Filomat 33:19 (2019), 6395–6399 https://doi.org/10.2298/FIL1919395Q

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Characterizations of Partial Isometry Elements in Rings with Involutions

Yinchun Qu^{a,b}, Hua Yao^{a,c}, Junchao Wei^a

^a School of Mathematics, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China ^b Wuxi Institute of Technology, Wuxi, Jiangsu 214073, P. R. China ^c School of Mathematics and Statistics, Huanghuai University, Zhumadian, Henan 463000, P. R. China

Abstract. We give some sufficient and necessary conditions for an element in a ring with involution to be a partial isometry by using certain equations admitting solutions in a definite set.

1. Introduction

Let *R* be an associative ring with 1. An *involution* $a \mapsto a^*$ in *R* is an anti-isomorphism of degree 2 (see., [13]), that is,

$$(a^*)^* = a, \ (a+b)^* = a^* + b^*, \ (ab)^* = b^*a^*.$$

In this case *R* is called a *–*ring*.

An element $a \in R$ is said to be *Moore–Penrose invertible* (or *MP–invertible*) [14] if there exists some $b \in R$ such that the following Penrose equations hold:

(1)
$$aba = a$$
, (2) $bab = b$, (3) $ab = (ab)^*$, (4) $ba = (ba)^*$.

There is at most one *b* such that the above conditions hold (see., [3, 4, 7]). We call it the *Moore–Penrose inverse* (or *MP–inverse*) of *a* and denote it by a^{\dagger} . The set of all MP–invertible elements of *R* is denoted by R^{\dagger} .

An element $a \in R$ is said to be *group invertible* [13] if there is some $b \in R$ satisfying the following conditions:

$$aba = a$$
, $bab = b$, $ab = ba$.

There is at most one *b* such that the above conditions hold. We call it the *group inverse* of *a* and denote it by $a^{\#}$. The set of all group invertible elements of *R* is denoted by $R^{\#}$.

An element $a \in R^{\#} \cap R^{\dagger}$ satisfying $a^{\#} = a^{\dagger}$ is said to be EP [5]. We denote the set of all EP elements of R by R^{EP} .

An element $a \in R^{\dagger}$ is called a *partial isometry* [11] if $a^* = a^{\dagger}$. We denote by R^{PI} the set of all the partial isometries of *R*. Partial isometries has been explored by many authors. In [1], using the representation of

²⁰¹⁰ Mathematics Subject Classification. 15A09; 16U99; 16W10

Keywords. partial isometry, EP element, solutions of equation.

Received: 19 July 2019; Accepted: 25 December 2019

Communicated by Dijana Mosić

Research supported by the National Natural Science Foundation of China (No. 11871063)

Email addresses: quyc@wxit.edu.cn (Yinchun Qu), dalarston@126.com (Hua Yao), jcweiyz@126.com (Junchao Wei)

complex matrices provided in [6], O.M. Baksalary et al. investigated various classes of matrices, such as partial isometries, EP and star-dagger elements. In [9, 11], D. Mosić and D.S. Djordjević studied partial isometries by a purely algebraic technique, extending some already known results for complex matrices into the setting of the rings with involution. In addition, they presented a conjecture in [9] about an equivalent condition for a partial isometry *a* with $a \in R^{\dagger}$, which was negated by W. Chen [2] through a counter-example.

Motivated by these results, this paper is intended to provide, by using certain equations admitting solutions in a definite set, further equivalent conditions for an element in a ring with involution to be a partial isometry. Since there are close connections between partial isometries, EP elements and normal elements in rings with involution [9, 11], we present also several characterizations of the latter two kinds of elements.

2. Results

We give at first the following lemma, which follows by [9].

Lemma 2.1. Let $a \in R^{\#} \cap R^{\dagger}$. If $a = a^2a^*$, then $a \in R^{PI}$.

Remark 2.2. The converse of Lemma 2.1 is not true. For instance, put $R = M_3(\mathbb{Z}_3)$ and, for any $A \in R$, define $A^* = A^T$, where A^T is the transpose of A. Thus R is a *-ring. Pick $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. It is easy to check that $B \in R^{\#} \cap R^+$, $B = B^{\#} = B^2$, and $B^+ = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = B^*$. Therefore $B \in R^{PI}$, but $B^2B^* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq B$.

Let $a \in R^{PI}$. Then $aa^*a = a$ for $a^\dagger = a^*$ and consequently we can construct an equation as follows.

$$x = aa^*x. (1)$$

Let $a \in R^{\#} \cap R^{\dagger}$ and write $\chi_a = \{a, a^{\#}, a^{\dagger}, a^{*}, (a^{\#})^{*}, (a^{\dagger})^{*}\}$. Then we have the following theorem.

Theorem 2.3. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{PI}$ if and only if equation (1) has at least one solution in χ_a .

Proof. \Rightarrow It is evident that x = a is a solution of equation (1) in χ_a .

 \leftarrow (1) If $x = a^{\#}$ is a solution of equation (1), then $a^{\#} = aa^*a^{\#}$, and so that $a \in R^{PI}$ in terms of [11, Theorem 2.1 (V)].

(2) If x = a is a solution of equation (1), then $a = aa^*a$, which implies that $a \in \mathbb{R}^{\mathbb{P}I}$.

(3) If $x = a^{\dagger}$ is a solution of equation (1), then $a^{\dagger} = aa^{*}a^{\dagger}$, which gives $a \in \mathbb{R}^{PI}$ by [9].

(4) If $x = a^*$ is a solution of equation (1), then $a^* = aa^*a^*$. Applying the involution, we arrive at the result that $a = a^2a^*$. It is known by Lemma 2.1 that $a \in R^{PI}$.

(5) If $x = (a^{\#})^*$ is a solution of equation (1), then $(a^{\#})^* = aa^*(a^{\#})^*$. Using the involution, we obtain $a^{\#} = a^{\#}aa^*$, which yields $a = a^2a^{\#} = a^2a^*$. By Lemma 2.1, $a \in \mathbb{R}^{PI}$.

(6) If $x = (a^{\dagger})^*$ is a solution of equation (1), then $(a^{\dagger})^* = aa^*(a^{\dagger})^* = aa^{\dagger}a = a$, from which the result $a \in R^{PI}$ follows. \Box

By the proof of Theorem 2.3, we have the following corollary.

Corollary 2.4. Let $a \in \mathbb{R}^{\#} \cap \mathbb{R}^{\dagger}$. Then the following conditions are equivalent:

 $\begin{array}{l} (1) \ a \in R^{PI}; \\ (2) \ a^{\dagger}a^{\dagger} = a^{\ast}a^{\dagger}; \\ (3) \ a^{\dagger}a^{\dagger} = a^{\dagger}a^{\ast}; \\ (4) \ a^{\#}(a^{\dagger})^{\ast} = a^{\#}a; \\ (5) \ (a^{\dagger})^{\ast}a^{\#} = aa^{\#}. \end{array}$

(4)

Remark 2.2 illustrates that if $a \in R^{Pl}$, we can not deduce that the equation (1) has solutions in $\{a^{\dagger}, a^{*}, (a^{\#})^{*}\}$. Equation (1) yields by symmetricity the following equation.

$$x = xa^*a.$$

Theorem 2.5. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{PI}$ if and only if equation (2) has at least one solution in χ_a .

It is immediate that $a \in R^{PI}$ if and only if $a^* \in R^{PI}$, and it is not difficult to check that $\chi_a = \chi_{a^*}$. Applying the involution, we get the following equation.

$$x = xaa^*.$$

Theorem 2.6. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{PI}$ if and only if equation (3) has at least one solution in χ_a .

Let $a \in R^{\#} \cap R^{\dagger}$. We call *a* a strongly partial isometry element of *R* if $a^{\#} = a^{*} = a^{\dagger}$. The set of all strongly partial isometry elements of *R* is denoted by R^{SEP} . Certainly, $R^{SEP} = R^{EP} \cap R^{PI}$. The following result follows by [9].

Lemma 2.7. Let $a \in R^{\#} \cap R^{\dagger}$. If $a^{\dagger} = aa^{\dagger}a^{*}$, then $a \in R^{EP}$.

Change equation (1) into the following one.

$$x = axa^*$$
.

Theorem 2.8. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{SEP}$ if and only if equation (4) has at least one solution in χ_a .

Proof. ⇒ By $a \in R^{SEP}$, we conclude $a^2a^* = a^2a^\# = a$, which shows that x = a is a solution of equation (4). $\Leftarrow (1)$ If x = a is a solution of equation (4), then $a = a^2a^*$, giving $a \in R^{SEP}$ by [9].

(2) If $x = a^{\#}$ is a solution of equation (4), then $a^{\#} = aa^{\#}a^{*}$. Multiplying this equality on the left by a^{2} , we arrive at the result that $a = a^{2}a^{*}$. According to (1), we have that $a \in R^{SEP}$.

(3) If $x = a^{\dagger}$ is a solution of equation (4), then $a^{\dagger} = aa^{\dagger}a^{*}$. It follows from Lemma 2.7 and Corollary 2.4 that $a \in R^{SEP}$.

(4) If $x = a^*$ is a solution of equation (4), then $a^* = aa^*a^*$. Applying the involution, we must get $a = a^2a^*$, yielding $a \in R^{SEP}$ by (1).

(5) If $x = (a^{\#})^*$ is a solution of equation (4), then $(a^{\#})^* = a(a^{\#})^*a^*$. Using the involution, we obtain $a^{\#} = aa^{\#}a^*$. By (2), we know $a \in \mathbb{R}^{SEP}$.

(6) If $x = (a^{\dagger})^*$ is a solution of equation (4), then $(a^{\dagger})^* = a(a^{\dagger})^*a^*$. Applying the involution, we infer that $a^{\dagger} = aa^{\dagger}a^*$, forcing from (3) that $a \in R^{SEP}$.

Replacing a^* in equation (3) by a^{\dagger} , we get the following equation.

$$x = xaa^{\dagger}, \tag{5}$$

which together with equation (4) yields the following equation.

$$xaa^{\dagger} = axa^{*}.$$

Theorem 2.9. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{PI}$ if and only if equation (6) has at least one solution in χ_a .

Proof. \Rightarrow Obviously x = a is a solution of equation (6).

 \leftarrow (1) If x = a is a solution of equation (6), then $a^2a^{\dagger} = a^2a^*$. It follows that $a \in R^{PI}$ by [11, Theorem 2.1 (i)]. (2) If $x = a^{\#}$ is a solution of equation (6), then $a^{\#}aa^{\dagger} = aa^{\#}a^*$. Multiplying this equality on the left by a^2 , we deduce $a^2a^{\dagger} = a^2a^*$. According to (1), we see that $a \in R^{PI}$.

(3) If $x = a^{\dagger}$ is a solution of equation (6), then $a^{\dagger} = a^{\dagger}aa^{\dagger} = aa^{\dagger}a^{*}$, meaning $a^{\dagger}a^{\dagger} = a^{\dagger}a^{*}$. It follows from Corollary 2.4 that $a \in R^{PI}$.

(4) If $x = a^*$ is a solution of equation (6), then $a^* = a^*aa^\dagger = aa^*a^*$. Using the involution, we conclude then that $a = a^2a^*$, yielding $a \in R^{PI}$ by Lemma 2.1.

(5) If $x = (a^{\#})^*$ is a solution of equation (6), then $(a^{\#})^*aa^{\dagger} = a(a^{\#})^*a^*$. Using the involution, we arrive at the result that $a^{\#} = aa^{\dagger}a^{\#} = aa^{\#}a^*$. Thus

$$a^{\#}(a^{\dagger})^{*} = aa^{\#}a^{*}(a^{\dagger})^{*} = a^{\#}aa^{\dagger}a = a^{\#}aa^{\dagger}a$$

which implies from Corollary 2.4 that $a \in R^{PI}$.

(6) If $x = (a^{\dagger})^*$ is a solution of equation (6), then $(a^{\dagger})^*aa^{\dagger} = a(a^{\dagger})^*a^*$. Using the involution, we obtain that $aa^{\dagger}a^{\dagger} = aa^{\dagger}a^*$, and furthermore

$$a^{\dagger}a^{\dagger} = a^{\dagger}(aa^{\dagger}a^{\dagger}) = a^{\dagger}(aa^{\dagger}a^{*}) = a^{\dagger}a^{*}$$

So it is the case that $a \in R^{PI}$. \Box

Applying the involution on equation (6), we obtain the following equation.

$$aa^{\dagger}x = axa^{*},$$

which gives the following theorem.

Theorem 2.10. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{PI}$ if and only if equation (7) has at least one solution in χ_a .

Combining equations (6) and (7), we get the following equation.

$$aa^{\dagger}x = xaa^{\dagger}.$$
(8)

Theorem 2.11. Let $a \in R^{\#} \cap R^{\dagger}$. Then $a \in R^{EP}$ if and only if equation (8) has at least one solution in χ_a .

Proof. \Rightarrow Since $a \in R^{EP}$, we have $a^2a^{\dagger} = a^2a^{\#} = a = aa^{\dagger}a$. Therefore x = a is a solution of equation (8).

 \Leftarrow (1) If x = a is a solution of equation (8), then $a = aa^{\dagger}a = a^{2}a^{\dagger}$, which implies $a \in R^{EP}$ by [12].

(2) If $x = a^{\#}$ is a solution of equation (8), then $aa^{\dagger}a^{\#} = a^{\#}aa^{\dagger}$. That is, $a^{\#} = a^{\#}aa^{\dagger}$, stating that $a \in R^{EP}$.

(3) If $x = a^{\dagger}$ is a solution of equation (8), then $aa^{\dagger}a^{\dagger} = a^{\dagger}aa^{\dagger} = a^{\dagger}$. So, $a^{\dagger}a = aa^{\dagger}a^{\dagger}a$ and $a^{\dagger}a = (a^{\dagger}a)^* = a^{\dagger}a^2a^{\dagger}$. Accordingly $a = aa^{\dagger}a = a(a^{\dagger}a^2a^{\dagger}) = a^2a^{\dagger}$, which indicates $a \in R^{EP}$ by (1).

(4) If $x = a^*$ is a solution of equation (8), then $aa^{\dagger}a^* = a^*aa^{\dagger} = a^*$. It may be concluded that $a = a^2a^{\dagger}$, proving $a \in R^{EP}$ by (1).

(5) If $x = (a^{\#})^*$ is a solution of equation (8), then $aa^{\dagger}(a^{\#})^* = (a^{\#})^*aa^{\dagger}$. Applying the involution, we get $a^{\#}aa^{\dagger} = aa^{\dagger}a^{\#} = a^{\#}$. Hence $a \in R^{EP}$ according to (2).

(6) If $x = (a^{\dagger})^*$ is a solution of equation (8), then $aa^{\dagger}(a^{\dagger})^* = (a^{\dagger})^*aa^{\dagger}$. Using the involution, we infer that $a^{\dagger} = a^{\dagger}aa^{\dagger} = aa^{\dagger}a^{\dagger}$, so that $a \in R^{EP}$ by (3). \Box

Corollary 2.12. Let $a \in R^{\#} \cap R^{\dagger}$. Then the following conditions are equivalent:

(1) $a \in \mathbb{R}^{EP}$; (2) $a = a^2 a^{\dagger}$; (3) $a = a^{\dagger} a^2$; (4) $a^{\dagger} = aa^{\dagger} a^{\dagger}$; (5) $a^{\dagger} = a^{\dagger} a^{\dagger} a;$ (6) $a^{\#} = a^{\#} aa^{\#}$; (7) $a^{\#} = a^{\dagger} aa^{\#}$. (7)

We remark that the (2) and (3) of the above corollary appeared in [12], and the (6) of that appeared in [13].

Replacing a^{\dagger} in equation (8) by a^{*} , we obtain an equation as follows.

$$aa^*x = xaa^*$$
,

Theorem 2.13. Let $a \in R^{\#} \cap R^{\dagger}$. Then a is a normal element if and only if equation (9) has at least one solution in χ_a .

Proof. \Rightarrow Let *a* be a normal element. Then $aa^* = a^*a$ and evidently x = a is a solution of equation (9).

 \Leftarrow (1) If x = a is a solution of equation (9), then $aa^*a = a^2a^*$, which implies by [10] that *a* is normal. (2) and (3) follow also from [10].

(4) If $x = a^*$ is a solution of equation (9), then $aa^*a^* = a^*aa^*$. Applying involution on it, the rest follows by (1).

(5) If $x = (a^{\#})^*$ is a solution of equation (9), then $aa^*(a^{\#})^* = (a^{\#})^*aa^*$. Multiplying this equality on the right by $(a^{\dagger})^*$, we deduce $a(a^{\dagger}a^{\#}a)^* = (a^{\#})^*a$. Using the involution, we conclude $a^{\dagger}a^{\#}aa^* = a^*a^{\#}$. Multiplying this equality on the left by a, we arrive at $aa^{\#}a^* = aa^*a^{\#}$. By (2), we know that a is normal.

(6) If $x = (a^{\dagger})^*$ is a solution of equation (9), then $aa^*(a^{\dagger})^* = (a^{\dagger})^*aa^*$. Applying the involution, we have that $a^{\dagger}aa^* = aa^*a^{\dagger}$, i.e., $a^* = aa^*a^{\dagger}$, which gives that *a* is normal by (3). \Box

References

- O. M. Baksalary, G. P. H. Styan, G. Trenkler, On a matrix decomposition of Hartwig and Spindelböck, Linear Algebra Appl. 430 (10) (2009) 2798-2812.
- [2] W. Chen, On EP elements, normal elements and partial isometries in rings with involution, Electron. J. Linear Algebra 23 (1) (2012) 553-561.
- J.J. Koliha, D. Djordjević, D. Cvetković, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426 (2-3) (2007) 371-381.
- [4] R. E. Harte, M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992) 71-77.
- [5] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal. 61 (3) (1976) 197-251.
- [6] R. E. Hartwig, K. Spindelböck, Matrices for which A^* and A^+ commute, Linear Multilinear Algebra 14 (1984) 241-256.
- [7] J. J. Koliha, The Drazin and Moore-Penrose inverse in C*-algebras, Math. Proc. Royal Irish Acad. 99A (1999) 17-27.
- [8] J. J. Koliha, P. Patrício, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (1) (2002) 137-152.
- [9] D. Mosić, D. S. Djordjević, Partial isometries and EP elements in rings with involution, Electron. J. Linear Algebra 18 (2009) 761-772.
- [10] D. Mosić, D. S. Djordjević, Moore-Penrose-invertible normal and Hermitian elements in rings, Linear Algebra Appl. 431 (5-7) (2009) 732-745.
- [11] D. Mosić, D. S. Djordjević, Further results on partial isometries and EP elements in rings with involution, Math. Comput. Modelling 54 (1) (2011) 460-465.
- [12] D. Mosić, D.S. Djordjević, New characterizations of EP, generalized normal and generalized Hermitian elements in rings, Appl. Math. Comput. 218 (12) (2012) 6702-6710.
- [13] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings. Linear Algebra Appl. 431 (2009) 527-535.
- [14] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955) 406-413.

(9)