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Abstract. We study Schrödinger perturbations series of integral kernels on space-time assuming concavity
of the majorant of the first nontrivial term of the series. We give explicit estimates of the perturbation series
in terms of the original kernel and the majorant.

1. Introduction

Schrödinger perturbation consists in adding to a given operator, say the Laplacian ∆, an operator of
multiplication by a function, say q. Estimates of the Green function and the heat kernel of Schrödinger
operators ∆ + q were widely studied, for example in [10, 11, 19, 20]. Local integral smallness of the function
q, formulated by Kato-type conditions [10, 20], played an important role in these considerations. Similar
Schrödinger-type operators based on the fractional Laplacian ∆α/2 were studied in [1, 2, 8] (see also [9]),
with focus on comparability of the resulting Green functions. The heat kernel estimates for ∆α/2 + q, in fact
Schrödinger-type perturbations of general transition densities were then studied in [3] under the following
integral condition on q,

t∫
s

∫
X

p(s, x,u, z)|q(u, z)|p(u, z, t, y)dzdu ≤ [η + γ(t − s)]p(s, x, t, y).

Here p is a finite positive jointly measurable transition density, γ and η are fixed nonnegative numbers,
while times s < t and states x, y are arbitrary. Given the above assumption, the following explicit estimate
was obtained in [3] when η < 1,

p̃(s, x, t, y) ≤
1

1 − η
exp

(
γ

1 − η
(t − s)

)
p(s, x, t, y).

Here p̃ is the Schrödinger perturbation series defined by p and q (see e.g. [6]).
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Inspired by [3], combinatorial arguments based on Stirling numbers were used in [16] to refine the
above result of [3] by (a) skipping the Chapman-Kolmogorov condition on p, (b) relaxing the assumptions
on q, and (c) strengthening the estimate. Namely, if 0 < η < 1 and Q ≥ 0 is superadditive, then the relative
boundness condition

t∫
s

∫
X

p(s, x,u, z)q(u, z)p(u, z, t, y)dzdu ≤ [η + Q(s, t)]p(s, x, t, y), (1)

implies the following main estimate of [16]:

p̃(s, x, t, y) ≤
(

1
1 − η

)1+Q(s,t)/η

p(s, x, t, y) (2)

Meanwhile, a more straightforward method was proposed in [17] for gradient perturbations of the transition
density of ∆α/2. It was also suggested in [17, p. 321] that the technique may also be applied to Schrödinger
perturbations to reproduce the main results of [16]. In [6], this observation is developed in considerable gen-
erality: the authors estimate Schrödinger-type perturbations of Markovian semigroups, potential kernels,
and general forward integral kernels on space-time by rather singular functions q. Forward kernels reflect
directionality, or transience of time, and their perturbation series have a distinctly exponential flavor. We
obtain local in time and global in space comparability of the original and perturbed kernels under suitable
smallness conditions on the first non-trivial term of the perturbation series.

Our reasoning in this paper is motivated by recent estimates of Schrödinger perturbations of integral
kernels in [4, 6]. The estimates reflect interdependencies of multiple integrations on time symplexes of
different dimensions in the perturbations series, but the multiple integrations do not explicitely show in
the arguments. In this paper we reexamine the integrations in the case of concave majorization. Our new
approach works, e.g., for Q(s, t) = (t − s)β+ with 0 < β < 1 in (1), and leads to better exponents in estimates
of the resulting perturbation series. Here is a typical result (see Section 2 for definitions).

Theorem 1.1. Let q ≥ 0 be a measurable function on space-time E = R × X, K be a forward kernel on E and
Kn = (Kq)nK, n = 0, 1, . . .. Let β ∈ (0, 1). If (3) below holds for n = 1 then it holds for all n = 1, 2, . . .,

Kn(s, x, dtdy) ≤ Kn−1(s, x, dtdy)
[
η +

(µ(t − s))β

nβ

]
, (s, x) ∈ E. (3)

If η = 0 and µ > 0, then there exists C = C(β) such that for all (s, x) ∈ E,

K̃(s, x, dtdy) ≤ C max {1, µ(t − s)}
1−β

2 exp (µβ(t − s)) K(s, x, dtdy). (4)

If, furthermore, 0 ≤ η < 1 and µ = 1, then for all (s, x) ∈ E, we have

∞∑
n=0

Kn(s, x, dtdy) ≤ K(s, x, dtdy)× (5)

×

(
1 +

8((t − s) + 1)
(2β − 1)(1 − η)1/β

· exp
[
(t − s)β(1 − η)1− 1

β

∫ 1

0

dr
η(rβ − 1) + 1

])
.

The paper is composed as follows. The main theorem is formulated above. Section 2 discusses the
definitions and main assumptions. In Section 3 we give the estimates of the terms of the perturbations
series. In Section 4 we prove Theorem 1.1 and give some examples.
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2. Preliminaries

We recall basic properties of integral kernels [12].

Definition 2.1. Let (E,E) be a measurable space. A kernel on E is a map K from E × E to [0,∞] with the following
properties:

1. x 7→ K(x,A) is E-measurable for all A ∈ E,
2. A 7→ K(x,A) is countably additive for all x ∈ E.

Consider kernels K and q on E. The map from (E × E) to [0,∞] given by

(x,A) 7→
∫
E

K(x, dy)q(y,A)

is another kernel on E, called the composition of K and q, and denoted Kq. Here and below we alternatively
write

∫
f (x)µ(dx) =

∫
µ(dx) f (x). We let

Kn = (Kq)nK, n = 0, 1, . . . .

The composition of kernels is associative [12], which yields the next lemma.

Lemma 2.2. Kn = Kn−1−mqKm for all n ∈N and m = 0, 1, . . . ,n − 1.

We define the perturbation K̃, of K by q, via the perturbation series,

K̃ =

∞∑
n=0

Kn =

∞∑
n=0

(Kq)nK.

Of course, K ≤ K̃, and the following perturbation formula holds,

K̃ = K + K̃qK.

We write q ∈ E+ if q : E→ [0,∞] is E-measurable. Function q defines the multiplication kernel,

q(x,A) = q(x)1A(x),

where 1A is the indicator function of A. Below we always interpret Kq and Kn = (Kq)nK as composition of
kernels. K̃ is called Schrödinger perturbation of K, if q(x,A) = q(x)1A(x), i.e. q is a multiplication.

Consider a set X (the state space) with σ-algebraM of subsets of X, the real line R (the time) equipped
with the Borel sets BR, and the space-time

E := R × X,

with the product σ-algebra E = BR × M. Let q ∈ E+ be a function, to wit, a multiplication kernel. Let
η ∈ [0,∞), and let K be a forward kernel on E, that is for A ∈ E, s ∈ R, x ∈ X, we assume

K(s, x,A) = 0 for A ⊆ (−∞, s] × X.

In the language of [4], the sets (s,∞) × X are absorbing for K.
It may be useful to realize that forward kernels may be localized in time as follows. For r < t we consider

the strip S = (r, t] × X, and the restriction of K to S, i.e. K(s, x,A) for (s, x) ∈ S and A ⊂ S. We note that the
restriction of Kq to S depends only on the restrictions of K and q to S. In fact we can consider E = (r, t] × X
as in the setting of Definition 2.1.

Let Q : R ×R→ [0,∞) and η ∈ [0,∞). We assume

KqK(s, x,A) ≤
∫
A

K(s, x, dtdy)
[
η + Q(s, t)

]
, (s, x) ∈ E,A ∈ E. (6)

In short KqK(s, x, dtdy) ≤ K(s, x, dtdy)
[
η + Q(s, t)

]
, thus η + Q(s, t) serves as majorant of the Radon-Nikodym

derivative of KqK with respect to K. Below we shall often assume some concavity properties of Q.
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3. Iterated suprema

By the principle of iterated supremum:

sup
x1, ..., xn

f (x1, . . . , xn) = sup
x1

. . . sup
xn

f (x1, . . . , xn),

we obtain

sup
s≤u1≤...≤un≤t

[Q(s,u1) + . . . + Q(un, t)] (7)

= sup
s≤un≤t

[
sup

s≤u1≤...≤un−1≤un

[Q(s,u1) + . . . + Q(un−1,un)] + Q(un, t)
]
.

Here is the main result of this section.

Theorem 3.1. If (6) holds, then for n ≥ 1, we have

Kn(s, x, dtdy) (8)

≤ Kn−1(s, x, dtdy)
[
η +

1
n

sup
s≤u1≤...≤un−1≤t

[Q(s,u1) + . . . + Q(un−1, t)]
]
.

Proof. For n = 1, (8) means (6). For n ≥ 1 by induction and (7),

(n + 1)Kn+1(s, x,A) = nKnqK(s, x,A) + Kn−1qK1(s, x,A)

=

∫
A

∫
E

nKn(s, x, dudz)q(u, z)K(u, z, dtdy)

+ Kn−1(s, x, dudz)q(u, z)K1(u, z, dtdy)

≤

∫
A

∫
E

nKn−1(s, x, dudz)
[
η +

1
n

sup
s≤u1≤...≤un−1≤u

[Q(s,u1) + . . . + Q(un−1,u)]
]

q(u, z)K(u, z, dtdy) + Kn−1(s, x, dudz)q(u, z)K(u, z, dtdy)[η + Q(u, t)]

≤

∫
A

Kn(s, x, dtdy)
[
(n + 1)η + sup

s≤u1≤...≤un−1≤un≤t
[Q(s,u1) + . . . + Q(un, t)]

]
.

Lemma 3.1 generalizes Theorem 1 in [6], as we now shall see.

Example 3.2. If Q : R ×R→ [0,∞) is super-additive, i.e.

Q(u, r) + Q(r, v) ≤ Q(u, v), u < r < v,

then,

sup
s≤u1≤...≤un−1≤t

[Q(s,u1) + . . . + Q(un−1, t)] ≤ Q(s, t),

If (6) also holds, then, for n ≥ 1, we get

Kn(s, x, dtdy) ≤ Kn−1(s, x, dtdy)
[
η +

Q(s, t)
n

]
.

In comparison with [6, 7], we do not generally require superadditivity of Q in our present considerations.
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4. Concave control functions

Function 1 : R→ R is concave if for all x, y ∈ R and t ∈ [0, 1],

t1(x) + (1 − t)1(y) ≤ 1(tx + (1 − t)y).

Lemma 4.1. If 1 ≥ 0 is concave and Q(s, t) = 1(t − s), then,

sup
s≤u1≤...≤un−1≤t

[Q(s,u1) + . . . + Q(un−1, t)] = n1((t − s)/n). (9)

Proof. If s ≤ u ≤ t, then, by concavity,

Q(s,u) + Q(u, t)
2

=
1(u − s) + 1(t − u)

2
≤ 1

( t − s
2

)
.

Actually, for u = (t − s)/2, we have equality, hence (9) holds for n = 2. If n ≥ 2, then by induction and (7),
we similarly get

sup
s≤u1≤...≤un≤t

[Q(s,u1) + . . . + Q(un, t)]

= sup
s≤un≤t

[
sup

s≤u1≤...≤un

[Q(s,u1) + . . . + Q(un−1,un)] + Q(un, t)
]

=(n + 1) sup
s≤u≤t

[ n
n + 1

1((u − s)/n) +
1

n + 1
1(t − u)

]
= (n + 1)1

( t − s
n + 1

)
.

We call 1 a (time-homogenous) control function. By Lemma 3.1 and Lemma 4.1, we have the following
result.

Corollary 4.2. If Q(s, t) = 1(t − s), where 1 ≥ 0 is concave, then (6) implies

Kn(s, x, dtdy) ≤ Kn−1(s, x, dtdy)
[
η + 1

( t − s
n

)]
, n ≥ 1.

Example 4.3. We consider 1(x) = min (x, 1) and Q(s, t) = min (t − s, 1), which arise, e.g, if q(u, z) ≤ 1[0,1](u)
and K satisfies the Chapman-Komogorov equation. Thus, if

K1(s, x, dtdy) ≤ min (t − s, 1)K(s, x, dtdy),

then Corollary 4.2 yields

Kn(s, x, dtdy) ≤ min
( t − s

n
, 1

)
Kn−1(s, x, dtdy)

≤

n∏
k=1

min
( t − s

k
, 1

)
K(s, x, dtdy).

For fixed s < t, we denote k0 = bt − sc, the largest integer not exceeding t − s. Then,∏
1≤k≤n

min
( t − s

k
, 1

)
=

∏
k0<k≤n

t − s
k

=
(t − s)n

n!
k0!

(t − s)k0
.

If t − s < 1, then

K̃(s, x, dtdy) ≤
∞∑

n=0

(t − s)n

n!
K(s, x, dtdy) = et−s K(s, x, dtdy)

≤ [1 + e(t − s)]K(s, x, dtdy).
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If t − s ≥ 1, then, by Stirling’s formula, we obtain

∞∑
n=0

n∏
k=1

min
( t − s

k
, 1

)
≤ k0 + 1 +

k0!
(t − s)k0

∑
n>k0

(t − s)n

n!

≤ k0 + 1 + e13/12
√

2πk0 ≤ 1 + 9(t − s).

Summarizing, we always have K̃(s, x, dtdy) ≤ [1 + 9(t − s)]K(s, x, dtdy). This linear bound of K̃/K is clearly
an improvement over the exponential bound offered in Theorem 1 in [6], i.e. (2) above.

Proof. [Proof of Theorem 1.1] We use the control function 1(x) = (µx)β with β ∈ (0, 1) and µ > 0. By
Corollary 4.2 for n ≥ 1, we have

Kn(s, x, dtdy) ≤ Kn−1(s, x, dtdy)
[
η +

(µ(t − s))β

nβ

]
≤ K(s, x, dtdy)

n∏
k=1

[
η +

(µ(t − s))β

kβ

]
.

Let q0(η, β, v) = 1, and for n ≥ 1,

qn(η, β, v) =

n∏
k=1

[
η +

vβ

kβ

]
. (10)

We denote

Fη,β(v) = 1 +

∞∑
n=1

n∏
k=1

[
η +

vβ

kβ

]
=

∞∑
n=0

qn(η, β, v),

and for (s, x) ∈ E, we have

∞∑
n=0

Kn(s, x, dtdy) ≤ K(s, x, dtdy)Fη,β(µ(t − s)).

We write f ∼ 1 if f (v)/1(v)→ 1 as v→∞.
We have Fη,β(0) = 1/(1 − η). We shall estimate Fη,β(v) for all v ≥ 0. We start with η = 0. By [13, Theorem

1] (see also [15, page 55]), we have

F0,β(v) =

∞∑
n=0

vnβ

n!β
∼

1√
β

(2π)
1−β

2 v
1−β

2 exp(βv).

We note that

v
1−β

2 exp(βv) ≤ max {1, v}
1−β

2 exp(βv), v ≥ 0. (11)

The right side of (11) is continuous and positive for v ∈ [0,∞), and so it majorizes F0,β(v) up to a multiplicative
constant depending on β. This proves (4).

For general η, β and v, the sequence qn(η, β, v) is initially nondecreasing and then it decreases for n >
v/(1 − η)1/β, because then η + vβ/nβ < 1, cf. (10). Let N = min{n = 1, 2, . . . : n ≥ v/(1 − η)1/β

}. We either
have qN(η, β, v) = max

n≥1
qn(η, β, v) or N ≥ 2 and qN−1(η, β, v) = max

n≥1
qn(η, β, v). In the latter case, we have
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(N − 1)β < vβ/(1 − η) ≤ Nβ, and qN/qN−1 = η + vβ/Nβ
≥ η + (1 − η)/2β ≥ (1 + η)/2 ≥ 1/2. In either case,

Fη,β(v) = 1 +

2N−1∑
n=1

qn(η, β, v) +

∞∑
n=2N

qn(η, β, v)

≤ 1 + 4NqN(η, β, v) + q2N(η, β, v)
∞∑

n=0

[
η +

vβ

(2N)β

]n

= 1 + 4NqN(η, β, v) + q2N(η, β, v)
1

1 − η − vβ/(2N)β

≤ 1 + qN(η, β, v)
[

4v
(1 − η)1/β

+ 4 +
2β

(1 − η)(2β − 1)

]
≤ 1 + qN(η, β, v)

8(v + 1)
(2β − 1)(1 − η)1/β

.

To estimate qN(η, β, v), we integrate by parts (recall that vβ/Nβ
≤ 1−η) and change variables: t = rv(1−η)−1/β,

log qN(η, β, v) =

N∑
n=1

log
(
η +

vβ

nβ

)
≤ log (η + vβ) +

∫ N

1
log

(
η +

vβ

tβ

)
dt

= log (η + vβ) +

[
N log

(
η +

vβ

Nβ

)
− log (η + vβ) + β

∫ N

1

vβt−β

η + vβ/tβ
dt

]
≤ β

∫ N

1

vβt−β

η + vβ/tβ
dt = βvβ

∫ N

1

dt
ηtβ + vβ

= βvβ
∫ N(1−η)1/β/v

(1−η)1/β/v

v(1 − η)−1/βdr

vβ
(
η

1−η rβ + 1
)

≤ βv(1 − η)1−1/β
∫ 1

0

dr
η(rβ − 1) + 1

.

This yields (5).

We shall compare Theorem 1.1 with the estimate provided by Theorem 1 in [6]. Suppose that

K1(s, x, dtdy) ≤ (µ(t − s))βK(s, x, dtdy) (12)
≤ [η + γ(t − s)]K(s, x, dtdy). (13)

We note that Example 2 in [6] yields kernels satisfying (12). In the next lemma we clarify for which µ, β, η
and γ, (12) implies (13).

Lemma 4.4. Let η ∈ (0, 1), β ∈ (0, 1) and µ, γ > 0. Then,

(µt)β ≤ η + γt for all t ≥ 0,

if and only if

(µβ)β(1 − β)1−β
≤ η1−βγβ.

Proof. We note that (the line) t 7→ η + γt has the same slope as t 7→ (µt)β at t = 1
µ

(
µβ
γ

)1/(1−β)
. Therefore,

(µt)β ≤ η + γt holds for all t ≥ 0 if and only if

(
µβ

γ

) β
1−β

≤ η +
γ

µ

(
µβ

γ

) 1
1−β

.
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We transform the last inequality into

(µβ)
β

1−β (1 − β) ≤ ηγ
β

1−β ,

and we obtain the result.

We now compare the estimates provided by Theorem 1 from [6] and Theorem 1.1. To this end, we
assume that (12) holds with some β ∈ (0, 1) and µ > 0. According to (13), we also assume that η ∈ (0, 1) and
γ > 0 are such that (µt)β ≤ η + γt for all t ≥ 0, cf. (13). By Lemma 4.4, (µβ)β(1 − β)1−β

≤ η1−βγβ. Theorem 1.1
gives power-exponential upper bounds for K̃/K with exponent µβ(t − s), see either (5) or (4). Theorem 1 in
[6] yields

K̃(s, x, dtdy) ≤ K(s, x, dtdy)
1

1 − η
exp

[
γ(t − s)
η

log
1

1 − η

]
.

We shall prove that

µβ ≤
γ

η
log

1
1 − η

. (14)

Taking into account Lemma 4.4, it is enough to verify that

µβ ≤
µβ(1 − β)

1−β
β

η
1
β

log
1

1 − η
,

or

η
1
β ≤ (1 − β)

1−β
β log

1
1 − η

. (15)

Clearly, (15) holds for small η. We also have inequality between derivatives:

1
β
η

1
β−1
≤ (1 − β)

1−β
β

1
1 − η

. (16)

Indeed, by calculus, η 7→ η1−β(1 − η)β has maximum at η = 1 − β, and (16) follows from this. This proves
(14). This means that for large times the estimate in the consider case from Theorem 1.1 is better than from
Theorem 1 in [6].

Below, we give two applications, in which power-type concave majorants appear.

Example 4.5. (compare [6, Example 2]) Let X = {x0} consist of one point and dz is the Dirac measure at x0,
so we can skip them from the notation. Let β ∈ (0, 1) and p(s, t) = Γ(β)−1(t− s)β−1, where s < t. For q(u) ∈ L∞,
we have

p1(s, t) =
1

Γ(β)2

∫ t

s
p(s,u)q(u)p(u, t)du

≤
‖q‖∞
Γ(β)2

∫ t

s
p(s,u)p(u, t)du ≤

‖q‖∞
Γ(β)2 (t − s)βp(s, t).

Hence, we get

pn(s, t) ≤ pn−1(s, t)
‖q‖∞
Γ(β)2

(t − s)β

nβ
,

and consequently, by Themorem 1.1, for µ = (‖q‖∞/Γ(β)2)1/β we have

p̃(s, t) ≤ C(β) max{1, µ(t − s)}(1−β)/2eµβ(t−s)p(s, t).
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Example 4.6. Let p(t, x, y) be the time-homogeneous transition density function of the isotropic stable
process in Rd (see e.g., [2]) and let q(z) = |z|−β with β ∈ (0, α ∧ d). Then,∫ t

0

∫
Rd

p(s, x, z)
1

|z|β
dzds =

∫ t

0

∫
Rd

s−d/αp(1, s−1/αx, s−1/αz)
1

|z|β
dzds

=

∫ t

0

∫
Rd

p(1, s−1/αx,w)
1

|w|β
s−β/αdwds

≤

∫ t

0

∫
Rd

p(1, 0,w)
1

|w|β
s−β/αdwds = cβt

α−β
α . (17)

Denote p(s, x, t, y) = p(t − s, x, y). From (17) and 3P Theorem [5], we have∫ t

0

∫
Rd

p(s, x,u, z)
1

|z|β
p(u, z, t, y)dzdu ≤

(
µ(t − s)

) α−β
α p(s, x, t, y),

for all s < t and x, y ∈ Rd. Here, µ =
(
cd,αcβ

) α
α−β , where cd,α is a constant from 3P inequality. Therefore,

Theorem 1.1 applies.

p̃(s, x, t, y) ≤ C max{1, µ(t − s)}
β

2α e
µ(α−β)
α (t−s)p(s, x, t, y).

We note here that we can calculate the constant cβ above. Namely,

cβ =
α

α − β

∫
Rd

p(1, 0,w)
1

|w|β
dw =

21−β

α − β

Γ( d−β
2 )Γ( βα )

Γ( d
2 )Γ( β2 )

. (18)

Indeed, first, we note that

p(1, 0, 0) =
1

(2π)d

∫
Rd

e−|z|
α
dz =

2π
d
2

Γ
(

d
2

) 1
(2π)d

∫
∞

0
td−1e−tαdt

=
1

Γ
(

d
2

)
π

d
2 2d−1

∫
∞

0
s

d−1
α e−s 1

α s
1
α−1ds =

Γ
(

d
α

)
αΓ

(
d
2

)
π

d
2 2d−1

. (19)

Next, by [18, (2.10)]

|x|−β = 2d−βπd/2
Γ
( d−β

2

)
Γ
( d−β
α

)
Γ
(
β
2

) ∫
∞

0
p(t, x)t

d−α−β
α dt, x ∈ Rd.

Hence, by semigroup property, scaling and (19),

cβ = 2d−βπd/2
Γ
( d−β

2

)
Γ
( d−β
α

)
Γ
(
β
2

) ∫
Rd

p(1, 0,w)
∫
∞

0
p(t,w, 0)t

d−α−β
α dtdw

= 2d−βπd/2
Γ
( d−β

2

)
Γ
( d−β
α

)
Γ
(
β
2

) ∫
∞

0
p(1 + t, 0, 0)t

d−α−β
α dt

= 2d−βπd/2
Γ
( d−β

2

)
Γ
( d−β
α

)
Γ
(
β
2

) ∫
∞

0

Γ
(

d
α

)
αΓ

(
d
2

)
π

d
2 2d−1

(1 + t)−
d
α t

d−α−β
α dt
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Finally, by [14, 3.194.3],

∫
∞

0
(1 + t)−

d
α t

d−α−β
α dt = B

( d−β
α ,

d
α −

d−β
α

)
=

Γ
( d−β
α

)
Γ
(
β
α

)
Γ
(

d
α

) ,

and we get (18).
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