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Abstract. We give some sufficient and necessary conditions for an element in a ring with involution to be
a partial isometry by using certain equations admitting solutions in a definite set.

1. Introduction

Let R be an associative ring with 1. An involution a 7→ a∗ in R is an anti-isomorphism of degree 2 (see.,
[13]), that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

In this case R is called a ∗−ring.
An element a ∈ R is said to be Moore−Penrose invertible (or MP−invertible) [14] if there exists some b ∈ R

such that the following Penrose equations hold:

(1) aba = a, (2) bab = b, (3) ab = (ab)∗, (4) ba = (ba)∗.

There is at most one b such that the above conditions hold (see., [3, 4, 7]). We call it the Moore−Penrose
inverse (or MP−inverse) of a and denote it by a†. The set of all MP−invertible elements of R is denoted by R†.

An element a ∈ R is said to be group invertible [13] if there is some b ∈ R satisfying the following
conditions:

aba = a, bab = b, ab = ba.

There is at most one b such that the above conditions hold. We call it the group inverse of a and denote it by
a#. The set of all group invertible elements of R is denoted by R#.

An element a ∈ R#
∩ R† satisfying a# = a† is said to be EP [5]. We denote the set of all EP elements of R

by REP.
An element a ∈ R† is called a partial isometry [11] if a∗ = a†. We denote by RPI the set of all the partial

isometries of R. Partial isometries has been explored by many authors. In [1], using the representation of
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complex matrices provided in [6], O.M. Baksalary et al. investigated various classes of matrices, such as
partial isometries, EP and star-dagger elements. In [9, 11], D. Mosić and D.S. Djordjević studied partial
isometries by a purely algebraic technique, extending some already known results for complex matrices into
the setting of the rings with involution. In addition, they presented a conjecture in [9] about an equivalent
condition for a partial isometry a with a ∈ R†, which was negated by W. Chen [2] through a counter-example.

Motivated by these results, this paper is intended to provide, by using certain equations admitting
solutions in a definite set, further equivalent conditions for an element in a ring with involution to be a
partial isometry. Since there are close connections between partial isometries, EP elements and normal
elements in rings with involution [9, 11], we present also several characterizations of the latter two kinds
of elements.

2. Results

We give at first the following lemma, which follows by [9].

Lemma 2.1. Let a ∈ R#
∩ R†. If a = a2a∗, then a ∈ RPI.

Remark 2.2. The converse of Lemma 2.1 is not true. For instance, put R = M3(Z3) and, for any A ∈ R, define

A∗ = AT, where AT is the transpose of A. Thus R is a ∗-ring. Pick B =

 1 1 1
0 0 0
0 0 0

. It is easy to check that

B ∈ R#
∩ R†, B = B# = B2, and B† =

 1 0 0
1 0 0
1 0 0

 = B∗. Therefore B ∈ RPI, but B2B∗ =

 1 0 0
0 0 0
0 0 0

 , B.

Let a ∈ RPI. Then aa∗a = a for a† = a∗ and consequently we can construct an equation as follows.

x = aa∗x. (1)

Let a ∈ R#
∩ R† and write χa = {a, a#, a†, a∗, (a#)∗, (a†)∗}. Then we have the following theorem.

Theorem 2.3. Let a ∈ R#
∩ R†. Then a ∈ RPI if and only if equation (1) has at least one solution in χa.

Proof. ⇒ It is evident that x = a is a solution of equation (1) in χa.
⇐ (1) If x = a# is a solution of equation (1), then a# = aa∗a#, and so that a ∈ RPI in terms of [11, Theorem

2.1 (V)].
(2) If x = a is a solution of equation (1), then a = aa∗a, which implies that a ∈ RPI.
(3) If x = a† is a solution of equation (1), then a† = aa∗a†, which gives a ∈ RPI by [9].
(4) If x = a∗ is a solution of equation (1), then a∗ = aa∗a∗. Applying the involution, we arrive at the result

that a = a2a∗. It is known by Lemma 2.1 that a ∈ RPI.
(5) If x = (a#)∗ is a solution of equation (1), then (a#)∗ = aa∗(a#)∗. Using the involution, we obtain a# = a#aa∗,

which yields a = a2a# = a2a∗. By Lemma 2.1, a ∈ RPI.
(6) If x = (a†)∗ is a solution of equation (1), then (a†)∗ = aa∗(a†)∗ = aa†a = a, from which the result a ∈ RPI

follows.

By the proof of Theorem 2.3, we have the following corollary.

Corollary 2.4. Let a ∈ R#
∩ R†. Then the following conditions are equivalent:

(1) a ∈ RPI;
(2) a†a† = a∗a†;
(3) a†a† = a†a∗;
(4) a#(a†)∗ = a#a;
(5) (a†)∗a# = aa#.
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Remark 2.2 illustrates that if a ∈ RPI, we can not deduce that the equation (1) has solutions in {a†, a∗, (a#)∗}.
Equation (1) yields by symmetricity the following equation.

x = xa∗a. (2)

Theorem 2.5. Let a ∈ R#
∩ R†. Then a ∈ RPI if and only if equation (2) has at least one solution in χa.

It is immediate that a ∈ RPI if and only if a∗ ∈ RPI, and it is not difficult to check that χa = χa∗ . Applying
the involution, we get the following equation.

x = xaa∗. (3)

Theorem 2.6. Let a ∈ R#
∩ R†. Then a ∈ RPI if and only if equation (3) has at least one solution in χa.

Let a ∈ R#
∩ R†. We call a a strongly partial isometry element of R if a# = a∗ = a†. The set of all strongly

partial isometry elements of R is denoted by RSEP. Certainly, RSEP = REP
∩ RPI.

The following result follows by [9].

Lemma 2.7. Let a ∈ R#
∩ R†. If a† = aa†a∗, then a ∈ REP.

Change equation (1) into the following one.

x = axa∗. (4)

Theorem 2.8. Let a ∈ R#
∩ R†. Then a ∈ RSEP if and only if equation (4) has at least one solution in χa.

Proof. ⇒ By a ∈ RSEP, we conclude a2a∗ = a2a# = a, which shows that x = a is a solution of equation (4).
⇐ (1) If x = a is a solution of equation (4), then a = a2a∗, giving a ∈ RSEP by [9].
(2) If x = a# is a solution of equation (4), then a# = aa#a∗. Multiplying this equality on the left by a2, we

arrive at the result that a = a2a∗. According to (1), we have that a ∈ RSEP.
(3) If x = a† is a solution of equation (4), then a† = aa†a∗. It follows from Lemma 2.7 and Corollary 2.4

that a ∈ RSEP.
(4) If x = a∗ is a solution of equation (4), then a∗ = aa∗a∗. Applying the involution, we must get a = a2a∗,

yielding a ∈ RSEP by (1).
(5) If x = (a#)∗ is a solution of equation (4), then (a#)∗ = a(a#)∗a∗. Using the involution, we obtain a# = aa#a∗.

By (2), we know a ∈ RSEP.
(6) If x = (a†)∗ is a solution of equation (4), then (a†)∗ = a(a†)∗a∗. Applying the involution, we infer that

a† = aa†a∗, forcing from (3) that a ∈ RSEP.

Replacing a∗ in equation (3) by a†, we get the following equation.

x = xaa†, (5)

which together with equation (4) yields the following equation.

xaa† = axa∗. (6)

Theorem 2.9. Let a ∈ R#
∩ R†. Then a ∈ RPI if and only if equation (6) has at least one solution in χa.
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Proof. ⇒ Obviously x = a is a solution of equation (6).
⇐ (1) If x = a is a solution of equation (6), then a2a† = a2a∗. It follows that a ∈ RPI by [11, Theorem 2.1 (i)].
(2) If x = a# is a solution of equation (6), then a#aa† = aa#a∗. Multiplying this equality on the left by a2,

we deduce a2a† = a2a∗. According to (1), we see that a ∈ RPI.
(3) If x = a† is a solution of equation (6), then a† = a†aa† = aa†a∗, meaning a†a† = a†a∗. It follows from

Corollary 2.4 that a ∈ RPI.
(4) If x = a∗ is a solution of equation (6), then a∗ = a∗aa† = aa∗a∗. Using the involution, we conclude then

that a = a2a∗, yielding a ∈ RPI by Lemma 2.1.
(5) If x = (a#)∗ is a solution of equation (6), then (a#)∗aa† = a(a#)∗a∗. Using the involution, we arrive at the

result that a# = aa†a# = aa#a∗. Thus

a#(a†)∗ = aa#a∗(a†)∗ = a#aa†a = a#a,

which implies from Corollary 2.4 that a ∈ RPI.
(6) If x = (a†)∗ is a solution of equation (6), then (a†)∗aa† = a(a†)∗a∗. Using the involution, we obtain that

aa†a† = aa†a∗, and furthermore
a†a† = a†(aa†a†) = a†(aa†a∗) = a†a∗.

So it is the case that a ∈ RPI.

Applying the involution on equation (6), we obtain the following equation.

aa†x = axa∗, (7)

which gives the following theorem.

Theorem 2.10. Let a ∈ R#
∩ R†. Then a ∈ RPI if and only if equation (7) has at least one solution in χa.

Combining equations (6) and (7), we get the following equation.

aa†x = xaa†. (8)

Theorem 2.11. Let a ∈ R#
∩ R†. Then a ∈ REP if and only if equation (8) has at least one solution in χa.

Proof. ⇒ Since a ∈ REP, we have a2a† = a2a# = a = aa†a. Therefore x = a is a solution of equation (8).
⇐ (1) If x = a is a solution of equation (8), then a = aa†a = a2a†, which implies a ∈ REP by [12].
(2) If x = a# is a solution of equation (8), then aa†a# = a#aa†. That is, a# = a#aa†, stating that a ∈ REP.
(3) If x = a† is a solution of equation (8), then aa†a† = a†aa† = a†. So, a†a = aa†a†a and a†a = (a†a)∗ = a†a2a†.

Accordingly a = aa†a = a(a†a2a†) = a2a†, which indicates a ∈ REP by (1).
(4) If x = a∗ is a solution of equation (8), then aa†a∗ = a∗aa† = a∗. It may be concluded that a = a2a†,

proving a ∈ REP by (1).
(5) If x = (a#)∗ is a solution of equation (8), then aa†(a#)∗ = (a#)∗aa†. Applying the involution, we get

a#aa† = aa†a# = a#. Hence a ∈ REP according to (2).
(6) If x = (a†)∗ is a solution of equation (8), then aa†(a†)∗ = (a†)∗aa†. Using the involution, we infer that

a† = a†aa† = aa†a†, so that a ∈ REP by (3).

Corollary 2.12. Let a ∈ R#
∩ R†. Then the following conditions are equivalent:

(1) a ∈ REP;
(2) a = a2a†;
(3) a = a†a2;
(4) a† = aa†a†;
(5) a† = a†a†a;
(6) a# = a#aa†;
(7) a# = a†aa#.
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We remark that the (2) and (3) of the above corollary appeared in [12], and the (6) of that appeared in
[13].

Replacing a† in equation (8) by a∗, we obtain an equation as follows.

aa∗x = xaa∗, (9)

Theorem 2.13. Let a ∈ R#
∩R†. Then a is a normal element if and only if equation (9) has at least one solution in χa.

Proof. ⇒ Let a be a normal element. Then aa∗ = a∗a and evidently x = a is a solution of equation (9).
⇐ (1) If x = a is a solution of equation (9), then aa∗a = a2a∗, which implies by [10] that a is normal.
(2) and (3) follow also from [10].
(4) If x = a∗ is a solution of equation (9), then aa∗a∗ = a∗aa∗. Applying involution on it, the rest follows by

(1).
(5) If x = (a#)∗ is a solution of equation (9), then aa∗(a#)∗ = (a#)∗aa∗. Multiplying this equality on the right

by (a†)∗, we deduce a(a†a#a)∗ = (a#)∗a. Using the involution, we conclude a†a#aa∗ = a∗a#. Multiplying this
equality on the left by a, we arrive at aa#a∗ = aa∗a#. By (2), we know that a is normal.

(6) If x = (a†)∗ is a solution of equation (9), then aa∗(a†)∗ = (a†)∗aa∗. Applying the involution, we have that
a†aa∗ = aa∗a†, i.e., a∗ = aa∗a†, which gives that a is normal by (3).
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