo Drazin invertible elements in a Banach algebra.
Using the Pierce decomposition, we give a necessary and sufficient condition for an element to be weighted
pseudo Drazin invertible.
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2. Weighted pseudo Drazin inverse in associative ring

Definition 2.1. Let w ∈ U(R). An element a ∈ R is said weighted pseudo Drazin invertible or w-pseudo Drazin
invertible if a is pseudo Drazin invertible in Rw. The w-pseudo Drazin inverse apd,w of a is defined as the pseudo
Drazin inverse of a in the ring Rw. The index iw(a) is defined as the index of the pseudo Drazin inverse of a in Rw.
The set of all weighted pseudo Drazin invertible elements R is denoted by Rpd,w.

We notice here that the Jacobson radical of Rw equals to the Jacobson radical of R.

Theorem 2.2. Let w ∈ U(R). For a ∈ R the following assertions are equivalent:

i) a ∈ J(Rw).

ii) aw ∈ J(R).

iii) wa ∈ J(R).

Proof. i) =⇒ ii): Assume that a ∈ J(Rw). Let b ∈ R and set c = bw−1. Then by (1.1), 1w − a ? c = w−1
− a ? c

is left invertible in Rw. Hence ,there exists some d ∈ Rw such that 1w = w−1 = d ? (w−1
− a ? c). Then

w−1 = d − dwawc. Thus, 1 = dw(1 − awb) and so 1 − awb is left invertible for all b ∈ R. Therefore, aw ∈ J(R)
by (1.1).

ii) =⇒ i): Suppose that aw ∈ J(R). Let b ∈ Rw and set c = bw. Then by (1.1), 1 − awc is left invertible.
Hence, there exists some d ∈ R such that 1 = d(1− awc). Thus, w−1 = d(w−1

− awcw−1) = dw−1 ? (w−1
− a? b).

Therefore, w−1
− a ? b is left invertible for all b ∈ Rw and so a ∈ J(Rw).

The equivalence i)⇐⇒ iii) goes similarly.

In the following we give the relationship between the weighted pseudo Drazin inverse of an element
and its weight.

Theorem 2.3. Let w ∈ U(R). For a ∈ R, the following assertions are equivalent:

i) a is w-pseudo Drazin invertible with w-pseudo Drazin inverse apd,w = b ∈ R.

ii) aw is pseudo Drazin invertible in R and (aw)pd = bw.

iii) wa is pseudo Drazin invertible in R with (wa)pd = wb.

Moreover, the w-pseudo Drazin inverse apd,w satisfies

apd,w = ((aw)pd)2a = a((wa)pd)2. (2.1)

Proof. i)=⇒ ii): Assume that a is w-pseudo Drazin invertible with w-pseudo Drazin inverse apd,w = b. Then

b ∈ comm2
w(a), b ? a ? b = b and a?k

− a?k+1 ? b ∈ J(Rw).

Step 1. We show that bw ∈ comm2(aw):
Let y ∈ R such that awy = yaw. Then, a ? (yw−1) = (yw−1) ? a. Hence, b ? (yw−1) = (yw−1) ? b. Thus,
bwyw−1 = yb and then bwy = ybw. Therefore, bw ∈ comm2(aw).
Step 2. We have (bw)aw(bw) = bw :
Since b ? a ? b = b, bwawb = b and so (bw)aw(bw) = bw.
Step 3. (aw)k

− (aw)k+1bw ∈ J(R): Indeed, since a?k
− a?k+1 ? b = (aw)k−1a − (aw)k+1b ∈ J(Rw), it follows

from Theorem 2.2 that ((aw)k−1a − (aw)k+1b)w = (aw)k
− (aw)k+1bw ∈ J(R).

ii) =⇒ i): Suppose that aw is pseudo Drazin invertible with pseudo Drazin inverse (aw)pd = c ∈ R. Then

c ∈ comm2(aw), c(aw)c = c and (aw)k
− (aw)k+1c ∈ J(R).

Note that c2aw = bw. Then b = c2a. Next, we prove apd,w = b.
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Step 1. b ∈ comm2
w(a):

Let y ∈ Rw such that y? a = a? y. Then, ywa = awy and so (yw)aw = ywaw = awyw. Hence, yw ∈ comm(aw)
and then ywc = cyw. Now b ? y = bwy = c2awy = c2ywa = ywc2a = ywb = y ? b. Then, b ∈ comm2

w(a).
Step 2. b ? a ? b = b:
we have b ? a ? b = bwawb = c2awawc2a = cawc2a = c2a = b.
Step 3. a?k

− a?k+1 ? b ∈ J(Rw):
Since (aw)k

− (aw)k+1c = (aw)k
− (aw)k+1c2aw = ((aw)k−1a − (aw)kawc2a)w ∈ J(R), by Theorem 2.2, (aw)k−1a −

(aw)kawc2a = a?k
− a?k+1 ? b ∈ J(Rw).

The equivalence i)⇐⇒ iii) goes similarly.
Now assume that a is w-pseudo Drazin invertible. Then, ((aw)pd)2a = apd,w from the proof of ii) =⇒ i). By

the same way, we get a((wa)pd)2 = apd,w.

Remark 2.4. From the proof of Theorem 2.3 we deduce that if a ∈ R is w-pseudo Drazin invertible, then the pseudo
Drazin indices iw(a), i(aw) and i(wa) satisfy

max{i(aw), i(wa)} ≤ iw(a) ≤ min{i(aw), i(wa)}.

Therefore, iw(a) = i(aw) = i(wa).

In following theorem ii) and iii) were presented in a Banach algebra in [13]. Here we prove that it is still
true in an associative ring.

Theorem 2.5. Let a ∈ R be pseudo Drazin invertible. Then the following are true:

i) a = apd if and only if a3 = a.

ii) (apd)pd = a2apd.

iii) apd(apd)pd = aapd.

Proof. i) Assume that a = apd. Then, a3 = a(apd)2 = apd = a. Conversely, if a3 = a, then for b = a we have
b ∈ comm2(a), bab = a and a − a2b = 0 ∈ J(R). Thus, a is pseudo Drazin inverse and apd = b = a.

ii) Since apda2apd = a2apdapd, apda2apdapd = apd and a2apdapda2apd = a2apd, we have (apd)# = a2apd. Which
implies that (apd)pd = a2apd.

iii) From ii) we have apd(apd)pd = apda2apd = aapd.

Corollary 2.6. Let a ∈ R be pseudo Drazin invertible. Then (apd)pd = a if and only if a is group invertible in R.

Proof. Since (apd)pd = a2apd, we have a = a2apd, therefore, it is easy to verify that apd is the group inverse of
a.

Theorem 2.7. Let w ∈ U(R). Assume that a ∈ R is w-pseudo Drazin invertible. Then apd,w is w- pseudo Drazin
invertible and the following are true:

i) apd,w = a if and only if a = a?3 = awawa.

ii) (apd,w)pd,w = aw(aw)pda = awa(wa)pd.

iii) apd,w ? (apd,w)pd,w = awapd,w = (aw)pda.

iv) ((apd,w)pd,w)pd,w = apd,w.

Proof. Since a is w-pseudo Drazin invertible, from Theorem 2.3, we have aw is pseudo Drazin invertible and
(aw)pd = apd,ww. Then by Theorem 2.5, we have apd,ww = (aw)pd is pseudo Drazin invertible. Therefore, apd,w

is w-pseudo Drazin invertible by Theorem 2.3.
i) Since a is w-pseudo Drazin invertible and apd,w = a, we have aw is pseudo Drazin invertible and

(aw)pd = aw by Theorem 2.3. Then From Theorem 2.5 i), we obtain (aw)pd = aw if and only if a = a∗3 = awawa.
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ii) (apd,w)pd,w = ((apd,ww)pd)2apd,w = (((aw)pd)pd)2apd,w = ((aw)2(aw)pd)2

((aw)pd)2a = aw(aw)pda. Similarly, we have (apd,w)pd,w = awa(wa)pd.
iii) apd,w ? (apd,w)pd,w = (aw)pdaw(aw)pda = (aw)pda.
iv) From ii), Theorem 2.3 and Theorem 2.5 ii), we have ((apd,w)pd,w)pd,w = (apd,ww)(apd,ww)pdapd,w =

(aw)pd((aw)pd)pdapd,w = (aw)pd(aw)2(aw)pd((aw)pd)2a = ((aw)pd)2a = apd,w.

Proposition 2.8. Let R be a ring with involution, w ∈ U(R). Then a ∈ R is w- pseudo Drazin invertible if and only
if a∗ is w∗-pseudo Drazin invertible. In this case,

(a∗)pd,w∗ = (apd,w)∗ and iw∗ (a∗) = iw(a).

Proof. By [12, Proposition 1.5 and Theorem 3.2] aw is pseudo Drazin invertible if and only if (aw)∗ = w∗a∗ is
pseudo Drazin invertible and i(aw) = i((aw)∗). The result follows from Theorem 2.3.

3. Weighted pseudo Drazin inverse in a Banach algebra

In this section, let A be a Banach algebra with unit. For an element w ∈ U(A), let Aw be the Banach
algebra equipped with the w-product a ? b = awb for all a, b ∈ A.

Lemma 3.1. [16] Let a ∈ A. Then the following assertions are equivalent:

i) a is pseudo Drazin invertible.

ii) an is pseudo Drazin invertible for any n ∈N.

iii) an is pseudo Drazin invertible for some n ∈N.

Theorem 3.2. Let w ∈ U(A), a ∈ A. If aw = wa, then the following assertions are equivalent:

i) a is w-pseudo Drazin invertible.

ii) an is wn-pseudo Drazin invertible for any n ∈N.

iii) an is wn-pseudo Drazin invertible for some n ∈N.

In this case, (an)pd,wn
= (apd,w)n.

Proof. i)=⇒ii): Since a is w-pseudo Drazin invertible, aw is pseudo Drazin invertible by Theorem 2.3. It
follows from Lemma 3.1 that (aw)n = anwn is pseudo Drazin invertible, thus, an is wn-pseudo Drazin
invertible for any n ∈N.

ii)=⇒ iii): It is clear.
iii)=⇒ i): By assumption (aw)n = anwn is pseudo Drazin invertible for some n ∈ N. Thus, aw is pseudo

Drazin invertible by Lemma 3.1. Therefore, a is w-pseudo Drazin invertible.
In this case, (an)pd,wn

= ((anwn)pd)2an = (((aw)n)pd)2an = (((aw)pd)2)nan = (((aw)pd)2a)n = (apd,w)n.

Remark 3.3. If aw , wa, then the formula (an)pd,wn
= (apd,w)n in Theorem 3.2 does not hold in general. For example,

let

a =

(
1 1
0 0

)
, w =

(
1 1
1 0

)
,

in C2×2, then aw , wa, and we can calculate that

(a2w2)pd =

(
1
3

2
9

0 0

)
, (aw)pd =

(
1
2

1
4

0 0

)
,

thus,

(a2)pd,w2
=

(
1
9

1
9

0 0

)
, (apd,w)2 =

(
1
16

1
16

0 0

)
,

therefore, (a2)pd,w2
, (apd,w)2.
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Theorem 3.4. Let w ∈ U(A). Assume that a and b ∈ A are w-pseudo Drazin invertible. If awb = bwa = 0, then
a + b is w-pseudo Drazin invertible and (a + b)pd,w = apd,w + bpd,w.

Proof. By assumption aw and bw are pseudo Drazin invertible and awbw = bwaw = 0. Then, it follows
from [13, Theorem 2.5] that aw + bw is pseudo Drazin invertible and (aw + bw)pd = (aw)pd + (bw)pd, thus,
(a + b)pd,w = apd,w + bpd,w by Theorem 2.3.

Corollary 3.5. Let w ∈ U(A). Assume that a1, a2,· · · ,an∈ A are w-pseudo Drazin invertible. If aiwa j = 0
(i, j = 1, · · · ,n, i , j), then a1 + a2 + · · · + an is w-pseudo Drazin invertible and

(a1 + a2 + · · · + an)pd,w = apd,w
1 + · · · + apd,w

n .

Lemma 3.6. [13] Let a, b ∈ A be pseudo Drazin invertible, ab = λba (λ , 0). Then

i) apdb = λ−1bapd.

ii) abpd = λ−1bpda.

iii) (ab)pd = bpdapd = λ−1apdbpd.

Theorem 3.7. Let w ∈ U(A). Assume that a and b ∈ A are w-pseudo Drazin invertible. If awb = λbwa (λ , 0),
then awb is w-pseudo Drazin invertible, and

i) apd,wwb = λ−1bwapd,w.

ii) awbpd,w = λ−1bpd,wwa.

iii) (awb)pd,w = bpd,wwapd,w = λ−1apd,wwbpd,w.

Proof. i) By assumption aw and bw are pseudo Drazin invertible and awbw = λbwaw. Then, by Lemma 3.6,
(aw)pdbw = λ−1bw(aw)pd, and thus, apd,wwb = λ−1bwapd,w.

The proof of ii) and iii) are similar to the proof of i).

Let λ = 1 in Theorem 3.7, we have following corollary.

Corollary 3.8. Let w ∈ U(A). Assume that a and b ∈ A are w-pseudo Drazin invertible. If awb = bwa, then awb
is w-pseudo Drazin invertible and

(awb)pd,w = apd,wwbpd,w.

Proposition 3.9. Let w ∈ U(A), a and b ∈ A. If awb is w-pseudo Drazin invertible, then so is bwa and

(bwa)pd,w = bw((awb)pd,ww)2a.

Proof. It follows from [12, Theorem 3.6] and Theorem 2.3.

Proposition 3.10. Let a, b ∈ A be w-pseudo Drazin invertible, w ∈ U(A). If awawb = awbwa and bwbwa = bwawb,
then awb is w-pseudo Drazin invertible, and

(awb)pd,w = apd,wwbpd,w.

Proof. It follows from [14, Theorem 2.8] and Theorem 2.3.

Proposition 3.11. Let a, b ∈ A be w-pseudo Drazin invertible, w ∈ U(A). If awawb = awbwa and bwbwa = bwawb,
then a + b is w-pseudo Drazin invertible if and only if w−1 + apd,wwb is w-pseudo Drazin invertible.

Proof. It follows from [14, Theorem 2.10] and Theorem 2.3.
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Let e, f ∈ A be idempotents. Then for any a ∈ A, we have

a = 1 · a · 1 = (e + 1 − e)a( f + 1 − f ) = ea f + ea(1 − f ) + (1 − e)a f + (1 − e)a(1 − f ).

we may write a as follows

a =

(
ea f ea(1 − f )

(1 − e)a f (1 − e)a(1 − f )

)
e, f
. (3.1)

This matrix representation of a is called the Pierce decomposition of a. The usual algebraic operations a + b
and ab inA can be interpreted as simple operations between appropriate matrices overA.

Theorem 3.12. [16] Let a ∈ A. Then a ∈ A is pseudo Drazin invertible if and only if there exists an idempotent
e ∈ A such that

a =

(
a1 0
0 a2

)
e,e

where a1 ∈ U(eAe) and a2 ∈
√
J((1 − e)A(1 − e)). In this case, the pseudo Drazin inverse of a is given by

apd =

(
a−1

1 0
0 0

)
e,e
.

Using the Pierce decomposition, we give a necessary and sufficient condition for an element in Banach
algebra to be weighted pseudo Drazin invertible.

Theorem 3.13. Let w ∈ U(A). An element a ∈ A is w-pseudo Drazin invertible if and only if there exist two
idempotents e and f such that

a =

(
a1 0
0 a2

)
e, f
, w =

(
w1 0
0 w2

)
f ,e

;

where a1w1 ∈ U(eAe), w1a1 ∈ U( fA f ), a2w2 ∈
√
J((1 − e)A(1 − e)) and w2a2 ∈

√
J((1 − f )A(1 − f )).

In this case, the w-pseudo Drazin inverse of a satisfies

apd,w =

(
a1((w1a1)−1)2 0

0 0

)
e, f

=

(
((a1w1)−1)2a1 0

0 0

)
e, f
.

Proof. ⇒) Assume that a is w-pseudo Drazin invertible. Then aw and wa are pseudo Drazin invertible
elements by Theorem 2.3. It follows from Theorem 3.12 that

aw =

(
(aw)1 0

0 (aw)2

)
e,e
, wa =

(
(wa)1 0

0 (wa)2

)
f , f
,

where e = aw(aw)pd, f = wa(wa)pd and (aw)1 ∈ U(eAe), (wa)1 ∈ U( fA f ), (aw)2 ∈
√
J((1 − e)A(1 − e)),

(wa)2 ∈
√
J((1 − f )A(1 − f )).

We have

ea = (aw)(aw)pda
= (aw)(aw)((aw)pd)2a
= (aw)(aw)a((wa)pd)2 by (2.1)
= a(wa)(wa)pd

= a f .
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Also,

we = w(aw)(aw)pd

= w(aw)(aw)((aw)pd)2

= w(aw)((aw)pd)2aw
= w(aw)a((wa)pd)2w by (2.1)
= (wa)(wa)pdw
= f w.

Then ea = a f and we = f w imply that ea(1 − f ) = (1 − e)a f = f w(1 − e) = (1 − f )we = 0.
Now the Pierce decompositions of a and w are

a =

(
ea f 0
0 (1 − e)a(1 − f )

)
e, f

=

(
a1 0
0 a2

)
e, f

and

w =

(
f we 0
0 (1 − f )w(1 − e)

)
f ,e

=

(
w1 0
0 w2

)
f ,e
.

Hence,

aw =

(
a1w1 0

0 a2w2

)
e,e
, wa =

(
w1a1 0

0 w2a2

)
f , f
,

and a1w1 = (aw)1 ∈ U(eAe), w1a1 = (wa)1 ∈ U( fA f ), a2w2 = (aw)2 ∈
√
J((1 − e)A(1 − e)), w2a2 = (wa)2 ∈√

J((1 − f )A(1 − f )).
Finally, by (2.1) the pseudo Drazin inverse of a is

apd,w = a((wa)pd)2

=

(
a1 0
0 a2

)
e, f

(
(w1a1)−1 0

0 0

)2

f , f

=

(
a1 0
0 a2

)
e, f

(
((w1a1)−1)2 0

0 0

)
f , f

=

(
a1((w1a1)−1)2 0

0 0

)
e, f
.

By the same way we get that apd,w =

(
((a1w1)−1)2a1 0

0 0

)
e, f
.

⇐) Assume that there exist two idempotents e and f such that

a =

(
a1 0
0 a2

)
e, f
, w =

(
w1 0
0 w2

)
f ,e
,

where a1w1 ∈ U(eAe), w1a1 ∈ U( fA f ), a2w2 ∈
√
J((1 − e)A(1 − e)) and w2a2 ∈

√
J((1 − f )A(1 − f )). Then

aw =

(
a1w1 0

0 a2w2

)
e,e

and a1w1 ∈ (eAe)−1, a2w2 ∈
√
J((1 − e)A(1 − e). Therefore, aw is pseudo Drazin invertible by Theorem 3.12

and so a is w-pseudo Drazin invertible by Theorem 2.3.
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